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Abstract

Macromolecular modeling and design are increasingly useful in basic research, biotechnology, and teaching. However, the
absence of a user-friendly modeling framework that provides access to a wide range of modeling capabilities is hampering
the wider adoption of computational methods by non-experts. RosettaScripts is an XML-like language for specifying
modeling tasks in the Rosetta framework. RosettaScripts provides access to protocol-level functionalities, such as rigid-body
docking and sequence redesign, and allows fast testing and deployment of complex protocols without need for modifying
or recompiling the underlying C++ code. We illustrate these capabilities with RosettaScripts protocols for the stabilization of
proteins, the generation of computationally constrained libraries for experimental selection of higher-affinity binding
proteins, loop remodeling, small-molecule ligand docking, design of ligand-binding proteins, and specificity redesign in
DNA-binding proteins.
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Introduction

The Rosetta software suite for macromolecular modeling has

useful applications in many areas of interest to molecular

biologists. It allows the redesign of protein structure[1] and has

been used to generate new protein folds[2], stabilize enzymes[3],

generate novel enzymes[4,5], protein-protein interactions and

inhibitors[6], and redesign specificities in protein-protein[7] and

protein-DNA interactions[8]. The design of new or improved

protein function often requires detailed treatment of available

degrees of freedom, typically on a case-by-case basis. Such case-

specific properties favor a user interface that is flexible enough to

allow control of individual degrees of freedom and the course of

the modeling trajectory. Additionally making the modeling

approaches developed in Rosetta available to the wide community

of molecular biologists, with varying proficiencies in programming,

demands a framework that does not suffer from the rigidities of

traditional programming languages.

With these goals in mind, we developed RosettaScripts, an XML-

like language for specifying modeling protocols in the Rosetta

framework (specification of the XML format can be found at http://

www.w3.org/TR/2000/REC-xml-20001006). RosettaScripts pro-

vides protocol-level access to modeling functionalities, such as loop

modeling, rigid-body docking, and sequence design. Protocols can be

dovetailed to generate complex trajectories comprising, for instance,

a phase of low-resolution rigid-body docking, followed by filtering

according to residue-specific contacts, sequence redesign of parts of

an interface, and finally all-atom docking and minimization. The

protocols can be written quickly, do not require recompilation of the

Rosetta C++ source code, and can be ported and executed on all

computing platforms that support Rosetta, thus opening the door to

fast development and testing for non-experts.

In this paper we describe how to use RosettaScripts, providing

concrete, working examples for a variety of modeling tasks.

Detailed usage instructions of each of the RosettaScripts

functionalities are available at the RosettaCommons website

(http://www.rosettacommons.org) and are updated with each

public release of the source code. The programming section below

explains how the RosettaScripts framework was implemented

within Rosetta as well as the logic for extending RosettaScripts

with new functionalities.

Results

RosettaScripts relies on the object-oriented architecture of

Rosetta 3.0. A detailed description of the Rosetta 3.0 program-

ming framework is available in ref. [9]. At the most general level, a

script consists of a declaration phase and an ordering phase – it
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reads like a recipe starting with an ingredient list and finishing with

a sequence of steps (Figure 1). In the declaration phase, the user

declares a set of Movers (objects to modify a structure), Filters

(objects to evaluate a structure), ScoreFunctions (objects to

evaluate the energy of a structure), and TaskOperations (objects

to control how Rosetta’s side-chain placement routines, ‘‘the

packer,’’ should operate). In the ordering phase, the user lays out

the steps of the protocol by stating the order in which the Movers

and Filters should be applied. Step 1 is always the same and is

handled by the JobDistributor (described later): a structure is

read in from disk (or elsewhere); steps 2 through n describe how

Rosetta should modify that structure. If a filter is applied at step i,

and the structure fails the filter, then execution returns to step 1 for

another attempt. Finally, if a structure passes all filters, it is

returned to the JobDistributor for output to disk.

Mover objects modify a structure (henceforth, a Pose) in some

way. The vast majority of Rosetta routines for modifying the

structure of a protein are wrapped within Movers, from the

simplest steps, such as minimizing, to more complicated protocols

such as rigid-body docking. Complex protocols are often

implemented as Movers built from a series of simpler Movers.

Filter objects evaluate a Pose in their ‘‘apply’’ function and

return a boolean describing whether or not the structure passed

the filter. Filters are useful in aborting trajectories that are

headed towards uninteresting regions of conformation and

sequence space. Both Movers and Filters often require a

substantial amount of data to control their behavior precisely. In

Rosetta2, developers were only able to tune their protocols with

command-line flags. In an object-oriented framework, where a

programmer can have multiple instances of the same Mover, the

command line is overly limited, preventing the user from

expressing nuance because a single flag cannot carry two

meanings: e.g., ‘‘use a cutoff of 10 in step 3, use a cutoff of 20

in step 8.’’ RosettaScripts remedies this problem by letting the user

specify data for controlling Movers and Filters in XML-like

blocks, where each block can carry different pieces of data.

Parsing a RosettaScript
A RosettaScript is parsed as a series of XML-like entries called

Tags. A Tag is a recursive data structure, each instance of which

contains two mappings: from strings to strings (i.e., options), and

from strings to Tags (subtags); the use of Tags is described in

greater detail below. At the highest level, a RosettaScript consists

of five tags, each of which contains subtags: MOVERS, FILTERS,

SCOREFXNS, TASKOPERATIONS, and PROTOCOLS

(Fig. 1A). The only tags that must be specified are MOVERS

and PROTOCOLS. Information specified within each of the first

four high-level Tags is explained above; the PROTOCOLS

section defines the order of Movers and Filters to be executed

for each trajectory. The following provides a skeleton script:

,ROSETTASCRIPTS.

,SCOREFXNS.

,/SCOREFXNS.

,TASKOPERATIONS.

,/TASKOPERATIONS.

,FILTERS.

Figure 1. A schematic of RosettaScript operations. (A) When parsing an XML protocol, a series of objects are instantiated. The DataMap is used
to store some of these elements as they are parsed, and to store any additional objects that the elements define (e.g., constraints from text files).
Movers and Filters can access and modify the elements stored in the DataMap. After parsing completes, the DataMap is deallocated, though
the objects it once held may persist in memory. (B) Starting from a structure read in from disk, protocol execution consists of a series of Mover and
Filter applications. A structure can either pass or fail a Filter: failure causes execution to return to the beginning, whereas success causes
execution to proceed. At the end of execution a protein model and its score are written to file. Though the DataMap does not persist beyond the
parsing of the XML file, any of its former elements that are pointed to by Movers and Filters remain in memory, thus allowing communication
between Movers and Filters during execution.
doi:10.1371/journal.pone.0020161.g001
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,/FILTERS.

,MOVERS.

,/MOVERS.

,PROTOCOLS.

,/PROTOCOLS.

,/ROSETTASCRIPTS.

where the high-level tags would be populated with concrete

objects prior to execution. Strings outside of the ,. brackets

are treated as comments and ignored by the RosettaScripts

machinery.

TaskOperations
Many of the discrete conformational sampling capabilities of

Rosetta are implemented using a rapid Metropolis-Monte Carlo

simulated annealing engine referred to as the packer[9]. The

packer searches for low-energy combinations of side-chain

conformations. TaskOperations define the residue conforma-

tions and identities used in the search and can be used to focus

design or prediction to the relevant spaces (e.g., to design only

interfacial residues and repack the remainder).

From a technical standpoint, TaskOperations are used to

constrain a PackerTask class. PackerTasks are one-time-use

objects and are constructed immediately before use. They are

constructed by the TaskFactory class, and modified by TaskO-

perations before being handed to the packer. The PackerTask

is peculiar in that all of its operations are commutative – the final

state of the PackerTask is independent of the order in which

TaskOperations are applied to it. The analogy of refining the

PackerTask is to sculpting a block of marble: the task starts out

with the command ‘‘redesign all residues allowing all amino acids’’

and successive operations are allowed to restrict the focus of the

task to fewer residues or fewer amino acids at particular residues.

However, once rock is chipped off, it cannot be put back; once a

residue is disabled or an amino acid is marked as unavailable, it

cannot be re-enabled. TaskOperations restrict the degrees of

freedom of PackerTasks. The advantages of this system (that the

state of the PackerTask is independent of the order of operations,

removing all possible ambiguity about its state and avoiding any

issues of operation precedence) are somewhat offset by the

disadvantage that TaskOperations sometimes step on each

other’s toes: one TaskOperation will often disable a residue that

another TaskOperation would say should be designable.

There are three general types of TaskOperations: 1) those

without options: a general, uniform behavior is applied over the

whole Pose; 2) those with options: parameter-dependent behav-

ior(s) are applied to the whole Pose; and 3) residue-level

TaskOperations: behavior is applied to a subset of Pose residues

that belong to a certain category. The following is an excerpt from

a script providing examples for all three usages:

…

,TASKOPERATIONS.

,InitializeFromCommandline name=ifcm/. to make

the Packer aware of command-line options

,RestrictToRepacking name=no_mutations/. only

repack; do not design

,ReadResfile name=rrf filename=myresfile/. re-

sfiles are external files that describe which residues

are allowed to pack

,OperateOnCertainResidues name=fix20to24.

,PreventRepackingRLT/. do not change residues

,ResidueIndexIs indices=20,21,22,23,24/.

,/OperateOnCertainResidues.

,OperateOnCertainResidues name=keepNonpolars.

,RestrictToRepackingRLT/. only repack; do not

design

,ResidueLacksProperty property=POLAR/. op-

erate on polar residues

,/OperateOnCertainResidues.

,/TASKOPERATIONS.

…

,MOVERS.

,PackRotamersMover name=packer scorefxn=score12

task_operations=ifcm,no_mutations/. score12 is the

default all-atom Rosetta energy function; PackRotamers-

Mover invokes the Packer to design or repack sidechains

,PackRotamersMover name=resfilepacker scor-

efxn=score12 task_operations=ifcm,rrf/.

,PackRotamersMover name=anotherpacker scor-

efxn=score12 task_operations=ifcm,fix20to24,keep-

Nonpolars/.

,/MOVERS.

…

In this excerpt, three PackRotamersMovers will be instanti-

ated with different functionalities, since each one relies on a

different set of TaskOperations.

Tests that ensure source-code integrity
The Rosetta source code includes several software tests that

demonstrate and ensure the proper functioning of the Rosetta-

Scripts platform. The ‘‘integration’’ tests (e.g., test/integration/

tests/dna_interface_design) are fully featured demonstrations of

established protocols. Additional tests of RosettaScripts functionality

include hotspot_graft, place_simultaneously, rosetta_scripts_setup,

ligand_dock_script, rotamer_recovery, and score12_docking. In

addition, the ‘‘scientific’’ tests (test/scientific/) carry out full

benchmark analyses of common modeling procedures. This includes

an additional dna_interface_design test to compute the mutational

recovery rates for native amino acids and nucleotides across a diverse

set of 72 sequence-specific protein-DNA interfaces, as well as a

ligand_docking benchmark based on 20 crystal structures. Current

and past results of these tests are available on the RosettaTests Server

(http://rosettatests.graylab.jhu.edu/tests).

Programming Details
Tag class. The Tag class implements a recursive-descent

parser that translates a text document to an object-oriented,

template-based data structure representing the contents of that

document. The production rules for the language in Extended

Backus–Naur Form (EBNF) are:

Tag: = , Name Option* . Tag* ,/Name . | ,Name

Option*/.

Option: = Name = Value

Name: = (string without whitespace)

Value: = (string without whitespace) | ‘‘ (string with whitespace) ’’

These production rules are intended to bear resemblance to the

HTML (http://www.w3.org/TR/REC-html32) or XML (http://

www.w3.org/XML/) languages, which are simple to learn and

familiar to many users of Rosetta. Full-fledged XML parsers were

not used since no text was to be annotated, other than the

structure of the Tags themselves. Also, since verification of the

semantic structure of the tags is left entirely to the user for the sake

of simplicity, the formal document verification abilities of XML

were not required. The parser is implemented with the Boost

Spirit library (http://boost-spirit.com/home/).

The Tag class itself allows recursive access to its subtags via the

getTag and getTags functions. It also allows access to values of the

options through the templated getOption,. function, which, for

RosettaScripts
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convenience, returns its data as any type for which operator..

(string,T) is defined. Implementation of this function allows users

to further define the behavior of the Tag class without changes to

the underlying parser.

Parsing Tags. The parsing of individual Tags is handled

similarly throughout the various sections of a RosettaScript. For

each section, a factory is relied upon that indirectly maps a set of

unique hardcoded names (e.g., ‘‘PackRotamersMover’’) to a set of

objects (e.g., the PackRotamersMover). When a Tag is read, the

relevant factory queries its creators for one that will build an object

with the same name as the Tag’s name (factories and creators are

described in greater detail below). If the factory finds such a

creator, it then requests an instance of the corresponding object

and calls that object’s parse_my_tag routine with the options

specified within the Tag. The parse_my_tag routine interprets the

information provided by the user and saves that information in

internal variables within the object, e.g., cutoffs that would control

the object’s behavior. The instantiated object is saved in a map for

subsequent use in the ordering phase: Mover objects are saved in a

Movers map; Filter objects are saved in a Filters map.

Most top-level Tag types require an option called ‘‘name’’

(Movers, Filters, TaskOperations, but not ScoreFunc-

tions). This name identifies different instances of the same class

so that they can be referred to separately in the ordering section.

For example, in the MOVERS section, the following Tag,

,PackRotamersMover name=design task_operations=de-

sign_shell/. would provoke the MoverFactory to create a

new instance of the PackRotamersMover, and call this instance’s

parse_my_tag() routine with the option task_operations=de-

sign_shell. This Mover would be saved in the Movers map

under the name ‘‘design’’ for use in the ordering phase. Note that

this mover is handed the name ‘‘design_shell’’ for the TaskO-

peration it should use; the Mover will look for this TaskOpera-

tion in a data structure called the DataMap (discussed in greater

detail in the next section).

Once all of the declarations have been parsed, we arrive at the

ordering section (labeled PROTOCOLS in a RosettaScript).

Here, a Mover called ParsedProtocol is instantiated and an

order-dependent array of Movers and Filters is instantiated

with it, explicating the sequence of Movers and Filters to be

executed in a trajectory (Fig. 1B). Consider for example, the

following section:

…

,PROTOCOLS.

,Add mover=design filter=number_of_contacts/.

,Add mover=dock/.

,/PROTOCOLS.

…

RosettaScripts would query the Movers map for Movers, the

name option of which was design and dock and the Filters

map for the Filter number_of_contacts, all of which would

be declared in previous sections. ParsedProtocol’s internal

array of Movers and Filters will have the sequence design R
number_of_contacts R dock, which will be executed in this

order at run-time. As demonstrated in several applications below,

ParsedProtocol itself is a Mover that can be declared in the

Movers section to aggregate a sequence of Movers under one

name. For example,

,ParsedProtocol name=aggregate_mover.

,Add mover=design filter=number_of_contacts/.

,Add mover=dock/.

,/ParsedProtocol.

The Mover aggregate_mover can then be called in the

PROTOCOLS section.

Once a script has been parsed, the Movers map, the Filters

map, and the DataMap all leave scope, and a smart pointer is

retained in memory to the ParsedProtocol mover from the

ordering phase (Fig. 1B). Any objects held in these maps that are

not pointed to from the ParsedProtocol mover (or from an

object contained in the ParsedProtocol mover) will be

automatically deleted.

The DataMap. Global variables are discouraged in large

software projects[10], so a specialized mechanism for

communicating information between Movers and Filters is

needed. To this end, we introduced a DataMap object (Fig. 1). The

DataMap is a map from strings to maps: for example, the

‘‘ScoreFunctions’’ string points to a map with keys such as

‘‘score12’’ and ‘‘score_docking’’, each of which points to smart

pointers of the relevant ScoreFunctions. (Fig. 1A). This flexible

prototype allows any object type to be defined within this

framework, for instance, both TaskOperations and Score-

Functions are held in this map.

The DataMap is passed along with the Movers and Filters

maps to the individual objects at parse time (Fig. 1A). It provides a

templated accessor function for data retrieval, which carries out a

type-safety check (using C++’s dynamic_cast function) and returns

a pointer to the requested object. For example, the code

data_map.get, ScoreFunction * .(‘‘scorefxns’’,

‘‘high_resolution’’) would request a pointer to Score-

Function with the two defining strings ‘‘scorefxns’’ (the name of

the map of strings to ScoreFunction pointers) and ‘‘high

_resolution’’ (the name of a particular ScoreFunction). The

DataMap can also be used to communicate information between

Movers and Filters during run-time (Fig. 1B). For instance, one

Mover might instantiate and store a ScoreFunction object in the

DataMap that is then accessed and modified by other Movers or

Filters. Since these Movers would all hold pointers to the same

ScoreFunction, the weights on individual score terms for a single

ScoreFunction instance could be modified in the course of a

trajectory, and this modification would affect all the Movers using

that instance.

The Job Distributor. The JobDistributor is a Rosetta 3.0

framework, the main task of which is central handling of structure

and scoring input/output operations. RosettaScripts execution is

embedded within the JobDistributor and can therefore access

its structure-reading and -writing functionalities. Options for

controlling JobDistributor behavior[9] are set through the

command line. For instance, reading of a Protein Databank (PDB)

file is accessed through the command line -in:file:s, whereas

reading of a more compact form of a coordinates file is specified by

-in:file:silent[9]. Similarly, coordinate files can be written as PDB

or silent files with the corresponding command line options.

Extending RosettaScripts to include new Movers and
Filters

The XML-parser in RosettaScripts relies on factory classes to

instantiate Movers and Filters by name, without having to

know any details about particular Movers or Filters. This

means that minimal effort is required to include new objects into

the RosettaScripts API. A new Mover merely has to register itself

with the MoverFactory before the parsing step asks the factory

for an instance of that Mover. This means that new Movers can be

added a) easily by new Rosetta developers by adding a handful of

classes and modifying one existing source file; b) easily by non-

Rosetta programmers who are linking against the Rosetta3

libraries; or c) easily in an interactive Python session, or from a

Python script using the PyRosetta libraries[11]. In this last case,

RosettaScripts

PLoS ONE | www.plosone.org 4 June 2011 | Volume 6 | Issue 6 | e20161



the new Mover being introduced can be a Python-defined subclass

of the C++ Mover base class.

The factory scheme is made up of four players: class Widget,

class WidgetFactory, class WidgetCreator, and class Widge-

tRegistrator (Fig. 2). Class WidgetFactory is a singleton[10]

that holds a map from strings to WidgetCreators. Each

WidgetCreator is responsible for instantiating a particular class

derived from class Widget and for reporting a unique name for

instances of this derived Widget class. WidgetCreators must be

registered with the WidgetFactory, at which time the Widget-

Factory adds the WidgetCreator to its map of stringsWidget-

Creators. The WidgetFactory defines a function: Widget *

create_widget(std::string const & name) wherein it

searches for a WidgetCreator with the given name and then

asks that WidgetCreator for a new Widget. The WidgetRe-

gistrator objects, at construction, create a particular Widget-

Creator and register it with a particular WidgetFactory. The

registrators are placed in the library init.cc files (e.g., src/

protocols/init.cc) which also house an init() function that all

Rosetta executables must call at the very beginning of main(). This

ensures that registration happens before the factories are used.

New Widgets and WidgetCreators can be defined anywhere,

including in external libraries, and can be included in the

RosettaScripts without modifying any of the code in the Rosetta3

libraries. This flexibility would not be possible without separating

the role that WidgetCreators play (instantiating particular

Widgets) from the role the WidgetFactory plays (centralizing

the instantiation).

Applications
In the following, all scripts can be run using the RosettaScripts

application that is part of the Rosetta release with the following

commandline:

rosetta_scripts –s ,PDB file name. -parser:proto-

col ,XML file name. -database ,location of the Rosetta

database..

For convenience, we provide input and output files for each

protocol as Supplemental Information S1.

Flexible backbone design for monomers. Protein cores

are usually very well packed with mostly hydrophobic amino acids,

to the extent that the packing density corresponds to a close-

packed crystal[12]. Cavity-forming mutations or strain in the core

of natural proteins compromise their stability[13]. Therefore,

generating stable monomeric proteins demands a tightly packed

and strain-free core[3]. In addition, numerous studies have

pointed out that native proteins evolved by optimizing their

backbone conformations in the process tightening core

packing(e.g., [1]). This idea directly led to the development of a

design protocol for sequence and backbone optimization and the

generation of the first computationally designed novel protein

fold[2]. Accordingly, the flexible-backbone design protocol

implemented here provides the simultaneous design of sequence

and backbone (FlxbbDesign), followed by the filtering of the

designed structures by RosetttaHoles (PackStat) [14], which

quantitatively assesses protein packing:

,ROSETTASCRIPTS.

,SCOREFXNS.

,SFXN1 weights=score12_w_corrections.

,Reweight scoretype=atom_pair_

constraint weight=1.0/.

,/SFXN1.

,/SCOREFXNS.

,TASKOPERATIONS.

,LayerDesign name=layer layer=core_

boundary_surface/.

,/TASKOPERATIONS.

,FILTERS.

,PackStat name=pstat threshold=0.60/.

,/FILTERS.

,MOVERS.

,FlxbbDesign name=flxbb ncycles=3

constraints_sheet=100.0 sfxn_design=SFXN1 sfxn_re-

lax=SFXN1 clear_all_residues=1 task_operations=

layer/.

,/MOVERS.

,PROTOCOLS.

,Add mover=flxbb/.

,Add filter=pstat/.

,/PROTOCOLS.

,/ROSETTASCRIPTS.

In this example, FlxbbDesign performs 3 cycles of sequence

design and backbone optimization[15]. Internally, initial sequence

information is cleared by turning all residues to alanine

(clear_all_residues= 1). Then, sequence design is conducted

with the TaskOperation of LayerDesign, which specifies the

allowed amino acid types depending on the extent of burial of each

position (e.g., buried positions are allowed to be hydrophobic,

Figure 2. Unified-Modeling Language (UML) class diagram of
Rosetta’s factory scheme. The creation of Movers, Filters, and
TaskOperations is controlled by similar factory setups. Pictured here
are the classes responsible for the instantiation of generic ‘‘Widget’’
classes. The singleton WidgetFactory maintains a map from strings
to WidgetCreators. Each WidgetCreator is responsible for
instantiating a particular Widget; e.g., the derived WidgetCreator
class, DerivedWidgetCreator, is responsible for instantiating the
derived Widget, DerivedWidget. The factory registration system
allows new Movers, Filters, and TaskOperations (and their
corresponding MoverCreators, FilterCreators, and TaskO-
perationCreators) to be defined outside of the Rosetta3 libraries
and yet to be included in the RosettaScripts framework without
requiring the addition of any new dependencies to the Rosetta3
libraries.
doi:10.1371/journal.pone.0020161.g002
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whereas exposed positions are polar). Next, backbone optimization

is performed with sheet constraints to prevent drastic changes to

the tertiary structure. Finally, the extent to which the core of the

structure is well-packed is evaluated and filtered by Rosetta-

Holes[14] using the PackStat filter.

Protein-protein interface redesign and conformational

sampling. Recent advances in protein engineering have

allowed screening and selection of large-scale combinatorial

protein libraries leading to novel therapeutics and

biotechnological reagents[16]. Despite these advances the

sequence space that can be sampled even by the most

sophisticated experimental methods (1011 combinations) would

allow the full randomization of a mere 8 independent amino acid

positions. By contrast a typical protein-protein interface consists of

more than 20 amino acid residues within the first shell of

interactions, well beyond the reach of screening capabilities.

Efficient computational protocols can readily sample

conformational spaces of this size[17]. Computational design can

therefore be useful in restricting sequence space to energetically

reasonable identities and experimentally manageable sizes[18].

Here, we describe an approach to identify diverse sequence

mutations in a protein interface that are compatible with a given

binding mode. The protocol makes use of rigid-body docking,

backbone and side-chain minimization and packing, sequence

design, and a combination of score functions that encourages

greater sequence diversity. Often, certain structural and energetic

properties should be retained throughout a trajectory, e.g., the

computed binding energy (ddG), the presence of particular

hydrogen bonds or the root-mean-square deviation from the

starting structure. The versatility of RosettaScripts allows the user

to combine a set of movers and filters to ensure that these

properties are maintained. The example protocol below starts with

high resolution docking with soft-repulsive penalties. It uses

iterations over a series of design movers combined with subtle

backbone sampling defined through the Backrub mover[19,20].

,ROSETTASCRIPTS.

,FILTERS.

,Ddg name=ddG scorefxn=score12 threshold=-15

repeats=2/. binding energy calculation; an average of

two repeats is computed for better numerical accuracy

,Sasa name=sasa threshold=800/. Buried surface

area upon complex formation

,Rmsd name=rmsd confidence=0/. confidence=0

means that the filter will be evaluated but not used as

an acceptance criterion

,CompoundStatement name=ddg_sasa. combine fil-

ters into a single logical statement

,AND filter_name=ddG/.

,AND filter_name=sasa/.

,/CompoundStatement.

,/FILTERS.

,MOVERS.

,Docking name=docking score_high=soft_rep

fullatom=1 local_refine=1/. Invokes RosettaDock local-

refinement (in full-atom) with a soft potential

,Backrub name=backrub partner1=0 partner2=1

interface_distance_cutoff=8.0 moves=1000 sc_move_

probability=0.25 scorefxn=score12

small_move_probability=0.15 bbg_move_probability=

0.25/. perturb the backbone of chain2

,RepackMinimize name=des1 scorefxn_repack=soft_rep

scorefxn_minimize=soft_rep minimize_bb=0 minimize_

rb=1/.

,RepackMinimize name=des2 scorefxn_repack=

score12 scorefxn_minimize=score12 minimize_bb=0

minimize_rb=1/. Design & minimizatio

n at the interface

,RepackMinimize name=des3 minimize_bb=1/.

,ParsedProtocol name=design.

,Add mover_name=des1/.

,Add mover_name=des2/.

,Add mover_name=des3/.

,Add mover_name=backrub/.

,Add mover_name=des3 filter_name=ddg_sasa/.

,/ParsedProtocol.

,GenericMonteCarlo name=iterate scorefxn_name=

score12 mover_name=design trials=10/.

,/MOVERS.

,PROTOCOLS.

,Add mover=docking/.

,Add mover=iterate/.

,Add filter=ddG/.

,Add filter=sasa/.

,Add filter=rmsd/.

,/PROTOCOLS.

,/ROSETTASCRIPTS.

In each trajectory, this protocol would carry out one docking

step and then iterate 10 times (through use of the GenericMon-

teCarlo mover) over a set of design and backbone sampling

(Backrub) steps. The output will include the modified protein

structure, the computed binding energy (ddG), the buried surface

area upon complex formation (sasa), and the RMSD from the

starting structure (rmsd). Typically, several thousand models

should be executed with this script and the mutations at the

interfaces combined to constrain sequence space for experimental

libraries.

Loop modeling. Polypeptide stretches lacking secondary

structure are often found at protein interfaces. A well-known

example is that of antibodies, which use a combination of loops to

achieve high shape complementarity and interaction density to

antigens with a wide variety of surface features. The variety of

conformational solutions that loops provide suggests that

incorporating loop modeling in the design of interfaces could

substantially increase the potential utility of protein design. The

example below provides a procedure for sampling conformational

plasticity at the interface for use in increasing the affinity of a

target-scaffold pair of proteins.

Alternative rigid-body orientations of a scaffold-target pair

potentially present different loops to the target surface. We

developed a customizable framework for the automatic detection

of loops at the interface to be used for conformational remodeling

and sequence design. These methods are optimized for use with

interfacial loops, but can also be extended to incorporate

backbone moves in the context of a monomer. First, the user

specifies a LoopFinder Mover, with options available to define

minimum and maximum loop lengths. The user may also specify

whether loops should be restricted to the interface, and on which

partners they should be detected. A subsequently invoked

LoopRemodel Mover carries out the actual conformational

remodeling and sequence design in the loops identified by the

LoopFinder. Alternatively, if the loop spans to be remodeled are

known ahead of time, the user may specify them within

LoopRemodel itself. The LoopRemodel mover can perform both

extensive loop building, in which backbone degrees of freedom

are randomized prior to building, or refinement of an existing

loop structure. Building operates in low-resolution mode, and so

exclusively operates on backbone torsion angles. A refinement
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step operates in all-atom mode and intersperses backbone moves

with side-chain repacking and/or design. A single LoopRemodel

Mover can sequentially incorporate both building and refine-

ment. Two loop-remodeling strategies are currently supported:

fragment insertion[21] followed by cyclic coordinate descent[22],

and kinematic loop closure[23], which vary in how torsion-angle

sampling is conducted.

In many protein-protein interactions, the structure of each

complexed partner differs somewhat from its apo structure. The

aforementioned small backbone moves and loop remodeling can

be linked together within RosettaScripts to approximate such

interfacial conformation changes during the design process. This

protocol uses a special wrapping mover called LoopOver, which

allows a user to repeat combined sub-movers. The contained sub-

mover is repeated until one of two exit conditions is fulfilled: either

a certain number of repeats has occurred, or a user-defined

Filter has passed. The script assumes a reasonable starting rigid-

body orientation between two partners, with chain 1 being the

target and chain 2 being the design scaffold. The script begins with

large scale interfacial loop building of chain 2 in low-resolution

mode, then proceeds to refine these new loop conformations with

a soft-repulsive score function. Once the loop conformations have

been refined with a fixed sequence, they are refined again with

simultaneous sequence design and a more physically realistic score

function (with higher repulsive weights). Repeated Backrub moves

then subtly sample backbone conformations, and a set of three

RepackMinimize moves is used for interface design. Target-

specific filters may be added to this script to ensure that

conformational and sequence space is constrained by known

functional or energetic thresholds.

,ROSETTASCRIPTS.

,MOVERS.

,LoopFinder name=find ch1=0 ch2=1

interface=1 min_length=3 max_length=10 mingap=2/.

Find loops on chain 2 with length 2.x.11, with at least

3 residue separation.

,LoopRemodel name=build auto_

loops=1 design=0 protocol=kinematic perturb=1 re-

fine=0/. Aggressively build found loops, no design

,LoopRemodel name=refine1 auto_

loops=1 design=0 protocol=kinematic perturb=0 re-

fine=1 refine_score=soft_rep/. Refine found loops,

soft repulsive, no design

,LoopRemodel name=refine2 auto_

loops=1 design=1 protocol=kinematic perturb=0 re-

fine=1 refine_score=score12/. Refine found loops,

score12, design

,Backrub name=backrub partner1=0

partner2=1/. Subtle backbone moves over whole inter-

face of chain 2

,LoopOver name=repeat_backrub mover_

name=backrub iterations=10/. Bundles Backrub into re-

peats (no filter used)

,RepackMinimize name=des1 scorefxn_

repack=score_docking scorefxn_minimize=soft_rep minimize_

bb=0 minimize_rb=0/.

Aggressive design scorefunction, sidechain only

moves

,RepackMinimize name=des2 scor-

efxn_repack=soft_rep scorefxn_minimize=score12

minimize_bb=0 minimize_rb=1/. More

constrained design scorefunction, sidechain and

rigid body moves

,RepackMinimize name=des3 de-

sign_partner1=1 design_partner2=1 minimize_bb=1/.

Strict design scorefunction, sidec

hain, rigid body, and backbone moves

,ParsedProtocol name=design.

,Add mover_name=des1/.

,Add mover_name=des2/.

,Add mover_name=des3/.

,/ParsedProtocol.

,/MOVERS.

,PROTOCOLS.

,Add mover=find/.

,Add mover=build/.

,Add mover=refine1/.

,Add mover=refine2/.

,Add mover=repeat_backrub/.

,Add mover=design/.

,/PROTOCOLS.

,/ROSETTASCRIPTS.

Enzyme and ligand-binder design. RosettaScripts can be

used for the modeling and design of protein-ligand interfaces as

performed in the de novo computational design of enzymes[4,5]. In

the Rosetta enzyme-design methodology, the active-site geometry

is specified by a set of pairwise geometric constraints – called

match constraints[24] – each defined between the transition-state

(TS) model and a functional group from the protein (catalytic

residue). Starting from a given orientation of a ligand or a TS

model with respect to a protein structure, match constraints

between specified sidechains or backbones of catalytic residues and

the TS can be applied and modulated during the simulation. The

conformations and identities of the interface side chains, the rigid-

body orientation of the TS with respect to the protein, and the

conformation of an internally flexible TS model can be

simultaneously optimized using a combination of Monte Carlo

optimization and gradient-based minimization, with or without

match constraints.

The AddOrRemoveMatchCsts Mover handles the application

or removal of match constraints that are used to specify the

relative orientation of the TS and a given functional group.

Constraints can also be defined between two functional groups

within the protein (e.g., a His-Asp dyad). Each instance of the

Mover can take a different set of constraints, specified via a user-

defined input file, thereby allowing the user to change the

magnitude and/or the number of constraints used during the

simulation trajectory. In cases where the TS model contains a

covalently bound intermediate (e.g., acylenzyme intermediates), it

is possible to specify retaining the covalent constraint even while

removing other non-covalent ones.

The EnzRepackMinimize Mover performs Monte Carlo

optimization of the identities and conformations of a protein-

ligand interface followed by gradient-based minimization of the

energy of the resulting interface. The interface is identified using

the DetectProteinLigandInterface TaskOperation (see

below). The user can toggle the minimization of various degrees

of freedom – side chain, backbone, ligand rigid-body orientation,

and the ligand internal torsion angles – individually during each

instantiation of the mover, thus allowing fine-grained control over

the degrees of freedom minimized at a particular stage of the

protocol. If the option cst_opt is selected, all protein residues on

the interface except catalytic residues are temporarily converted to

alanines, and the energy including constraint energy – defined as a

harmonic penalty from the ideal values – is minimized.

The DetectProteinLigandInterface TaskOperation de-

termines the residue positions on a protein-ligand interface for
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subsequent protein design. This TaskOperation identifies

ligand-proximal positions on the protein (or a user-specified

set of residues) and marks them as designable; positions distal

from the ligand are marked as immutable; and intermediate

positions are marked repackable. During the course of an

enzyme-design calculation, designable positions are allowed to

change both their identity and conformation; repackable

positions are allowed to change only their conformation;

whereas immutable positions are constrained to their starting

conformation. The following is a typical script for conducting an

enzyme-design calculation.

,ROSETTASCRIPTS.

,SCOREFXNS.

,myscore weights=enzdes.wts/. Read

the enzdes.wts score function from the Rosetta database

,/SCOREFXNS.

,FILTERS.

,EnzScore name="allcst" score_ty-

pe=cstE scorefxn=myscore whole_pose=1 energy_cut-

off=5/. filter on the constraint scores

,LigInterfaceEnergy name="interfE"

scorefxn=myscore energy_cutoff=-9.0/. filter on the

energy across the interface

,CompoundStatement name="myfilter".

,AND filter_name="allcst"/.

,AND filter_name="interfE"/.

,/CompoundStatement.

,/FILTERS.

,MOVERS.

,AddOrRemoveMatchCsts name=cstadd

cst_instruction=add_new/. add catalytic constraints

,EnzRepackMinimize name=cstopt cst_opt=1

minimize_rb=1 minimize_sc=1 minimize_bb=1/. optimize

constraints energy in polyAla background

,EnzRepackMinimize name=desmin de-

sign=1 repack_only=0 scorefxn_minimize=myscore

scorefxn_repack=myscore minimize_rb=1 minimi-

ze_sc=1 minimize_bb=1 cycles=1/.

,EnzRepackMinimize name=fin_min re-

pack_only=0 design=0 scorefxn_minimize=myscore

scorefxn_repack=myscore minimize_rb=1 minimi-

ze_sc=1 minimize_bb=1 cycles=1/.

,EnzRepackMinimize name=fin_rpkmin re-

pack_only=1 design=0 scorefxn_minimize=myscore

scorefxn_repack=myscore minimize_rb=1 minimi-

ze_sc=1 minimize_bb=1 cycles=1/.

,AddOrRemoveMatchCsts name=cstrem

cst_instruction=remove keep_covalent=1/. remove

constraints

,AddOrRemoveMatchCsts name=cstfinadd

cst_instruction=add_pregenerated/. add the last set

of constraints added just prior to removing them (used

for scoring typically at the end of the trajectory)

,/MOVERS.

,PROTOCOLS.

,Add mover_name=cstadd/.

,Add mover_name=cstopt/.

,Add mover_name=desmin/.

,Add mover_name=cstrem/.

,Add mover_name=fin_min/.

,Add mover_name=fin_rpkmin/.

,Add mover_name=cstfinadd/.

,/PROTOCOLS.

,/ROSETTASCRIPTS.

Ligand docking and design. RosettaLigand allows the

simultaneous sampling of protein, ligand, and rigid-body degrees

of freedom[25,26] and has been refactored for use with

RosettaScripts. Separating the protocol into a collection of

scriptable movers allows users to customize the docking study in

fine detail. This opens the door to novel ligand-docking

approaches while preserving the benchmark results seen

previously. Multiple ligands, cofactors, ions, and key water

molecules can now be docked simultaneously. Interface-residue

identities can now be redesigned during docking. By separating

low- and high-resolution docking, a study can be optimized for

high-throughput virtual screening. The following script is designed

to replicate the protocol described by Davis and Baker[26]:

,ROSETTASCRIPTS.

,SCOREFXNS.

,ligand_soft_rep weights=ligand_soft_rep.

use a soft potential from the Rosetta database

,Reweight scoretype=hack_elec weight

=0.42/. change the Coloumb electrostatic weight to 0.42

,/ligand_soft_rep.

,hard_rep weights=ligand.

,Reweight scoretype=hack_elec weight=0.42/.

,/hard_rep.

,/SCOREFXNS.

,LIGAND_AREAS.

,docking_sidechain chain=X cutoff=6.0 add_

nbr_radius=true all_atom_mode=true minimize_li-

gand=10/.

,final_sidechain chain=X cutoff=6.0 add_

nbr_radius=true all_atom_mode=true/.

,final_backbone chain=X cutoff=7.0 add_

nbr_radius=false all_atom_mode=true Calpha_res-

traints=0.3/.

,/LIGAND_AREAS.

,INTERFACE_BUILDERS.

,side_chain_for_docking ligand_areas=docking_

sidechain/.

,side_chain_for_final ligand_areas=final_

sidechain/.

,backbone ligand_areas=final_backbone ex-

tension_window=3/.

,/INTERFACE_BUILDERS.

,MOVEMAP_BUILDERS.

,docking sc_interface=side_chain_for_

docking minimize_water=true/.

,final sc_interface=side_chain_for_final

bb_interface=backbone minimize_water=true/.

,/MOVEMAP_BUILDERS.

,MOVERS.

single movers

,StartFrom name=start_from chain=X.

,Coordinates x=-1.731 y=32.589 z=

-5.039/.

,/StartFrom.

,Translate name=translate chain=X distri-

bution=uniform angstroms=0.01 cycles=50/.

,Rotate name=rotate chain=X distribution=

uniform degrees=360 cycles=1000/.

,SlideTogether name=slide_together chain=X/.

,HighResDocker name=high_res_docker chains

=X cycles=6 repack_every_Nth=3 scorefxn=ligand_

soft_rep movemap_builder=docking/.

,FinalMinimizer name=final scorefxn=hard_

rep movemap_builder=final/.
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,InterfaceScoreCalculator name=add_scores

chains=X scorefxn=hard_rep native="inputs/7cpa_

7cpa_native.pdb"/.

compound movers

,ParsedProtocol name=low_res_dock.

,Add mover_name=start_from/.

,Add mover_name=translate/.

,Add mover_name=rotate/.

,Add mover_name=slide_together/.

,/ParsedProtocol.

,ParsedProtocol name=high_res_dock.

,Add mover_name=high_res_docker/.

,Add mover_name=final/.

,/ParsedProtocol.

,/MOVERS.

,PROTOCOLS.

,Add mover_name=low_res_dock/.

,Add mover_name=high_res_dock/.

,Add mover_name=add_scores/.

,/PROTOCOLS.

,/ROSETTASCRIPTS.

The StartFrom Mover moves a small molecule to a specified

XYZ-coordinate and is used to position the ligand in proximity to

a putative binding site. Translate randomly moves a specified

distance in any direction. This is repeated a specified number of

times until the ligand does not sterically clash with the protein.

Rotate randomly reorients the ligand a specified number of

times, looking for a rotation that leads to van der Waals attractive

and repulsive scores that pass a threshold. After initial placement

of the ligand, SlideTogether moves the ligand toward the

protein until the two collide and then backs up the ligand slightly,

to ensure that contact between the partners is maintained. The

HighResDocker performs cycles of rotamer trials or repacking,

coupled with small perturbations of the ligand. FinalMinimizer

performs gradient-based minimization of the final docked pose.

Finally the InterfaceScoreCalculator records the value of

each score term with the docked ligand and after removing the

docked ligand. The differences between paired terms represents

the interface score. It also calculates the distance the ligand

traveled and the ligand radius of gyration. If the structure is

known (in case of benchmark studies), root-mean-square distances

can be calculated.

Several other ligand-docking specific XML elements are used

by the Movers above. LIGAND_AREAS describe parameters

specific to each ligand in a multi-ligand docking study. A cutoff

distance specified in Ångstroms determines how far away an

amino acid residue can be from the ligand and still be considered

part of an interface. The neighbor_radius parameter is

specified in the ligand-params file and can be added to the

specified cutoff distance. All-atom mode checks the distance

between each residue and every ligand atom. Otherwise the

distance is checked only from the ligand centroid. During high-

resolution docking, modest sampling of ligand translation and

rotation are coupled to cycles of rotamer trials or repacking. These

values can be controlled by the high_res_angstrom and

high_res_degrees values, respectively. LIGAND_AREAS specify

the degree of ligand flexibility and backbone flexibility around

each ligand. Ligand minimization can be turned on by specifying a

minimize_ligand value greater than 0. This value represents the

size of one standard deviation of ligand torsion-angle rotation (in

degrees). By setting Calpha_restraints greater than 0,

backbone flexibility is enabled. This value represents the size of

one standard deviation of Calpha movement in Ångstroms.

INTERFACE_BUILDERS describe how to choose residues that will

be part of a protein-ligand interface. The user provides a list of

ligand_area names in comma separated form. MOVEMAP_-

BUILDERS construct descriptions of the degrees of freedom

allowed in minimization.

Design of DNA-binding proteins. RosettaScripts can be

used to perform modeling and design of protein-DNA interfaces.

Protein-DNA complexes were first modeled using Rosetta by

Havranek et al. [27]. Predictions are made using atom properties

and energy forcefield parameters that are based on the default

Rosetta energy function[28]. This has subsequently been applied

to research into the design of novel specificity for DNA-binding

proteins, including the design of individual changes in the

nucleotide specificity of homing endonucleases[29], as well as

methods to theoretically maximize specificity[28], introduce small

protein backbone shifts[30], and optimize clusters of amino acids

for changes in multiple adjacent base pairs[28]. The

RosettaScripts components can be used to make similar kinds of

predictions, as well as to efficiently build, extend, and test new

modeling and design protocols. The following protocol redesigns a

protein around a DNA molecule, using the multistate-design

framework to take into account binding specificity and backbone

remodeling.

,ROSETTASCRIPTS.

,TASKOPERATIONS.

,InitializeFromCommandline name=IFC/.

,IncludeCurrent name=IC/.

,RestrictDesignToProteinDNAInterface

name=DnaInt base_only=1 z_cutoff=3.0 dna_defs=C.

-10.GUA/.

,OperateOnCertainResidues name=AUTOprot.

,AddBehaviorRLT behavior=AUTO/.

,ResidueHasProperty property=PROTEIN/.

,/OperateOnCertainResidues.

,OperateOnCertainResidues name=ProtNoDes.

,RestrictToRepackingRLT/.

,ResidueHasProperty property=PROTEIN/.

,/OperateOnCertainResidues.

,OperateOnCertainResidues name=DnaNoPack.

,PreventRepackingRLT/.

,ResidueHasProperty property=DNA/.

,/OperateOnCertainResidues.

,/TASKOPERATIONS.

,SCOREFXNS.

,DNA weights=dna/.

,/SCOREFXNS.

,FILTERS.

,FalseFilter name=falsefilter/.

,/FILTERS.

,MOVERS.

,DnaInterfaceMultiStateDesign name=msd

scorefxn=DNA task_operations=IFC,IC,AUTOprot,D-

naInt pop_size=20 num_packs=1 numresults=0 boltz_

temp=2 anchor_offset=15 mutate_rate=0.8 genera-

tions=5/.

,DesignProteinBackboneAroundDNA name=bb

scorefxn=DNA task_operations=IFC,IC,AUTOprot,D-

naInt type=ccd gapspan=4 spread=3 cycles_outer=3

cycles_inner=1 temp_initial=2 temp_final=0.6/.

,DnaInterfacePacker name=DnaPack scor-

efxn=DNA task_operations=IFC,IC,AUTOprot,ProtNo-

Des,DnaInt binding=1 probe_specificity=1/.

,ParsedProtocol name=bb_msd.

,Add mover_name=msd/.

,Add mover_name=bb/.
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,Add mover_name=msd/.

,/ParsedProtocol.

,LoopOver name=iterbb mover_name=bb_msd

filter_name=falsefilter iterations=1/.

,/MOVERS.

,PROTOCOLS.

,Add mover_name=iterbb/.

,Add mover_name=DnaPack/.

,/PROTOCOLS.

,/ROSETTASCRIPTS.

The DnaInterfacePacker Mover performs side-chain opti-

mization and design of protein-DNA interactions, as well as

specificity prediction. DnaInterfaceMultiStateDesign em-

ploys a Packer-based genetic algorithm to optimize amino acid

sequences to maximize the energy discrimination between the

target and alternative DNA sequences, and DesignProtein-

BackboneAroundDNA introduces small local changes in protein

backbone conformation in the vicinity of DNA. The TaskOpera-

tion RestrictDesignToProteinDNAInterface automatically

limits the freedom of amino acid torsions and mutations to the

relevant vicinity of the protein-DNA interface.

Supporting Information

Supplemental Information S1 Protocols, input, and
output files for all examples given in the paper.
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flexibility. Jô Mol Biol 385: 381–392.

27. Havranek JJ, Duarte CM, Baker D (2004) A simple physical model for the

prediction and design of protein-DNA interactions. Jô Mol Biol 344: 59–70.
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