Neuropharmacology 60 (2011) 66-81

Contents lists available at ScienceDirect

Neuropharmacology

journal homepage: www.elsevier.com/locate/neuropharm

Review Allosteric modulation of metabotropic glutamate receptors: Structural insights and therapeutic potential

Karen J. Gregory^a, Elizabeth N. Dong^b, Jens Meiler^{a,b,c,*}, P. Jeffrey Conn^{a,**}

^a Department of Pharmacology, Vanderbilt Program in Drug Discovery, Vanderbilt University Medical Center, Nashville, TN, USA ^b Center for Structural Biology, Vanderbilt University Medical Center, Nashville, TN, USA

^c Department of Chemistry and the Institute for Chemical Biology, Vanderbilt University Medical Center, Nashville, TN, USA

ARTICLE INFO

Article history: Received 16 April 2010 Received in revised form 28 June 2010 Accepted 6 July 2010

Keywords: Allosteric modulator Chimeric receptors G protein-coupled receptors Neuromodulation Site-directed mutagenesis Homology model

ABSTRACT

Allosteric modulation of G protein-coupled receptors (GPCRs) represents a novel approach to the development of probes and therapeutics that is expected to enable subtype-specific regulation of central nervous system target receptors. The metabotropic glutamate receptors (mGlus) are class C GPCRs that play important neuromodulatory roles throughout the brain, as such they are attractive targets for therapeutic intervention for a number of psychiatric and neurological disorders including anxiety, depression, Fragile X Syndrome, Parkinson's disease and schizophrenia. Over the last fifteen years, selective allosteric modulators have been identified for many members of the mGlu family. The vast majority of these allosteric modulators are thought to bind within the transmembrane-spanning domains of the receptors to enhance or inhibit functional responses. A combination of mutagenesis-based studies and pharmacological approaches are beginning to provide a better understanding of mGlu allosteric sites. Collectively, when mapped onto a homology model of the different mGlu subtypes based on the β_2 -adrenergic receptor, the previous mutagenesis studies suggest commonalities in the location of allosteric sites across different members of the mGlu family. In addition, there is evidence for multiple allosteric binding pockets within the transmembrane region that can interact to modulate one another. In the absence of a class C GPCR crystal structure, this approach has shown promise with respect to the interpretation of mutagenesis data and understanding structure-activity relationships of allosteric modulator pharmacophores.

© 2010 Elsevier Ltd. All rights reserved.

* Corresponding author. Center for Structural Biology, Vanderbilt University Medical Center, 5144B BIOSCI/MRBIII, 465 21st Avenue South, Nashville, TN 37232-8725, USA. Tel.: +1 615 936 5662; fax: +1 615 936 2211.

** Corresponding author. Department of Pharmacology, Vanderbilt Program in Drug Discovery, Vanderbilt University Medical Center, 1215 Light Hall, 2215-B Garland Ave, Nashville, TN 37232-0697, USA. Tel.: +1 615 936 2189; fax: +1 615 343 3088.

E-mail addresses: karen.j.gregory@vanderbilt.edu (K.J. Gregory), elizabeth.n.dong@vanderbilt.edu (E.N. Dong), jens.meiler@vanderbilt.edu (J. Meiler), jeff.conn@ vanderbilt.edu (P.J. Conn).

0028-3908/\$ – see front matter @ 2010 Elsevier Ltd. All rights reserved. doi:10.1016/j.neuropharm.2010.07.007

Abbreviations: ADX47273, S-(4-fluoro-phenyl)-{3-[3-(4-fluoro-phenyl)-[1,2,4]oxadiazol-5-yl]-piperidin-1-yl}-methanone; AMN082, N,N'-Bis(diphenylmethyl)-1,2-ethanediamine; ATCM, allosteric ternary complex model; BINA, Biphenyl-indanone A; Br-5MPEPy, 2-(2-(5-bromopyridin-3-yl)ethynyl)-5-methylpyridine; CaSR, Calcium-sensing receptor; CDPPB, 3-cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl)benzamide; CFMMC, 3-cyclohexyl-5-fluoro-6-methyl-7-(2-morpholin-4-ylethoxy)-4H-chromen-4-one; CPCCOEt, 7-(Hydroxyimino)cyclopropa[b]chromen-1a-carboxylate ethyl ester; CPPHA, N-{4-chloro-2-[(1,3-dioxo-1,3-dihydro-2H-isoindol-2-yl)methyl]phenyl}-2-hydroxybenzamide; DFB, [(3-Fluorophenyl)methylene]hydrazone-3-fluorobenzaldehyde; EM-TBPC, 1-ethyl-2-methyl-6-oxo-4-(1,2,4,5-tetrahydro-benzo[d]azepin-3-yl)-1,6-dihydro-pyrimidine-5carbonitrile; ERK1/2, extracellular signal-regulated kinases 1 and 2; FMRP, fragile X mental retardation protein; FTIDC, 4-[1-(2-fluoropyridin-3-yl)-5-methyl-1H-1,2,3-triazol-4-yl]-N-isopropyl-N-methyl-3,6-dihydropyridine-1(2H)-carboxamide; FXS, Fragile X Syndrome; GABA, y-aminobutyric acid; GPCR, G protein-coupled receptor; mGlu, metabotropic glutamate receptor; LY404039, (-)-(1R,4S,5S,6S)-4-amino-2-sulfonylbicyclo[3.1.0]hexane-4,6-dicarboxylic acid; LY456066, (2-[4-(indan-2-ylamino)-5,6,7,8-tetrahydro-quinazolin-2-ylsulfanyl]-ethanol hydrochloride); LY487379, 2,2,2-Trifluoro-N-[4-(2-methoxyphenoxy) phenyl]-N-(3-pyridinylmethyl)ethanesulfonamide; M-5MPEP, 2-(2-(3-methoxyphenyl)ethynyl)-5-methylpyridine; M-MPEP, 2-methyl-6-(3-methoxyphenyl)ethynyl-pyridine; MMPIP, 6-(4-Methoxyphenyl)-5-methyl-3-(4-pyridinyl)-isoxazolo [4,5-c] pyridine-4(5H)-one hydrochloride; MPEP, 2-Methyl-6-(phenylethynyl)pyridine; MTEP, 3-[(2-Methyl-1,3-thiazol-4-yl)ethynyl] pyridine; NAM, negative allosteric modulator; NMDA, N-methyl-D-aspartate; PAM, positive allosteric modulator; PCP, Phencyclidine; PD, Parkinson's Disease; PET, positron emission tomography; PHCCC, N-Phenyl-7-(hydroxyimino)cyclopropa[b] chromen-1a-carboxamide; R214127, 1-(3,4-dihydro-2H-pyrano[2,3-b]quinolin-7-yl)-2-phenyl-1-ethanone; Ro 67-7476, (S)-2-(4-fluorophenyl)-1-(toluene-4-sulfonyl)pyrrolidine; S-4C3H-PG, (S)-4-carboxy-3-hydroxyphenylglycine; SAR, structure-activity relationship; SIB-1757, 6-Methyl-2-(phenylazo)-3-pyridinol; SIB-1893, 2-Methyl-6-(2-phenylethenyl)pyridine; TM, transmembrane; VFD, Venus-Flytrap domain; VU0155041, cis-2-{[(3,5-Dichlorophenyl)amino]carbonyl} cyclohexanecarboxylic acid; VU29, 4-nitro-N-(1,3-diphenyl-1H-pyrazol-5-yl)benzamide; VU48, 4-nitro-N-(1-(2-bromophenyl)-3-phenyl-1H-pyrazol-5-yl)benzamide; VU71, 4-nitro-N-(1,4-diphenyl-1H-pyrazol-5-yl)benzamide; VU71, 4-nitro-N-(1+1H-pyrazol-5-yl)benzamide; VU71, 4-nitro-N-(1+1H-pyraz 1H-pyazol-5-yl)benzamide; YM298198, 6-amino-N-cyclohexyl-N,3-dimethylthiazolo[3,2-a]benzimidazole-2-carboxamide.

1. Introduction

In addition to eliciting fast excitatory synaptic responses, the neurotransmitter glutamate can modulate neuronal excitability, synaptic transmission, and other cell functions by activation of metabotropic glutamate receptors (mGlus). Due to the ubiquitous distribution of glutamatergic synapses and the broad range of functions of the mGlus, members of this receptor family participate in many different processes in the central nervous system (CNS). As such, mGlus are an attractive target for therapeutic intervention for a range of neurological and psychiatric disorders. mGlus are members of the G protein-coupled receptor (GPCR) superfamily, the largest class of cell-surface receptors. Despite their tractability as drug targets, the majority of GPCR-based drug discovery programs have failed to yield highly selective compounds. The traditional approach to drug discovery has been to target the endogenous ligand (orthosteric)-binding site, to either mimic or block the actions of the endogenous neurotransmitter or hormone in a competitive manner. However, this approach has suffered from a paucity of suitably subtype-selective ligands. This is not surprising given that orthosteric binding sites are often highly conserved between subtypes of a single GPCR subfamily. An alternative approach is to target allosteric sites that are topographically distinct from the orthosteric site, to either enhance or inhibit receptor activation. This approach has been highly successful for ligand-gated ion channels. For example benzodiazepines, positive allosteric modulators (PAMs) of GABAA receptors, are an effective and safe treatment for anxiety and sleep disorders (Mohler et al., 2002). Discovery and characterization of allosteric modulators of GPCRs has gained significant momentum over the last few years, especially since the clinical validity of GPCR allosteric modulators was demonstrated with two allosteric modulators entering the market. In 2004, cinacalcet (an allosteric enhancer of the Calciumsensing receptor (CaSR)) was approved for the treatment of hyperparathyroidism, a disease associated with CaSR deficiency (Lindberg et al., 2005). In 2007, maraviroc (an allosteric inhibitor of the chemokine receptor CCR5) was approved for the treatment of HIV infections. This drug stabilizes CCR5 receptor conformations that have a lower affinity for the HIV virus, blocking CCR5-dependent entry of HIV-1 into cells (Dorr et al., 2005). Thus, allosteric modulation represents an exciting novel means of targeting GPCRs particularly for CNS disorders, a therapeutic area with one of the highest rates of attrition in drug discovery (Kola and Landis, 2004).

2. Allosteric modulation of metabotropic glutamate receptors

2.1. Quantifying allosteric interactions

The binding of an allosteric ligand to its site will change the conformation of the receptor, meaning that the "geography" of the orthosteric site and any other potential receptor-ligand/protein interfaces, also have the potential to change. As a consequence, the binding affinity and/or signaling efficacy of the orthosteric ligand are likely to be modulated, either in a positive or negative manner. The simplest allosteric GPCR model assumes that the binding of an allosteric ligand to its site modulates only the affinity of the orthosteric ligand and vice versa; this model is referred to as the allosteric ternary complex model (ATCM; Fig. 1A). Within the framework of an ATCM, the interaction is governed by the concentration of each ligand, the equilibrium dissociation constants of the orthosteric and allosteric ligands (KA and KB, respectively), and the "cooperativity factor" α , a measure of the magnitude and direction of the allosteric interaction between the two conformationally linked sites (Stockton et al., 1983; Ehlert, 1988). A value of $\alpha < 1$ (but greater than 0)

Fig. 1. Models of allosteric interactions. A) Allosteric Ternary Complex Model, B) Operational Model of Allosterism. Refer to text for definitions of parameters.

indicates negative cooperativity, such that the binding of an allosteric ligand inhibits the binding of the orthosteric ligand. Values of $\alpha > 1$ indicate positive cooperativity, such that the allosteric modulator promotes the binding of orthosteric ligand, whereas values of $\alpha = 1$ indicate neutral cooperativity, i.e. no net change in binding affinity at equilibrium. Because the two sites are conformationally linked, the allosteric interaction is reciprocal, i.e., the orthosteric ligand will modulate the binding of the allosteric ligand in the same manner and to the same extent.

The simple ATCM describes the effect of the modulator only in terms of changes in orthosteric ligand affinity, and vice versa, thus the stimulus that is generated by the ARB ternary complex (a receptor (R) simultaneously occupied by both agonist (A) and modulator (B)) is assumed to be no different to that imparted by the binary AR complex. In general, many allosteric modulators studied to date, particularly those interacting with class A GPCRs, appear to behave in a manner consistent with this simple ATCM. However, there is no a priori reason why the conformational change engendered by an allosteric modulator in the GPCR does not perturb signaling efficacy in addition to, or independently of, any effects on orthosteric ligand binding affinity. Indeed, for mGlus the majority of allosteric modulators influence orthosteric ligand efficacy in the absence of effects on affinity. This is most likely a reflection of the fact that the orthosteric and allosteric binding sites are located in very distinct regions of the receptor i.e. the extracellular N-terminus and the transmembrane-spanning domains respectively (Conn et al., 2009a,b; see later for discussion). It is also important to note that an allosteric modulator can have differential effects on affinity versus efficacy. A striking example of this is the cannabinoid CB₁ receptor allosteric modulator, Org27569, which is an allosteric enhancer of ³H]CP 55940 binding but an allosteric inhibitor of CP 55940 function (Price et al., 2005). This potential for differential effects on efficacy as well as affinity has necessitated the development of alternative models to describe allosteric interactions.

To account for such allosteric effects on efficacy, the ATCM has been extended into an allosteric "two-state" model (ATSM)

(Hall, 2000). An alternate extension of the ATCM has been proposed by Parmentier and colleagues to model the functioning of class C GPCRs (Parmentier et al., 2002). This model accounts for the fact that class C GPCRs have very distinct ligand binding and effector coupling domains and proposes an allosteric interaction between these two domains. While these models provide a framework to describe the vast array of allosteric modulator effects on receptor binding and functional properties, they are not amenable to fitting to experimental biological data due to the large number of model parameters. Recently an "operational model of allosterism" was reported that more simply describes both allosteric modulation of affinity and efficacy and incorporates allosteric agonism (Leach et al., 2007; May et al., 2007b). The operational model of allosterism (Fig. 1B) combines the simple ATCM with an operational model of agonism (Black and Leff, 1983). According to the model, the pharmacological response, initiated by the stimulus (S), can be the result of three different receptor species: the agonist bound (AR), the modulator bound (BR) and the ternary complex (ARB). As for the simple ATCM, allosteric modulation of binding affinity is governed by the cooperativity factor α , whilst allosteric modulation of efficacy is incorporated into the model by the introduction of another parameter, β . The parameters τ_A and τ_B relate to the ability of the orthosteric and allosteric ligands, respectively, to engender receptor activation. Both τ_A and τ_B incorporate the intrinsic efficacy of each ligand, the total density of receptors and the stimulus-response coupling efficiency of the system under investigation. The parameters E_m and n denote the maximal possible system response and the slope factor of the transducer function that links occupancy to response, respectively.

In this operational model of allosterism, allosteric modulation is governed by two cooperativity parameters, α and β , which can vary for each and every set of interacting ligands at a GPCR. However, these should not change for a given set of ligands and GPCR between different assays of GPCR function. An important caveat to this is the potential for pathway specific modulation, in which case the β values will change. It should also be noted that the τ values are determined not only by the individual ligands but also by the biological assay system under investigation, and thus can change between different systems. Analyzing an effector pathway that has low stimulus-response coupling efficiency or alternatively a very low level of receptor expression can yield a low τ value for an agonist and, as such, its efficacy may not be discernible; if the compound is allosteric the interaction will manifest primarily as a change in the potency or maximal response to orthosteric ligand, with no effect on basal signaling. As the τ_{B} value approaches 0, the species RB becomes equivalent to R and the operational model of allosteric modulation is essentially the ATCM, incorporating efficacy modulation with respect to the species ARB. In the case of receptor over-expression or high stimulus-response coupling efficiency and subsequently high $\tau_{\rm B}$ values, the allosteric ligand efficacy will substantially increase the basal responsiveness of the assay system, and may also shift the orthosteric agonist potency. However, enhancement of the maximal response may not be evident, as a GPCR that has high coupling efficiency may already be approaching the maximal possible response of the entire cellular system (E_m). These are important considerations in terms of designing screening strategies for allosteric ligand-based drug discovery programs, interpreting the pharmacology of putative allosteric modulators and also translating research from recombinant systems to tissues and beyond.

2.2. Structural features of metabotropic glutamate receptors

Arguably, one of the most well studied GPCR families with respect to allosteric modulation are the mGlus. Indeed, the full spectrum of allosteric ligands has been described for these receptors. There are eight mGlu subtypes that are classified into three major groups based on sequence homology, pharmacological properties, and coupling to different second-messenger pathways. Group I includes mGlu₁ and mGlu₅; group II, mGlu₂ and mGlu₃; and group III, mGlu₄, mGlu₆, mGlu₇ and mGlu₈. mGlus of the same group show 70% sequence identity whereas between groups this percentage falls to 45% (Conn and Pin, 1997). Group I mGlus preferentially couple to activation of the $G_{q/11}$ family of G proteins activating phosphoinositide hydrolysis as the major signaling mechanism. In contrast, group II and group III mGlus preferentially couple to $G_{i/0}$ and inhibition of adenylyl cyclases. Members of each group have a unique pharmacological profile and can be selectively activated by specific agonists or allosteric modulators that have no effects on members of the other groups.

GPCRs are predicted to share a common topology consisting of seven transmembrane-spanning α-helical domains, an extracellular N terminus and intracellular C terminus. The mGlus are sub-classified into class C GPCRs along with Calcium-sensing, GABA_B, pheromone and taste receptors. Most class C GPCRs are distinguished by their large extracellular N-terminal domain, termed the Venus Flytrap domain (VFD), that contains the endogenous ligand-binding site (Pin et al., 2003). The crystal structures of the N-terminal domains of mGlu₁, mGlu₃ and mGlu₇ suggest that the VFD of the mGlus is made up of two lobes (Kunishima et al., 2000; Tsuchiya et al., 2002; Muto et al., 2007). This forms a clam shell-shaped structure, with the glutamate binding site residing between the two lobes. Evidence suggests that the mGlus dimerize via interactions between their VFDs (Romano et al., 1996). When glutamate binds, the globular domains close into a stable conformation with glutamate inside (Bessis et al., 2000, 2002; Kunishima et al., 2000; Tsuchiya et al., 2002). The conformation changes induced by glutamate binding at the VFD are transmitted via a cysteine-rich domain. The cysteine-rich domain, unique to class C GPCRs (with the exception of the GABA_B receptor which does not have one), links the VFD to the transmembrane-spanning α -helices by a conserved disulfide bridge, subsequently promoting coupling to intracellular G proteins and activation of second messenger pathways (Liu et al., 2004; Rondard et al., 2006; Muto et al., 2007).

While the extracellular N-terminal domain of several mGlus has been crystallized, the structure of the hepta-helical transmembrane domain of the receptor has yet to be determined. In the absence of a crystal structure, homology modeling with class A GPCR templates has been shown to provide substantial insight into the transmembrane region of mGlus. Despite the low sequence identity (less than 20%) between the different classes of GPCRs, confirmation of a common hepta-helical architecture in the mGlu transmembrane region provides support for the use of class A templates as a starting point for homology modeling (Bhave et al., 2003). Differences between GPCR classes prevent homology models from providing structural information at atomic resolution, therefore modeling best occurs synergistically alongside experimental studies of allosteric modulators (Ballesteros and Palczewski, 2001). Early models of mGlu₁ and mGlu₅ (Ott et al., 2000; Pagano et al., 2000) were based on an alpha-carbon template constructed from a sequence analysis of the transmembrane helices in the rhodopsin family of GPCRs (Baldwin et al., 1997). After the 2.8 angstrom resolution structure of bovine rhodopsin was crystallized (Palczewski et al., 2000), homology models of class C GPCRs revealed possible binding modes of known allosteric modulators within the transmembrane domain of the receptor, which will be discussed in detail below (Ott et al., 2000; Malherbe et al., 2003a,b; Miedlich et al., 2004; Vanejevs et al., 2008). Since the bovine rhodopsin crystal structure, two additional mammalian GPCR crystal structures have become available: the human β_2 -adrenergic receptor (Cherezov et al., 2007; Rasmussen et al., 2007; Rosenbaum et al., 2007) and the human A_{2A} adenosine receptor (Jaakola et al., 2008). The growing number of available templates has sparked development of high-throughput homology modeling of GPCRs (Yarnitzky et al., 2010) and will enrich the understanding of the transmembrane region of these receptors.

2.3. Verifying allosteric modulation through metabotropic glutamate receptor constructs

One way of determining that a putative allosteric modulator is not binding the orthosteric site of a mGlu is through the use of chimeric receptors. Chimeric receptors are often constructed by exchanging the VFD of the receptor for which a modulator is selective with that of a different subtype that the ligand does not affect. If the ligand remains active at the chimeric construct, its activity must then be localized to the transmembrane region or C-terminal region, i.e. an allosteric site. Chimeric receptors were first used to determine agonist selectivity of orthosteric ligands (Takahashi et al., 1993; Tones et al., 1995) and have now become increasingly useful for determining an allosteric mode of action. Interestingly, CPCCOEt was characterized as an allosteric modulator of mGlu₁ using a chimeric CaSR and mGlu₁ construct (Brauner-Osborne et al., 1999) as well as using chimeras with other mGlus (Litschig et al., 1999; Gasparini et al., 2001). This strategy has proved effective for characterization of numerous negative allosteric modulators (NAMs) and PAMs, with chimeric receptor constructs often used as the first step in the validation of an allosteric mechanism (Pagano et al., 2000; Carroll et al., 2001; Knoflach et al., 2001: Mai et al., 2003: Mitsukawa et al., 2005).

Another method of confirming allosteric binding is to eliminate the extracellular VFD from the receptor altogether through the construction of a 'headless' mGlu. The headless receptor lacks the N-terminal extracellular VFD but retains an intact transmembrane region and a functional C terminus (Goudet et al., 2004). Headless mGlus behave like wild type receptors in terms of G protein coupling and can be positively or negatively regulated by ligands, like any other class A GPCR (Goudet et al., 2004), however, they no longer respond to orthosteric ligands. Allosteric modulators retain activity in cells expressing the headless receptor, PAMs are agonists and NAMs become inverse agonists, as such these constructs are useful tools to identify allosteric ligands (Chen et al., 2007). The headless construct of mGlu₅ has been used to localize the binding site of the mGlu₅ allosteric modulators MPEP, VU29 and CPPHA to the transmembrane domain (Chen et al., 2007, 2008). FTIDC, an mGlu₁ NAM, was also shown to bind to an allosteric site through the use of headless mGlu₁ (Suzuki et al., 2007). Chimeric and headless receptors constructs are useful for delineating the location of allosteric binding sites and investigating allosteric interactions, however, they do not provide detailed structural information.

Localization of an allosteric modulator's activity can be narrowed down further to functionally important residues and binding determinants using site-directed mutagenesis (see later for further discussion). Such efforts have been greatly facilitated by the development of radioligands for mGlu allosteric sites. The selective mGlu₅ radioligands [³H]-M-MPEP (Gasparini et al., 2002), [³H] methoxy-PEPy (Cosford et al., 2003a,b) and [³H]-methoxymethyl-MTEP (Cosford et al., 2003a,b), provide the opportunity for the characterization of the MPEP binding site on mGlu₅. Two radioligands selective for mGlu₁ have also been developed, including ^{[3}H]R214127 (Lavreysen et al., 2003) and ^{[3}H]EM-TBPC (Malherbe et al., 2003a). While second messenger assays are useful for probing the functional effect of a mutation on the interaction between an orthosteric agonist and allosteric modulator, radioligand binding based studies can be used to quantify the influence of a mutation on the affinity of an allosteric modulator. In addition, inhibition binding experiments can be used to determine if a novel allosteric modulator is competitive for known allosteric sites.

2.4. Advantages of allosteric modulation

Allosteric modulators theoretically offer a number of advantages over competitive (orthosteric) agonists and antagonists. Allosteric modulators that have no agonist activity in their own right are quiescent in the absence of the endogenous agonist and will only modulate the receptor once the endogenous agonist is present. thereby retaining spatial and temporal aspects of endogenous receptor signaling. Such 'fine-tuning' of the physiological response is likely to have a better therapeutic outcome than the sustained blockade or activation achieved by orthosteric agonists. A second advantage is the potential for greater subtype selectivity due to either interaction with sites that show greater divergence between subtypes compared to the orthosteric site, or due to selective cooperativity at a particular subtype at the exclusion of others (Lazareno et al., 2004). Another means of generating selectivity is to combine orthosteric and allosteric moieties with the same molecule yielding a bitopic (also referred to as dualsteric) ligand (Valant et al., 2008; Antony et al., 2009). Furthermore, modulators with limited cooperativity, such as the mGlu₅ NAMs M-5MPEP and Br-5MPEPy (Rodriguez et al., 2005), will have an in-built "ceiling" level to their effect, suggesting that they may be potentially safer than orthosteric ligands if administered in very large doses. For negative allosteric modulators with limited cooperativity this also introduces the capability to 'dial down' receptor activity, maintaining a residual level of receptor activation, which may in fact be a more desirable therapeutic endpoint than complete blockade. Clearly, allosteric modulators offer a number of advantages over their orthosteric counterparts, although both PAMs and NAMs rely upon the presence of the endogenous ligand. It is also worth noting that drug discovery programs centered on small molecules, be it orthosteric or allosteric, share common problems concerning solubility and formulation, generation of active metabolites, clearance and lack of brain penetrance.

In recent years it has become increasingly evident that the consequences of receptor activation are not limited to G protein activation and subsequent downstream second messengers. Thus, depending upon the measure of receptor activation being employed, ligand pharmacology described can differ. This phenomenon has been given many names including 'stimulus trafficking', 'biased agonism' and 'functional selectivity' (Urban et al., 2007; Kenakin, 2007; Galandrin et al., 2007). Given that allosteric modulators engender unique receptor conformations it is perhaps not surprising that there is the potential for the pharmacology of allosteric modulators to differ dramatically depending upon the assay of receptor activity. For example, MMPIP a negative allosteric modulator of mGlu₇, shows differential effects on the receptor activation depending upon the measure of receptor activation and cellular background (Niswender et al., 2010).

It is also becoming increasingly evident that allosteric modulators for a variety of GPCRs can not only modulate orthosteric ligand signaling, but also act as agonists in their own right (Spalding et al., 2002, 2006; Sachpatzidis et al., 2003; Mitsukawa et al., 2005; Zhang et al., 2005; Langmead et al., 2006; Nawaratne et al., 2008; Tu et al., 2007; Pelkey et al., 2007; Lee et al., 2007; May et al., 2007a; Jones et al., 2008; Niswender et al., 2008; Holst et al., 2009; Lebois et al., 2010). These so-called allosteric agonists add an additional layer of complexity and even more scope for treatment options. It should also be noted that there is no reason why a modulator could not express more than one of these properties concomitantly, e.g., agonism (positive or inverse) together with enhancement or inhibition of orthosteric ligand binding/function (Schwartz and Holst, 2007; May et al., 2007b). If a particular pathway can be associated with the pathophysiology of a disease or therapeutic improvement, then selective activation or inhibition of particular pathways by allosteric ligands may also represent a novel means of altering receptor activation. Currently, it remains to be determined whether a single phenotype (modulator only) or a combination of both modulator and agonist properties is the optimal approach to treating GPCR-based diseases with allosteric ligands. Most likely, different therapies will benefit differently from one phenotype relative to another.

3. Physiological roles of metabotropic glutamate receptors

With the exception of mGlu₆ which is localized to the retina, mGlus are ubiquitously expressed throughout the CNS in both neurons and glia, although each subtype is differentially localized in different brain regions (specific brain localizations for each of the mGlu subtypes is reviewed in detail in Ferraguti and Shigemoto, 2006). In recent years, all mGlu subtypes have been genetically deleted in mice; studies using these animals have yielded further insights into the biological functions of mGlu as well as potential diseases where mGlus may be a viable target for therapeutic intervention (see Niswender and Conn, 2010 for review). Detailed discussion of the physiological roles of mGlus has been presented in multiple reviews (Coutinho and Knopfel, 2002; Conn and Pin, 1997; Anwyl, 1999; Valenti et al., 2002; Bellone et al., 2008; Pinheiro and Mulle, 2008). Elucidation of these roles for mGlus suggests that selective activators and inhibitors of specific mGlu subtypes could subtly alter transmission in glutamatergic circuits in a therapeutically beneficial manner without eliciting the side effects commonly associated with drugs that interact with members of the ionotropic glutamate receptor family.

While it is clear that the specific mGlu subtype involved in mediating a given effect varies in different brain regions, some generalizations can be made regarding the common functions of different groups of mGlus. Group I mGlus are generally found postsynaptically, whilst group II and III mGlus are often localized on presynaptic terminals or preterminal axons. Activation of postsynaptic group I mGlus often leads to cell depolarization and increases in neuronal excitability via modulation of a variety of ion channels. This modulation can range from robust excitation to more subtle changes in the pattern and frequency of cell firing and responses to excitatory inputs (Coutinho and Knopfel, 2002; Anwyl, 1999; Valenti et al., 2002). Presynaptic group II and III mGlus inhibit neurotransmitter release on a variety of excitatory (glutamatergic), inhibitory (GABAergic) and neuromodulatory (monoamines, ACh, peptides) synapses.

4. Therapeutic indications for allosteric modulators of metabotropic glutamate receptors

The first allosteric modulator of an mGlu identified was CPCCOEt, a NAM of mGlu₁ (Annoura et al., 1996). Selective promising allosteric modulators have been identified for many mGlu subtypes (see Fig. 2 and Table 1) and are exciting potential therapeutics for a variety of CNS-related disorders including Alzheimer's disease (Lee et al., 2004), anxiety disorders (Spooren and Gasparini, 2004; Swanson et al., 2005), depression (Palucha and Pilc, 2007), epilepsy (Alexander and Godwin, 2006; Ure et al., 2006), and Parkinson's disease (Conn et al., 2005; Johnson et al., 2009) among others. Comprehensive reviews encompassing each of these therapeutic areas are available, however, several areas warrant mentioning as they signify important advances in the field.

4.1. Negative allosteric modulation of metabotropic glutamate receptor 5 for anxiety and Fragile X Syndrome

In brain regions implicated in the pathology of anxiety disorders, such as the amygdala, mGlu₅ is localized at postsynaptic sites where it increases the excitability of the N-methyl-D-aspartate (NMDA) subtype of ionotropic glutamate receptors (Romano et al., 1995; Valenti et al., 2002). Based on this physiology, it has been hypothesized that antagonists of mGlu₅ might reduce the activity of glutamatergic synapses that are thought to contribute to the underlying mechanisms of anxiety disorders (Marino and Conn, 2006). Indeed, a role for group I mGlus in anxiety was indicated by the finding that intrahippocampal administration of the group I antagonist (S)-4-carboxy-3-hydroxyphenylglycine (S-4C3H-PG) had anxiolytic properties using the conflict drinking Vogel test in rats (Chojnacka-Wójcik et al., 1997). However, S-4C3H-PG also possesses partial agonism at group II mGlus (Hayashi et al., 1994). mGlu₁ selective antagonists, such as JNJ16259685, also showed efficacy in rodent models of anxiety, however, these compounds were associated with memory impairments that prohibited further development (Steckler et al., 2005a,b; Gravius et al., 2005; Pietraszek et al., 2005). Fortunately, mGlu₅ selective antagonists whilst being anxiolytic, did not cause the same degree of impairments in memory (Steckler et al., 2005a; Gravius et al., 2005; Pietraszek et al., 2005). The first identified selective NAMs of mGlu₅ were SIB-1757 and SIB-1893 and subsequent structural analogues MPEP and MTEP have been developed that possess improved potency, selectivity and brain penetrance (Varney et al., 1999; Gasparini et al., 1999; Cosford et al., 2003a). There are now a large number of highly selective mGlu₅ NAMs, including radioligands and positron emission tomography (PET) ligands (Gasparini et al., 2002; Anderson et al., 2002, 2003; Cosford et al., 2003b; Ametamey et al., 2007; Treyer et al., 2008; Yu, 2007; Baumann et al., 2010). The availability of radioligands and PET ligands may prove useful for dose-finding studies for NAMs in clinical development as they provide the necessary tools to assess receptor occupancy.

The availability of selective and systemically active mGlu₅ NAMs has allowed for the validation of mGlu₅ inhibition as a viable therapeutic strategy for anxiety disorders. In multiple rodent models of anxiety, MPEP and related compounds have been shown to be anxiolytic (Spooren et al., 2000, 2002; Schulz et al., 2001; Tatarczynska et al., 2001; Rodrigues et al., 2002). Recently, fenobam, a non-benzodiazepine anxiolytic, was found to be a selective mGlu₅ NAM (Porter et al., 2005). Fenobam is efficacious in preclinical rodent models of anxiety (Patel et al., 1982; Goldberg et al., 1983; Porter et al., 2005) and in clinical trials (Pecknold et al., 1982). Collectively, these data support the hypothesis that negative allosteric modulation of mGlu₅ is an attractive avenue for the development of novel anxiolytics.

Fragile X Syndrome (FXS) is the leading cause of autism and the most common form of inherited mental retardation (Crawford et al., 2001; Garber et al., 2008). FXS is caused by a mutation in the gene encoding fragile X mental retardation protein (FMRP), which represses the translation of specific mRNAs regulating protein translation in neuronal dendrites. In mice, a loss of FMRP results in increased group I mGlu-dependent long-term depression in the hippocampus (Huber et al., 2002). Administration of MPEP to FXS mice reduces anxiety and seizures (Yan et al., 2005), whilst crossbreeding of FXS mice with mGlu₅ knock-out mice suggest that a number of fragile X phenotypes can be corrected by reducing levels of mGlu₅ (Dolen et al., 2007). Indeed, fenobam treatment improved clinical behaviors and prepulse inhibition with no adverse effects in adults with FXS (Berry-Kravis et al., 2009). Furthermore, AFQ056, another mGlu₅ NAM is in phase 2 clinical trials for adults with FXS (Novartis, 2010a). Therefore, antagonists of mGlu₅ represent promising novel treatment strategies for FXS (Bear et al., 2008).

In addition to anxiety and FXS, mGlu₅ NAMs have also been suggested as treatment options for iatrogenic dystonias, substance

Fig. 2. Prototypical allosteric modulators of mGlus. Pictured are representative allosteric modulators for mGlu₁, mGlu₂, mGlu₄, mGlu₅ and mGlu₇. The full chemical names and subtype selectivity of these compounds are provided in Table 1.

Table 1

Therapeutic indications for metabotropic glutamate receptors in CNS disorders and examples of allosteric modulators.

mGlu subtype	Therapeutic indication	Intervention	Representative allosteric modulators									
			Compound	Chemical name								
1	Pain	NAM	CPCCOEt EM-TBPC	7-(Hydroxyimino)cyclopropa[b]chromen-1a-carboxylate ethyl ester 1-ethyl-2-methyl-6-oxo-4-(1,2,4,5-tetrahydro-benzo[d]azepin- 3-yl)-1,6-dihydro-pyrimidine-5-carbonitrile								
2	Anxiety, schizophrenia	Agonist/PAM	BINA LY487379	Biphenyl-indanone A 2,2,2-Trifluoro-N-[4-(2-methoxyphenoxy)phenyl]-N- (3-pyridinylmethyl)ethanesulfonamide								
4	Parkinson's disease, movement disorders	Agonist/PAM	РНССС	N-Phenyl-7-(hydroxyimino)cyclopropa[<i>b</i>]chromen-1a- carboxamide								
			VU0155041	cis-2-{[(3,5-Dichlorophenyl)amino]carbonyl} cyclohexanecarboxylic acid								
5	Anxiety, Fragile X Syndrome, chronic pain,	NAM	MPEP	2-Methyl-6-(phenylethynyl)pyridine								
	depression, migraine, Parkinson's disease levodopa-induced dyskinesia		Fenobam	N-(3-chlorophenyl)-N'-(4,5-dihydro-1-methyl-4-oxo- 1H-imidazole-2-yl)urea								
5	Schizophrenia, cognition disorders	PAM	ADX47273	S-(4-fluoro-phenyl)-{3-[3-(4-fluoro-phenyl)-[1,2,4]oxadiazol- 5-vl]-piperidin-1-vl}-methanone								
			CDPPB	3-cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl)benzamide								
			СРРНА	<i>N</i> -{4-chloro-2-[(1,3-dioxo-1,3-dihydro-2 <i>H</i> -isoindol- 2-yl)methyl]phenyl}-2-hydroxybenzamide								
7	Depression, anxiety	NAM	MMPIP	6-(4-Methoxyphenyl)-5-methyl-3-(4-pyridinyl)-isoxazolo [4,5-c]pyridine-4(5H)-one hydrochloride								
7	Epilepsy, depression, anxiety	Agonist/PAM	AMN082	N,N'-Bis(diphenylmethyl)-1,2-ethanediamine								
8	Epilepsy, anxiety, drug abuse, pain	Agonist/PAM	No selective allosteric ligand reported	s								

abuse and withdrawal, chronic pain, depression, gastroesophogeal reflux disorder and migraine (Slassi et al., 2005). AFQ056 is also in phase II clinical trials for L-DOPA-induced dyskinesia (LID) associated with the treatment of Parkinson's disease (PD) (Novartis, 2010b–d; Rylander et al., 2010). Furthermore, the mGlu₅ NAM, ADX10059, showed efficacy for the treatment of gastroesophogeal reflux disorder (Keywood et al., 2009; Zerbib et al., 2010), however, a separate trial investigating efficacy in migraine was terminated due to liver toxicity (Addex, 2010).

An important consideration in the clinical development of mGlu₅ NAMs is the potential for target-related adverse effects. mGlu₅ plays an important role in cognitive processing and administration of MPEP has been shown to exacerbate psychosis induced by PCP (Campbell et al., 2004), therefore mGlu₅ NAMs may cause cognitive impairments and psychotomimetic effects. Indeed, psychostimulant adverse effects were reported in early fenobam clinical trials (Itil et al., 1978; Friedmann et al., 1980; Pecknold et al., 1982), although whether or not this was due to interactions with mGlu₅, an unknown interaction or through the formation of active metabolites remains to be seen. However, no psychostimulant effects or cognitive impairments were reported for fenobam in a recent trial in FXS patients, nor for another mGlu₅ NAM, ADX10059 (Berry-Kravis et al., 2009; Keywood et al., 2009; Zerbib et al., 2010). In a recent study, Rodriguez et al. (2005) reported the discovery of mGlu₅ NAMs with limited negative cooperativity. These so-called partial antagonists do not completely block the activity of glutamate, despite achieving 100% receptor occupancy. NAMs with limited cooperativity could have improved clinical success, as they would retain some level of activity at the receptor, which may result in an improved adverse-effect profile.

4.2. Positive allosteric modulation of metabotropic glutamate receptor 5 for schizophrenia and cognitive disorders

Whilst mGlu₅ antagonists are an attractive strategy for a number of disorders, positive allosteric modulation of mGlu₅ has arisen as exciting new approach for the treatment of schizophrenia and cognitive disorders. Until recently, the neurochemical mechanism underlying schizophrenia has been attributed to hyperactivity of the dopaminergic system. However, evidence has accumulated to suggest that hypofunction of glutamatergic receptors, particularly NMDA receptors, could also contribute to the underlying neurochemical cause of schizophrenia (Conn et al., 2009a). Clinical studies have shown that antagonists of the NMDA receptor, such as PCP and ketamine, induce symptoms in rats and humans that mirror the positive, negative and cognitive symptoms of schizophrenic patients (Gaspar et al., 2009). Conversely, ligands that enhance NMDA receptor function have proven to be efficacious in the treatment of schizophrenia (Lindsley et al., 2006). Interestingly, mGlu₅ has been identified as a closely associated signaling partner with NMDA receptors and may play an integral role in regulating NMDA receptor function in brain regions involved in cognitive function and implicated in the pathology of schizophrenia such as the hippocampus, striatum and prefrontal cortex (Alagarsamy et al., 1999, 2005; Ugolini et al., 1999; Ehlers, 1999; Awad et al., 2000; Doherty et al., 2000; Attucci et al., 2001; Mannaioni et al., 2001; Pisani et al., 2001; Marino & Conn, 2002). Therefore, selective activation of mGlu₅ and subsequent enhancement of NMDA receptor activity may provide a novel means of improving not only the positive symptoms but also the cognitive impairments associated with schizophrenia. The first selective mGlu₅ PAMs include three different chemical series: DFB, CPPHA and CDPPB (O'Brien et al., 2003, 2004; Lindsley et al., 2004; Kinney et al., 2005). All three of these compounds cause a leftward shift in the glutamate concentration response curve of approximately 10 fold for CPPHA and CDPPB and 2–4 fold for DFB, yet have no impact on the affinity of glutamate. It is also worth noting that while DFB and CDPPB and derivatives thereof are thought to interact competitively with MPEP, CPPHA acts at a second distinct allosteric site within the TM domains (see later for details).

The discovery, development and optimization of these PAMs, in particular DFB and CPPHA, highlight some of the challenges faced by medicinal chemists when pursuing allosteric modulators. The structure-activity relationship (SAR) of CPPHA was 'flat', as evidenced by the fact that out of 995 analogues only 45 were active (Zhao et al., 2007). For DFB the SAR was even more interesting, with slight modifications to the scaffold rendering not only inactive compounds but also causing significant changes in the pharmacology, switching the compounds from PAMs to NAMs or resulting in neutral cooperativity (O'Brien et al., 2003). Whilst the medicinal chemistry efforts surrounding the CDPPB scaffold were more successful, they did not vield any significant improvements overall (de Paulis et al., 2006). Despite these challenges, these initial mGlu₅ PAMs provided much needed tools study potentiation of mGlu₅ activity in electrophysiological preparations (O'Brien et al., 2003, 2004; Chen et al., 2007; Ayala et al., 2009) as well as in rodent behavioral models (Kinney et al., 2005; Balschun et al., 2006; Lecourtier et al., 2007; Gass and Olive, 2009; Uslaner et al., 2009; Stefani and Moghaddam, 2010). Recently, a fourth PAM chemotype represented by ADX47273 was reported, which also displays efficacy in rodent behavioral models similar to proven antipsychotics and importantly, improved cognitive functioning in impaired animals (Liu et al., 2008; Schlumberger et al., 2009, 2010). Thus, mGlu₅ PAMs show much promise as potential therapeutics for the treatment of schizophrenia and also as cognition enhancers.

4.3. Positive allosteric modulation of metabotropic glutamate receptor 2 for schizophrenia and anxiety disorders

There is now a large body of evidence that activation of group II mGlus may present a novel means of treating schizophrenia and anxiety disorders. In brain regions implicated in the pathology of schizophrenia it is hypothesized that hypofunction of NMDA receptors leads to decreased downstream activation of GABAergic neurons resulting in disinhibition and an overall increase in excitation (Swanson et al., 2005; Conn et al., 2009a). Activation of mGlu₂ has been shown to decrease excitatory amino acid transmission at a number of synapses (Macek et al., 1996; Doherty et al., 2004; Nicholls et al., 2006). Orthosteric group II mGlu agonists have efficacy in preclinical models of psychosis and anxiety (Moghaddam and Adams, 1998; Cartmell et al., 1999; Lorrain et al., 2003; Swanson et al., 2005; Conn et al., 2008). In addition, there is evidence for improvement in cognitive deficits in both humans (induced by ketamine) and rats (induced by PCP) (Moghaddam and Adams, 1998; Cartmell et al., 1999; Krystal et al., 2005). In a recent clinical trial, LY2140023, an oral prodrug of the orthosteric agonist LY404039, improved the positive and negative symptoms of schizophrenic patients with a similar efficacy to olanzapine, without the side effects associated with typical and atypical antipsychotics (Patil et al., 2007). Currently, LY2140023 is entering phase II/III trials for schizophrenia (Eli Lilly, 2010). Similarly, LY354740 has clinical efficacy in treating panic attacks and generalized anxiety disorder (Schoepp et al., 2003; Schoepp, 2004). Whilst these orthosteric agonists have much promise as therapeutic options, there are a number of disadvantages. These orthosteric agonists activate both mGlu₂ and mGlu₃, they are all based on a similar chemical scaffold, and tolerance was induced in one rodent model used to assess anti-psychotic efficacy (Galici et al., 2005). Development of tolerance is a key concern for CNS disorders that require long-term treatment as it can result in both a loss of efficacy over time and changes in plasticity leading to adverse effects, as exemplified by the clinically efficacious orthosteric D2 dopamine receptor antagonists (Wadenberg et al., 2001; Natesan et al., 2005; Ginovart et al., 2009). Thus, mGlu₂ PAMs are an attractive alternative as they may have the capacity to overcome some of these potential shortcomings.

Numerous mGlu₂ selective PAMs have now been reported, the majority of which are related to either BINA or LY487379 (Johnson et al., 2003; Lorrain et al., 2003; Schaffhauser et al., 2003; Cube

et al., 2005; Galici et al., 2005, 2006; Pinkerton et al., 2005). Both BINA and LY487379 induce leftward shifts of the glutamate concentration response curve, and potentiate the ability of group II selective agonists to reduce transmission at a number of glutamatergic synapses (Johnson et al., 2003; Schaffhauser et al., 2003; Poisik et al., 2005; Galici et al., 2006; Benneyworth et al., 2007). In rodent behavioral models predictive of anti-psychotic and anxiolytic efficacy, these mGlu₂ PAMs have similar efficacy to group II orthosteric agonists (Galici et al., 2005; Govek et al., 2005; Johnson et al., 2005; Pinkerton et al., 2005; Benneyworth et al., 2007). Therefore there is much excitement that selective mGlu₂ PAMs represent a novel treatment strategy for schizophrenia and anxiety that will have improved outcomes and side effect profiles over currently used anti-psychotics.

4.4. Positive allosteric modulation of metabotropic glutamate receptor 4 for Parkinson's disease

Parkinson's disease (PD) is a common neurodegenerative disorder characterized by severe motor impairments such as bradykinesia, tremor and rigidity. These motor symptoms arise as a consequence of a progressive loss of dopaminergic neurons in the substantia nigra, which project into the striatum regulating activity through the basal ganglia. Dopamine reduces the activity of striatal neurons projecting into the globus pallidus, in PD patients the loss of dopaminergic neurons results in overactivity of these synapses (Wichmann and DeLong, 2003). Current therapeutics aim to restore dopaminergic modulation, such as administration of L-DOPA, the precursor of dopamine. However, dopamine replacement therapy is associated with increased adverse effects as the disease progresses and a loss of efficacy (Poewe et al., 1986a,b). Therefore alternative therapeutic options are much in demand. At the striato-pallidal synapse, activation of mGlu₄ reduces neurotransmission (Matsui and Kita, 2003; Valenti et al., 2003; Conn et al., 2005; MacInnes and Duty, 2008). In addition, the mGlu₄ preferring orthosteric agonist LSP1-2111 has demonstrated efficacy in rodent models of PD, specifically reversal of haloperidol-induced catalepsy and 6hydroxydopamine-induced motor deficits (Beurrier et al., 2009). This has been linked to the inhibition of striato-pallidal GABAergic transmission through mGlu4 activation (Cuomo et al., 2009). These studies lend support to the hypothesis that mGlu₄ PAMs or allosteric agonists are a viable approach to the treatment of the symptoms of PD.

The mGlu₅ NAMs SIB-1893 and MPEP are also positive allosteric modulators of mGlu₄, potentiating the response to L-2-amino-4phosphonobutyrate, an orthosteric agonist (Mathiesen et al., 2003). The first selective mGlu₄ PAM, PHCCC, was recently identified (Flor et al., 2002; Marino et al., 2003; Maj et al., 2003). PHCCC has no agonist activity but increases the potency of glutamate in recombinant systems as well as at several synapses including the striato-pallidal synapse (Marino et al., 2003; Valenti et al., 2005). Moreover, PHCCC decreases reserpine-induced akinesia (Marino et al., 2003), a rodent model of PD, and is neuroprotective in a model of dopaminergic cell death (Battaglia et al., 2006). A novel mGlu₄ PAM chemotype, exemplified by VU0155041, was recently identified in a high-throughput screen by Niswender and colleagues (2008). Interestingly, VU0155041 was found to be an allosteric agonist in addition to its PAM properties, with significant advantages over PHCCC, namely improved aqueous solubility, potency and selectivity. VU0155041 was also efficacious in reversing haloperidol-induced catalepsy and reserpine-induced akinesia (Niswender et al., 2008). Clearly, there is much promise for the development of mGlu₄ PAMs and allosteric agonists as novel therapeutics for PD.

5. Localization of allosteric sites on metabotropic glutamate receptors

5.1. Common allosteric sites within and between metabotropic glutamate receptors

One of the continuing challenges faced in drug discovery is establishing suitably subtype selective ligands. Although allosteric ligands have better specificity than orthosteric ligands, there are numerous examples of allosteric modulators that interact with multiple receptor subtypes. As mentioned above, MPEP, an mGlu₅ NAM, is an mGlu₄ PAM (Mathiesen et al., 2003), while DFB and CPPHA (mGlu₅ PAMs) are also weak mGlu₄ NAMs (O'Brien et al., 2003, 2004). Similarly, PHCCC, an mGlu₄ PAM, is also an mGlu₁ NAM (Annoura et al., 1996). Although problematic in terms of identifying new chemotypes, this lack of selectivity for some compounds across different mGlu groups suggests similarities in allosteric binding pockets on these receptors.

To identify the sites at which allosteric modulators bind mGlus, initial mutational sites were chosen based on models predicting a pocket that may resemble the site where 11-*cis*-retinal, an inverse agonist, binds in bovine rhodopsin (Palczewski et al., 2000; Teller et al., 2001). Indeed, several critical residues for *cis*-rhodopsin binding accurately predicted residues that are important for binding of mGlu allosteric ligands, validating the use of rhodopsin as a template for the transmembrane region of class C GPCRs (Malherbe et al., 2003a,b). Critical residues for allosteric modulator

binding and cooperativity determinants have been characterized for mGlu₁, mGlu₂ and mGlu₅ (Table 2). A complete table of mutational studies on allosteric modulators of mGlus can be found in the supplementary material.

In the characterization of potential binding pockets for mGlu allosteric modulators, within a particular receptor subtype the majority of structurally unrelated PAMs and NAMs tend to cluster in overlapping binding sites. As can be seen from Table 2 and the sequence alignment in Fig. 3, the binding site for [³H]EM-TBPC in mGlu₁ is primarily located on TM 6 and 7 (Malherbe et al., 2003a), which is also where functionally important residues are located for other mGlu₁ NAMs: CFMMC, LY456066, YM298198, FTICD and CPCCOEt (Litschig et al., 1999; Surin et al., 2007; Suzuki et al., 2007; Fukuda et al., 2009). When mapped onto a 3D model of the heptahelical transmembrane domain (using the backbone coordinates from the β_2 -adrenergic receptor X-ray crystal structure) these residues are found on the top half of TMs 3, 5, 6 and 7 on the inside faces of these helices (Fig. 4A).

Key binding determinants for allosteric modulation by MPEP and fenobam at mGlu₅ are found on TMs 3, 6 and 7, as seen in Table 2 and Fig. 3 (Pagano et al., 2000; Malherbe et al., 2003b; 2006). Similarly, functionally important residues for positive allosteric modulation by DFB and VU29 show a similar distribution (Muhlemann et al., 2006; Chen et al., 2008). Fig. 4C demonstrates the clustering of these residues on the top half of the TMs, again located on the inside face of the helices. Competition binding assays with radioligands provide additional support for a common binding

Table 2

Functionally critical residues and binding determinants of positive and negative allosteric modulation of mGluR receptors.

	Positive A	Allosteric Modula	ators (PAMs)				Negative Allosteric Modulators (NAMs)													
	mGluR1		mGluR2	mGluR5			mGluR1		mGluR5											
7TM position ^b	СРРНА	Ro 67-7476	LY487379, MRLSD-650, BINA	СРРНА	VU-29	DFB	EM-TBPC	CFMMC	LY45606, YM298198 FTICD	CPCCOEt	MPEP	fenobam								
TM1 1.42 TM3 3.29	F599			F585							R648	R648								
3.36 3.39 3.40 TM4		S668 C671				P655 S658	Y672				P655 ^a S658 ^a Y659 ^a	P655 ^a S658 ^a Y659 ^a								
4.45 4.46 4.55			S688 G689					1725												
45.51 45.54 TM5						N734	N747 N750													
5.47 5.48 5.50		L757	A733 ^d N735			L744	L757	N760	N760 ^c			L744 ^a								
6.43 6.47 6.51 6.55						T781 W785 F788 Y792	W798 F801 ^a Y805 ^a	W798 F801 Y805	W798 ^c F801 Y805		T781 W785 ^a F788 ^a Y792	T781 ^a W785 ^a F788 ^a Y792 ^a								
TM7 7.32 7.35 7.40					A810	M802 A810	T815 ^a	T815	T815	T815 A818	M802 ^a S805 ^a A810 ^a	A810 ^a								

^a Residues implicated in binding have been determined using selective allosteric radioligands.

^b The position of each residue in the mGluR 7TMD is given by the numbering system proposed by Ballesteros and Weinstein (1995), which allows for the comparison of equivalent positions within GPCRs. The first number represents the TM helix and the second number is its position relative to a highly conserved residue in the group A GPCRs from that TM, assigned the number 50. Residues in the extracellular loop E2 are labeled '45' to indicate their location between helix 4 and 5. Highly conserved residues (assigned to position 50) are from the bovine rhodopsin sequence: N55^{1,50}, D83^{2,50}, R135^{3,50}, W161^{4,50}, C187^{45,50}, P215^{5,50}, P207^{6,50}, P303^{7,50}.

c Effects LY456066 only.

^d BINA not tested at mutations of this residue.

	TM1																										ТМ	2																							
mGluR1	YL	ΕW	s	NI	E	sι	1	A	A	F	s c	L	G	1	L١	٧Т	L	F	V 1	τь	1	F	νL	6	16		S S	5 5	R	Е	L	CY	1	1.1	LA	G	I F	εL	G	Y٧	C	Ρ	FΤ	L	1 /	ΑK	Р	т.	6	53	
mGluR2	YI	RW	G	DA	w	ΑV	G	P١	/ Т	Т.	AC	L	G	Α	L	ΑT	L	F	٧I	LG	v	F	/ R	5	91		A	5 0	R R	Е	L	CY	1	LI	LG	G	VF	÷ι	C	ΥC	M 3	т	FΙ	F	1 /	ΑК	Р	S.	6	28	
mGluR3	ΥI	RW	Е	DA	w	ΑI	G	P١	/Т	Τ.	AC	L	G	F	м	ст	С	м	v١	٧Т	v	F	IΚ	6	600		A	SO	à R	Е	L	СΥ	1	LI	LF	G	VC	λL	S	ΥC	M (т	FF	F	1 /	ΑK	Р	S.	6	37	
mGluR4	ΚL	ΕW	G	S P	w	ΑV	L	Ρl	. F	L	A \	/ V	G	1	A	ΑT	L	F	v١	V I	т	F	/ R	6	511		A S	5 6	R	Е	L	SΥ	v	LI	LA	G	I F	÷ι	C	YA	T /	т	FL	м	1 /	ΑE	Р	D.	6	48	
mGluR5	YL	RW	G	DΡ	E	ΡI	Α	A١	/ V	F	A C	L	G	L	L	ΑT	L	F	V 1	τν	v	F	1 1	6	03		SS	s s	R	Е	L	CY	1	1.1	LA	G	10	L	G	ΥL	. C	т	FC	L	1 /	ΑK	Ρ	к.	6	40	
mGluR6	RL	SW	s	SP	w	AA	P	PI	ĹĹ	L.	AN	ΪĒ	Ğ	ī	v	A T	Ť	T	v v	V A	Ť	F	V R	6	09		A	5 0	R	E	Ē :	SY	v	LI	LT	G	I F	E L	Ĩ.	YA	I I	Ť	FL	M	VA	AE	P	G.	6	46	
mGluR7	KL	EW	H	S P	w	AV	1	P \	/ F	L	AN	A L	G	i.	1.4	AT	1	F	VN	AN	T	F	I R	6	14		AS	SO	R	Е	L	SY	v	LI	LT	G	I F	÷ι	C	YI	1	т	FL	м	1 /	AK	P	D.	6	51	
mGluR8	KL	EW	н	S P	w	AV	v	P \	/ F	v	AI	Ē	G	i.	i i	A T	Ť	F	vi	i v	Ť	F	R	F	07		A	5 0	B	E	Ē.	SY	v	L I	Ē	G	I F	÷Ē	Č.	YS	5 1	Ť	FL	M	1 /	AA	P	D.	6	44	
CaSR	FL	S W	т	ΕP	F	GI	Å	L I	ΓĹ	F	A \	ΪL	Ğ	i.	FI	ĹΤ	Â	Ē.	v i	G	v	F	iκ	6	36		Α -	TN	R	Ē	Ē	SΥ	Ĺ	L I	ĒĒ	S	ĹĹ	. č	č	FS	S	S	L F	F	10	GE	P	ō.	6	73	
								-	-				-																	_	_		_	-		-	-		-		-	-	-					-			
b2adreneraic (2RH1)	DE	v w	v	V G	M	GΙ	v	MS	δL	1.1	vι	A	1	v	F (3 N	v	L	v	ιт	Α	1	٩κ		60		v ·	τN	ΙY	F	1.1	тs	L	A	CA	D	LV	/м	G	LA	v	v	PF	G	A	АН	1	LN	1 1	96	
rhodopsin (1U19)	ΕP	wo	Ē	S M	1	ĀĀ	Ŷ	ME	Ē	i.	i N	11	G	Ē	P	I N	Ē	ī.	τi	Ý	v	Ť.	10		64		P I	L N	İÝ	ì.	L.	L N	Ē	A	VA	D	ĒĒ	M	v	FO	G	F	ТТ	T	LY	ΥT	S	LH	1 1	00	
				•	-					-			~	÷.				-													-		_			-						-			-		-				
	тмз																										TM	4																							
mGluR1	ТТ	S C	Y	LQ	R	LL	V	GI	S	S	AN	A C	Y	s	A	LV	т	к	тı	NR	1	Α	RI	L	A 68	7	1.4	AS		L	1.3	s v	0	L 1	гι	v	νт	1	1	I N	I E	Р	РМ	Р	1	733					
mGluR2	TA	V C	Ť	LB	R	L G	L.	G	Γ A	F	SI	/ C	Y	s	A	L L	Ť	ĸ	Ť	NB	i.	A	RI	Ē	G 66	2	ic	÷ĩ	À	ĩ	i i	G	õ	īί	1	v	v	w	Τ.	vv	E		PG	Ť	G	706					
mGluR3	PV	i č	Å	I B	R	G	ī.	G s	SS	F	A	ič	Y	s	A	īī	Ť	ĸ	Ť	NC	i	A	R i	F	D 67	7	ià	5	G	ĩ	11	v	õ	ī	i N	v	ŝi	w	ĩ	ii	Ē	Δ	PG	÷	B	715					
mGluR4	iĠ	ŤČ	S	I B	R	ĪĒ	ī.	ĞÌ	G	Ň.	si	is	Ŷ	Ă	A	īī	Ť	ĸ	Ť	NB	i	Ŷ	R i	F	F 68	2	11		ŝ	ĩ	1.4	2	õ	i i	G	i	č v	w	Ē	v v	n n	P	сH	ŝ	v	726					
mGluR5	õĭ	v č	v	1 0	R	ig	ĩ	Ğ	ŝ	P	Ă N	1 5	V	IS	Δ	īv	Ť	ĸ	÷,	NR	i.	à	R i	i.	A 67		1.4		ŭ	5	17	5	õ	1 2	2 1		v		È	1.		b	5 n	ĩ	Ň	720					
mGluR6	A A	v č	Å		R	Ē	1	ă	6	T	Ŧï	6	×	6	2	īi	÷	ĸ	÷;		÷	Ŷ	a i	Ē	E 60	0	1.6			5	ֈ		ă	2 1	10		1 2	W.	1.		5	6		è	V	720					
mGluB7	22	vč	6	2 0			ĩ.	ä	G	Å.	ċì		÷	~	2		÷	2	÷;			÷		÷	E 60	6	1.4			5	1.1		ă			NI V			2			5		3		724					
mGluRs	֔	10	0		B		1		6	M	2			~	2		÷	2	÷÷			÷		-	E 00	5	1.4		0	-	1.1		ä	5 5	- 6	ž	5,		53			5		1	1.1	129					
CaSP		+ ~	5		~		È	e i		E	5 1	2		2	2			2	÷÷			Π.			E 70	2	1.3		5	Ľ	+ 1	- ·	ä	5.5		×	5 1		5.3	× ×		2				122					
Cash	0 11	10	n		u	F A		G	1 3	F	• •	- 0		9	C		•	r		N D	۷	L		F	E /0	/	L \	/ F	L	C		- M	Q		<i>'</i> '	C	v i	w	L	Y I	A	Р	PS	5	Y.	/51					
h2adronoraio (2PH1)			E	E 14			•		~	v	т,		÷.	E	т (• •		D	v			T 40	~				~								-					. .	~							
rhodonein (1110)	N F		5					÷		č	- 1	1 3		5				1	~		2	5			1 13	6	K F	N N		н	×.			M			vs	G	μ.	1 5		L	P !	Q	M	1/1					
modopsin (1019)	P 1	GC	N	ᄂᄃ	G		~		- 6	G	E 1			vv	5	LV	v	с.	~		н	T	vv	v	0 14	0	Er	чн	IA		M	۷ i	A	F 1		v	MA	L L	A	C A	A	Р	ΡL	v	G	174					
	TM5																										ТΜ	6																							
mGluR1	TM5			. G	v 1	/ A	P		Y	N	GL	L	ī	м	so	т	Y	Y	A F	к	т	RI	v	Р	778		A	6 N F	N	E	A	<		A	FΤ	м	Υī	т	с		w	L	AF	v	P	IY	F	GS	N		109
mGluR1 mGluR2	TM5	: :	·	G	V N	A G	P		Y	N 0	GL	L	ł	M	S C	ст ст	Y	Y	A F	ĸ	T			P	778 753				N	E	A	K Y	1	AI	FT	м	YI		c		W	L	A F	V	P		F	GS	NS	s	309 785
mGluR1 mGluR2 mGluR3	TM5	::	:	GS	MI	G	P S S		Y	N C		. L . L	I I V	M A I		Т	Y L V	Y	A F A F	к к к	T T	RIRI	v c c	PPP	778 753 762				NNN	EEE	A	K Y K F K F		A I G I	FT	M M	Y 1 Y 1 Y 1		000		W W W	L		V L L	P P P		F Y Y	G S V T V T	N S S	S	309 785 794
mGluR1 mGluR2 mGluR3 mGluR4	TM5	: :	:	GSSS		G	P S S L		Y Y Y	N N D N			I V M	MAIV			Y L V V	YYYYY	AFAF	****	T T T		V C C V	PPP	778 753 762 778					EEEE	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	X F X F X F		A I G I G I	FTFT	MMM	Y 1 Y 1 Y 1 Y 1		0000		WWWWWWWWWWWWWWWWWWWWWW			V L L	PPP		FYF	G S V T V T G T	NSSS	s s o	309 785 794
mGluR1 mGluR2 mGluR3 mGluR4 mGluR5	TM5	: :	•			GICT	P S S L P		Y Y Y Y	N D T S I			I V M	MAIVL			Y L V F	Y I Y I Y I	A F A F A F	****	T T T T		×00×	PPPP	778 753 762 778 765						AAAAA			A I G I G I	FTFT	MMMM	Y 1 Y 1 Y 1 Y 1 Y 1		00000		w w w w				PPPP		FYYFF		zosoz	s s Q	309 785 794 310 796
mGluR1 mGluR2 mGluR3 mGluR4 mGluR5 mGluR6	TM5	· · · · · · · · · · · · · · · · · · ·	•	GSSSGS		AGICTG	P S S L P C		Y Y Y Y	N D S N S			I I V M I M	MAIVLV			Y L V F V	Y Y Y Y Y	A F A F A F A F	*****	T T T T A			P P P P P	778 753 762 778 765 776		ALEEA				A A A A A A A	X F F P Y P		A G G G A G	FTFT	M M M M M	Y 1 Y 1 Y 1 Y 1 Y 1		000000						PPPPP		FYYFFF		NSSSNA	· S S G · O	309 785 794 310 796
mGluR1 mGluR2 mGluR3 mGluR4 mGluR5 mGluR7	TM5	· · · · · · · · · · · · · · · · · · ·	•	GSSSGSGS		AGICTGC	P S S L P C S		Y Y Y Y Y	N D S N S S				MAIVIV			Y L V F V V	Y Y Y Y Y Y Y Y Y	A F A F A F A F	******	TTTTA		VCCVVVV	P P P P P P	778 753 762 778 765 776 781		TM				A A A A A A A A A A A A A A A A A A A	YFFPYPP		AGGGAG	FTFT	M M M M M	Y 1 Y 1 Y 1 Y 1 Y 1		0000000					V L L I V V	P P P P P P		FYYFFFF		N S S S N A A	· S S Q · Q Q	309 785 794 310 796 108
mGluR1 mGluR2 mGluR3 mGluR4 mGluR5 mGluR6 mGluR7 mGluR8	TM5	· · · · · · · · ·	•	G \$ \$ \$ \$ G \$ G \$ G \$		AGICTGCC	P S S L P C S S		Y Y Y Y Y Y	N N N N N N N N N N N N N N N N N N N			>M-MM	MA->L>>			Y L V F V V	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y		*******	TTTTAT		× C C × × × × ×	P P P P P P P	778 753 762 778 765 776 781 774		TM				A A A A A A A	YFFPYPP		AGGGAGG	FTFTFT		Y 1 Y 1 Y 1 Y 1 Y 1		00000000					V L L I V V I I	P P P P P P P		FYYFFFFF		NSSSNAA		309 785 794 310 796 308 113
mGluR1 mGluR2 mGluR3 mGluR4 mGluR6 mGluR6 mGluR7 mGluR8	TM5	· · · · · · · · · · · · · · · · · · ·		GSSSGSGSA		AGICTGCCF	P S S L P C S S L		YYYYYYYYYY	N D S N S S S T				MAIVIVVA			Y L V F V V F	YYYYYY		********	TTTTTATTS		VCCVVVV		778 753 762 778 765 776 781 774 798		TM	6	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		A A A A A A A A A A A A A A A A A A A	× < < < < < < < < < < < < < < < < < < <		AGGGGGGG	FTFFTFFF		Y 1 Y 1 Y 1 Y 1 Y 1 Y 1		0000000		××××××××××××××××××××××××××××××××××××××			V L L - V V			FYYFFFFFA		N S S S N A A A Y		909 785 794 310 796 308 313 30 33
mGiuR1 mGiuR2 mGiuR3 mGiuR4 mGiuR5 mGiuR6 mGiuR7 mGiuR8 CaSR	TM5	· · · · · · · · · · · · · · ·		GSSSGSQSA		AGICTGCCF	P S S L P C S S L		YYYYYYYYY	N D S N S S S T			>M-MMA	MAIVLVVA		TTTTTTF	Y L V F V V F	YYYYYYF	A F A F A F A F A F A F	********	T T T T T A T T S		VCCVVVVVL	P P P P P P P	778 753 762 778 765 776 781 774 798		TM		22222222		A A A A A A A A A A A A A A A A A A A	××××××××××		A G G G G T	FTFFTFFS		Y 1 Y 1 Y 1 Y 1 Y 1 Y 1 Y 1		CCCCCCCCF		× × × × × × ×			V L L I V V I I I	PPPPPPP		FYYFFFFFA	G S V T G S T G S T G T S T	NSSSNAAAY		809 785 794 310 796 308 313 330 333
mGluR1 mGluR2 mGluR3 mGluR4 mGluR5 mGluR6 mGluR7 mGluR8 CaSR b2adapaga(c /2PH1	TM5	· · · · · · · · · · · · · · · · · · ·		GSSSGSGSA G		AGICTGCCF	PSSLPCSSL		YYYYYYYYYY	N DSNSSST			>M-MMA	M4->1>>>4 >			YLVVFVVF (YYYYYYYF B		XXXXXXXXX	TTTTTATTS		VCCVVVVL B	PPPPPPPP	778 753 762 778 765 776 781 774 798		TM AEEEAEEEE K		ZZZZZZZZ		A A A A A A A A A A A A A A A A A A A	YFFPYPPF T		AGGGGGGGT	FFFFFFF		Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y		CCCCCCCF T						PPPPPPP		FYYFFFFFA .		NSSSNAAAY		809 785 794 310 796 308 313 330 333
mGluR1 mGluR2 mGluR3 mGluR4 mGluR5 mGluR5 mGluR7 mGluR8 CaSR b2adrenegic (2RH1	TM5	· · · · · · · · · · · · · · · · · · ·		GSSSGSGSGSA SA		AGICTGCCF VV	PSSLPCSSL SH		YYYYYYYYY	N D S N S S S T P P			>M-MMA M-	MAIVLVVVA VE			YLVVFVVF SG	YYYYYYYF RO	A F A F A F A F A F A F A F		TTTTTATTS ET		VCCVVVVL RE	PPPPPPPP Q4	778 753 762 778 765 776 781 774 798 229 233		TM AEEEAEEEE KA	6 F F F F F F F F F F F F F F F F F F F			AAAAAAAA LT			A G G G G G G G G G G G G G G G G G G G	FTFFTFFTF		YYYYYY YYYY GI		COCOCOCF F-				AAAAAAAAA PP	VLLIVVIII FA			FYYFFFFFA IE	GVTTTGGGGGGS V	NSSSNAAAY YE	SSQ QQQG I	809 785 794 310 796 308 313 330 333
mGluR1 mGluR2 mGluR3 mGluR4 mGluR6 mGluR6 mGluR7 mGluR7 mGluR8 b2adrenergic (2RH1 rhodopsin (1U19)	TM5	· · · · · · · · · · · · · ·		GSSSGSQSA SM		AGICTGCCF VV	PSSLPCSSL SH			N D S N S S S T O				MAIVLVVVA VF	S ((() () () () () () () () (YLVVFVVF SG	YYYYYYF RQ	A FFA FA F	XXXXXXXXX O F	T T T T T T T T T T T T T T T T T T T	R I I I I I I I I I I I I I I I I I I I		PPPPPPPP QA	778 753 762 778 765 776 781 774 798 229 233		TM AEEEAEEEE KA	6 FFFFFFFFFFFFFFF			A A A A A A A A L T	YFFPYPPPF TM		A G G G G G G G G G G G G G G G G G G G	F T T F T T F F T T F S I N		YYYYYY GI		CCCCCCCF TL				AAAAAAAAA PP	VLLIVVIII FA	PPPPPPPP IG		FYYFFFFFA IF	GVTT GGGGGGS VY	NSSSNAAAY VF	SSQ QQQG IT	809 785 794 310 796 308 313 330 333 198 277
mGluR1 mGluR2 mGluR3 mGluR4 mGluR6 mGluR6 mGluR6 CaSR b2adrenergic (2RH1 rhodopsin (1U19)	TM5 	· · · · · · · · · · · · · · · · · · ·		GSSSGSQSA SM		A G I C T G C C F V V	P S S L P C S S L S H		Y Y Y Y Y Y Y Y Y Y Y I	N D S N S S S T P P			IIV IN THE REPORT OF THE REPOR	MAIVLVVVA VF	S ((() () () () () () () () (YLVVFVVF SG	YYYYYYF RQ	A FFA FA F		TTTTTATTS ET	RRI CONTRACTOR		PPPPPPP QA	778 753 762 778 765 776 781 774 798 229 233		TM REEEAEEEEE KA	6 FFFFFFFFFFFFFFFF			A A A A A A A A L T	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		A G G G G G G G G G G G G G G G G G G G	F T T F F T T F F F F F F F I N		Y 1 Y 1 Y 1 Y 1 Y 1 Y 1 Y 1 Y 1 L 1 G 1 I		CCCCCCCF TL				AAAAAAAAA PP	V L L I V V I I I F A	P P P P P P P I G	I F I F I F I F I F I F V N V A	FYYFFFFFA IF	G S T T T G S T T T G G G T T T G G G T T T G G G T T T T G G T T T T T T G G T	NSSSNAAAY VF	SSQ QQQG IT	809 785 794 310 796 308 313 330 333 398 277
mGluR1 mGluR2 mGluR3 mGluR4 mGluR6 mGluR6 mGluR6 CaSR b2adrenergic (2RH1 rhodopsin (1U19) mGluR1	TM5	Y A		G S S S S S S S S S S S S S S S S S S S		A G I C T G C C F V V T	P S S L P C S S L S H V		Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	N D S S S S T O			IIVMIMMA MI P	MAIVLVVVA VF K	S 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		YLVVFVVF SG I	YYYYYYF RQ B	A FFA FI A FI A FI A FI A FI A FI A FI		TTTTTATTS ET	RRRRR AI			778 753 762 778 765 776 781 774 798 229 233		TM REEEAEEEE KA	6 FFFFFFFFFFFFFFF			A A A A A A A A L T	<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<		A G G G G G G G G G G G G G G G G G G G	F T T T T T T T T T T T T T T T T T T T		Y 1 Y 1 Y 1 Y 1 Y 1 Y 1 L 1 G 1 I		CCCCCCCF TL				A F F A F F A F F Y	V L L I V I I I F A		F F F F F F F V N V A	FYYFFFFFA IF	G S T T S T S T S T S T S T S T S T S T	NSSSNAAAY F	SSQ QQQ IT	809 785 794 310 796 308 313 330 333 298 277
mGluR1 mGluR2 mGluR3 mGluR4 mGluR6 mGluR6 mGluR6 CaSR b2adrenergic (2RH1 rhodopsin (1U19) mGluR1 mGluR2	TM5	Y A F V		GSSSGSASA SYML			P S S L P C S S L S H V V		Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	N D S N S S S T P P C C			IIVMIMMA MI PD	MAIVLVVA VF KK			YLVVFVVF SG I	YYYYYYF RQ 83	A FFIAAA FIAAAAAAAAAAAAAAAAAAAAAAAAAAAA		TTTTTATTS ET	RRRRRR AV		PPPPPPP QA	778 753 762 778 765 776 781 774 798 229 233		TM REEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE	6 N N T N T N T N T N T N T N T N T N T			A A A A A A A A L T	<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<		A G G G G G G G G G G G G G G G G G G G	F T T T T T T T T T T T T T T T T T T T		Y 1 Y 1 Y 1 Y 1 Y 1 Y 1 L 1 G 1 I 4		CCCCCCCF TL				A F F F F F F F F F F F F F F F F F F F	V L L I V I I I F A	P P P P P P P I G	F F F F F F V N V A	FYYFFFFFA IF	G S T T S T S T S T S T S T S T S T S T	NSSSNAAAY VF	SSQ QQQG IT	809 785 794 310 796 308 313 330 333 330 333 298 277
mGluR1 mGluR2 mGluR3 mGluR4 mGluR4 mGluR5 mGluR6 mGluR7 mGluR7 hodopsin (1U19) mGluR1 mGluR2 mGluR3	TM5	Y A F V F A S	· · · · · · · · · · · · · · · · · · ·	GSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS			PSSLPCSSL SH VVV		YYYYYYY VI GG	N D S N S S S T P P C C C C			IIVMIMMA MI PPO	MAIVLVVVA VF KKK	S C C C C C C C C C C C C C C C C C C C		YLVVFVVF SG II-	Y Y Y Y Y Y Y Y Y Y Y Y Y Y X A S S S S S S S S S S S S S S S S S S	AFFIAAAFI 876		TTTTTATTS ET	RRRRRR AV		PPPPPPP QA	778 753 762 778 765 776 781 774 798 229 233		TM REEEEEEEEEE	6 FFFFFFFFFFFFFFFFF		EEEEEEE AV	A A A A A A A A L T	<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<		A G G G G G G G G G G G G G G G G G G G	F T T T T T T T T T T T T T T T T T T T		Y 1 Y 1 Y 1 Y 1 Y 1 Y 1 L 1 G 1 I		CCCCCCCF TL				A F F F F F F F F F F F F F F F F F F F	V L L I V V I I F A	PPPPPP IG	F F F F F F V N V A	FYYFFFFFA IF	G V T T S S T T S S T T S S S S S S S S S	NSSSNAAAY VF	SSQ QQQG	809 785 794 310 796 308 313 330 333 330 333 298 277
mGluR1 mGluR2 mGluR3 mGluR4 mGluR6 mGluR6 mGluR6 CaSR b2adrenergic (2RH1 rhodopsin (1U19) mGluR1 mGluR1 mGluR2 mGluR3	TM5 	Y A F V S		GSSSGSQSA SM LLL		AGICTGCCF VV TSF	PSSLPCSSL SH VVVV		YYYYYYY VI GGGG	N D S N S S S T P P C C C C M			IIVMIMMA MI PPP	WA-VLVVVV VF XXXX	SLLTSTTTI FF MLVV		YLVVFVVF SG III.	Y Y Y Y Y Y Y Y Y Y Y Y Y X A S S S S S S S S S S S S S S S S S S	A F F I F I B 765		TTTTTATTS ET	RRRRRR AI		PPPPPPP QA	778 753 762 778 765 776 781 774 798 229 233		TM I I I I I I I I I I I I I I I I I I I	6		EEEEEEE AV	A A A A A A A A L T	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		A G G G G G G G G G G G G G G G G G G G	FFTTFFFF IN		Y 1 Y 1 Y 1 Y 1 Y 1 Y 1 G 1 I I I I		CCCCCCCF TL				A FFAAFFAAFF A A FF A A FF P Y	V L L I V V I I I F A	P P P P P P P I G	F F F F F F V N V V	FYYFFFFFA IF	GVTTGGGTTT VGGGTTT VY	NSSSNAAAY VF	SSQ QQQG IT	809 785 794 310 796 308 313 330 333 298 ?77
mGluR1 mGluR2 mGluR3 mGluR4 mGluR4 mGluR5 mGluR6 mGluR7 mGluR7 hodopsin (1U19) mGluR1 mGluR1 mGluR2 mGluR3 mGluR5	TM5 	YA FV SS SS	· · · · · · · · · · · · · · · · · · ·	GSSGSQSA SM LLLL		AGICTGCCF VV TSFS	PSSLPCSSL SH VVVV		YYYYYYY VI GGGGG	N D S N S S S T P P C C C M C			IIVMIMMA MI PPPP	WA-VLVVVV VF XXXXX	SLLTSTTTI FF MLVVV		YLVVFVVF SG IIII	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Z Z Z Z Z	AAAAAAAAA VL 87655		TTTTTATTS ET	RRRRRR AV		PPPPPPP QA	778 753 762 778 765 776 781 774 798 229 233			6 N N N T N T N T N T N T N T N T N T N		EEEEEE AV		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		A G G G G G G G G G G G G G G G G G G G	FFTTFFFF IN		Y 1 Y 1 Y 1 Y 1 Y 1 Y 1 Y 1 G 1 H		CCCCCCCF TL				A FFAAFF A A FF A A FF P Y	V L L I V V I I I F A		I F F I F F I F F I F F I F F V A	FYYFFFFFA IF	GVTTSGGTT GGTTSVI GGTTVI	NSSSNAAAY VF	SSQ QQQG IT	809 785 794 310 796 308 313 330 333 330 333 298 ????
mGluR1 mGluR2 mGluR3 mGluR4 mGluR6 mGluR6 mGluR6 CaSR b2adrenergic (2RH1 rhodopsin (1U19) mGluR1 mGluR1 mGluR2 mGluR2 mGluR4 mGluR5	TM5 	F A F V S I S V S F S		GSSGSQSA SM LLLL	VMLULLL SF SSSS		PSSLPCSSL SH VVVV		YYYYYYYYY VI GGGGGG	N D S N S S S T P P C C C M C M			IIVMIMMA MI PPPPP	WA-VLVVVVVVVV	SLLTSTTTI FF MLVVV		YLVVFVVF SG IIIII	Y Y Y Y Y Y Y Y Y Y Y Y Y Y X X Y Y Y Y	AAAAAAAAA VL 876552		TTTTTATTS ET	RRRRRR AV		PPPPPPP QA	778 753 762 778 765 776 781 774 798 229 233		TM LEEEAEEEE KA	6 NNNTNTNTN		EEEEEE AV		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		A G G G G G G G G G G G G G G G G G G G	FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF		Y 1 Y 1 Y 1 Y 1 Y 1 Y 1 Y 1 L 1 G 1 I		CCCCCCCF TL				AFFAAFF AAFFAAFF PPY	VLLIVVIII FA	PPPPPPP IG	I F F I F F I F F I F F I F F V A	FYYFFFFFA IF	GVTTSGGTT GGTTSVI GGTTVI	NSSSNAAAY VF	SSQ QQQG IT	809 785 794 310 796 308 313 330 333 298 ??77
mGluR1 mGluR2 mGluR3 mGluR4 mGluR6 mGluR6 mGluR7 mGluR7 hodopsin (1U19) mGluR1 mGluR1 mGluR2 mGluR2 mGluR3 mGluR3 mGluR4 mGluR5 mGluR5 mGluR6	TM5 	YF F ASS		GSSSGSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS	VML MLVL LLLSF SSSSS		PSSLPCSSL SH VVVVV		YYYYYYYY VI GGGGGGG	N DSNSSST PP CCCMCM	GVULLLU VI FFFY		IIVMIMMA MI PPPPPP	WAISISSA SE KXXXXX	SLLTSTTTI FF MLVVVTV		YLVVFVVF SG IIIII	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Z Z Z Z	AAAAAAAAA VL 8765539	KKKKKKKK QF	TTTTTATTS ET	RRRRRR AV		PPPPPPPP QA	778 753 762 778 765 776 781 774 798 229 233		TM LEEEAEEEE KA	6 NNNTNTNTN		EEEEEE AV		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		A G G G G G G G G G G G G G G G G G G G	FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF		Y 1 Y 1 Y 1 Y 1 Y 1 Y 1 Y 1 L 1 G 1 I		CCCCCCCF TL				AFFAAFF AAFF AAFF PY	VLLIVVIII FA	PPPPPP IG	I F F I F F N N A	FYYFFFFFA IF	GVVTTSGGTTT VVGGGTTT VVI	NSSSNAAAY VF	SSQ QQQG IT	809 785 794 310 796 308 313 330 533 298 277
mGluR1 mGluR2 mGluR3 mGluR4 mGluR6 mGluR6 mGluR6 CaSR b2adrenergic (2RH1 rhodopsin (1U19) mGluR1 mGluR1 mGluR2 mGluR3 mGluR4 mGluR6 mGluR7 mGluR7	TM5 	YA FV SS FS VS FS	· · · · · · · · · · · · · · · · · · ·	GSSSGSGSA SM LLLL	VML MLVLILL SF SSSSS	AGICTGCCF VV TSFSTSSS	PSSLPCSSL SH VVVVVV	L L G G G G G G G G G G G G G G G G G G	YYYYYYYY VI GGGGGGGG	N DSNSSST PP CCCMCMM			IIVXIXXX XI PPPPPP	WAISISSA SE KXXXXXX	SLLTSTTTI FF MLVVVTV		YLVVFVVF SG IIIIII	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	KKKKKKKK QF	TTTTTATTS ET	RRRRRR AV		PPPPPPPP QA	778 753 762 778 765 776 781 774 798 229 233		TM TEEEAEEEE KA	6 N N N T N T N T N T N T N T N T N T N		EEEEEE AV		<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<		A G G G G G G G G G G G G G G G G G G G	FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF		YYYYYY YYYY GI		CCCCCCCF TL				AAAFF F FY	VLLIVVIII FA	PPPPPP IG	I F F I F F N N A	FYYFFFFFA IF	GVVTTSGGTTT VVGGGTTT VVI	NSSSNAAAY VF	SSQ QQQG IT	909 785 794 310 796 308 313 330 533 ?98 ?77
mGluR1 mGluR2 mGluR3 mGluR4 mGluR6 mGluR6 mGluR7 mGluR8 CaSR b2adrenergic (2RH1 rhodopsin (1U19) mGluR1 mGluR2 mGluR3 mGluR4 mGluR6 mGluR6 mGluR8	TM5 	F A F V S F V S F S V S F S V S V S		GSSSGSQSA SM LLLLLL		AGICTGCCF VV TSFSTSSSS	PSSLPCSSL SH VVVVVVV	L L G G G G G G G G G G G G G G G G G G	YYYYYYYY VI GGGGGGGGG	Z N D S N S S S T P P C C C M C M M M	GVVMGLIIC LL MLLLMLLL		IIVXIXXX XI PPPPPP	ΝΑ->L>>Α Α- ΧΧΧΧΧΧΧ	SLLTSTTTI FF MLVVVTVV		YLVVFVVF SG IIIIII	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	KKKKKKKKK QF	TTTTTATTS ET	RRRRRRR AV		PPPPPPP QA	778 753 767 778 765 776 781 774 798 229 233		TM TEEEAEEEE KA	6 NNNTNTNTN EE		EEEEEEE AV		<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<		A G G G G G G G G G G G G G G G G G G G	FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF		YYYYYY YYYY GI		CCCCCCCF TL				AAFFIAAFF FY	VLLIVVIII FA		I FI	FYYFFFFFA IF	GVVTTSTTTT	NSSSNAAAY VF	SSQ QQG IT	909 785 794 310 796 308 313 330 533 ?98 ?77
mGluR1 mGluR2 mGluR3 mGluR4 mGluR6 mGluR6 GaSR b2adrenergic (2RH1 rhodopsin (1U19) mGluR1 mGluR1 mGluR2 mGluR3 mGluR4 mGluR6 mGluR8 mGluR8 CaSR	<i>TM5</i> 	F V S F V S F V S F V S F V S F S V S F S		GSSSGSQSA SM LLLLLLA	VMLUVLILL SF SSSSSA	AGICTGCCF VV TSFSTSSSF	PSSLPCSSL SH VVVVVVG	L A TOGOGO YI LLOGOGY I LL	YYYYYYYY VI GGGGGGGGA	Z DSNSSST PP CCCMCMMMC	GVVMGLIIC LL MIIIMLLI		>N-NNNA N- PPPPPPP	ΧΑΥΧΧΧΧΧΑ Η ΑΚΚΑΓΚΑΝ	SLLTSTTTI FF MLVVVTVVI		YLVVFVVF SG IIIIIII	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	AAAAAAAA VL 876553810		TTTTTATTS ET	RRRRRRR AV		PPPPPPP QA	778 753 765 776 781 775 776 781 774 798 229 233		TM AEEEAEEEE KA	6 NNNTNTNTN		EEEEEEE AV		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		A G G G G G G G G G G G G G G G G G G G	FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF				CCCCCCCF TL				AAFFAAFF FY	VLLIVVIII FA		F F I F I F I F A Y N A	FYYFFFFFA IF	GVVGGGGTTT HI	NSSSNAAAY VF	SSQ QQG IT	809 785 794 310 796 308 313 330 533 298 ?77
mGluR1 mGluR2 mGluR3 mGluR4 mGluR6 mGluR6 mGluR7 mGluR8 CaSR b2adrenergic (2RH1 rhodopsin (1U19) mGluR1 mGluR2 mGluR2 mGluR3 mGluR4 mGluR5 mGluR6 mGluR6 mGluR6 mGluR8 CaSR	ТМ5 	F A S F V S F V S V S V S V S V S V S V S V S V S V S	· · · · · · · · · · · · · · · · · · ·	GSSSGSQSA SM LLLLA .	VMLULLUSF SSSSSA	AGICTGCCF VV TSFSTSSSF	PSSLPCSSL SH VVVVVVG	L A TOGOGO YI L OGOGY I L	YYYYYYYY VI GGGGGGGGGG	Z NDSNSSST PP CCCMCMMMC	GVVMGLIIC LL MLLLMLLI A		>M-MMMA M- PPPPPPP	אל->ו>>>ל אאאאאאאיייייייייייייייייייייייייייי	SLLTSTTTI FF MLVVVTVVI	TTTTTTTTTF YY VYYYY	YLVVFVVF SG IIIIIII	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	AAAAAAAA VL 876553810		TTTTTATTS ET	RRRRRRR AI		PPPPPPP QA	778 753 762 778 765 776 778 778 774 798 229 233		TM AEEEAEEEE KA	6 NNNTNTNTN		EEEEEE AV		<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<><<<<		A G G G G G G G G G G G G G G G G G G G	FTTTTTTTS IN				CCCCCCCF TL				AAFF AAFF AAAFF F Y	V L L I V V I I I F A		I F F I F I F A V A	FYYFFFFFA IF	GVTTTSTTFF	NSSSNAAAY VF	SSQ QQQG IT	809 785 794 310 796 308 313 330 533 298 ?77
mGluR1 mGluR2 mGluR3 mGluR6 mGluR5 mGluR6 CaSR b2adrenergic (2RH11 rhodopsin (1U19) mGluR1 mGluR2 mGluR3 mGluR3 mGluR4 mGluR5 mGluR5 mGluR6 caSR b2adrenergic (2RH1)	ТМ5 	YF FVSSS	VVVVLMMI I	GSSSGSQSA SM LLLLLLA L	VMLUVLILL SF SSSSSSA N	AGICTGCCF VV TSFSTSSSF I	PSSLPCSSL SH >>>>>>>G G	GATGGGGGYI LLGGGGGGYI LLGGGGGGYI	YYYYYYYY VI GGGGGGGGGA N	NDSNSSST PP CCCMCMMMC S	GVVMGLIIC LL MILLMLLI G	LLLLLLL IV TAAMVVMMF N	>>>	WA->l>>>A >F XXXXXXXXX L	SLLTSTTTI FF MLVVVTVVI I		YLVVFVVF SG IIIIII R	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	AAAAAAAA VL 876553810 60		TTTTTATTS ET	RRRRRRR AV		PPPPPPP QA	778 753 778 765 776 774 798 229 233		TM TEEEAEEEE KA	6 FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF		EEEEEE AV		YFFPYPPF TM		A G G G G G G G G G G G G G G G G G G G	FTTTTTTTS IN		Y I I Y I I Y I I I G I A		CCCCCCCF TL				AAFF AAFF F F F F F F	V L L I V V I I I F A	PPPPPPP IG	I F F I F A V A	FYYFFFFFA IF	GVTTTSTTFF	NSSSNAAAY VF	SSQ QQQG IT	809 785 794 310 796 308 313 330 533 298 277

Fig. 3. Alignment of the 7TMD in the human mGlus and Calcium-sensing receptor (CaSR) sequences (aligned with CLUSTALW) relative to β_2 -adrenergic receptor (2RH1) and bovine rhodopsin (1U19) sequences (aligned with MUSTANG). Alignment of TM regions between class C GPCRs and bovine rhodopsin were directly adopted from Malherbe et al. (2006), except TM2, 4 and 7, which were based on the alignment of CaSR with bovine rhodopsin from Miedlich et al. (2004). Highlighted are: residues functionally important for CPPHA (blue) or other PAMs (cyan), residues important for NAMs functionally (orange) and through binding (red), and residues important for both PAMs and NAMs functionally (light green) or both PAM function and NAM binding (dark green). The full alignment is provided in the supplementary material (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.).

Fig. 4. Functionally critical residues and binding determinants for mGlu allosteric modulators mapped onto the hepta-helical transmembrane domain of β_2 -adrenergic receptor X-ray crystal structure (2RH1) backbone. Shown in sticks is the backbone beta-carbon of functionally important residues and binding determinants. A) mGlu₁, B) mGlu₂, C) mGlu₅, D) residues from mGlu₁, mGlu₂ and mGlu₅ and E) side view of residues from mGlu₁, mGlu₂ and mGlu₅. Highlighted are: residues functionally important for CPPHA (blue) or other PAMs (cyan), residues important for NAMs functionally (orange) and through binding (red), and residues important for both PAMs and NAMs functionally (light green) or both PAM function and NAM binding (dark green). In D and E, residues important for both mGlu₁ and mGlu₅ allosteric modulation are in black (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.).

site for allosteric modulators. In mGlu₅ studies, CDPPB inhibits allosteric binding of the MPEP analog [³H]methoxyPEPy in a competitive manner (Chen et al., 2007). In addition, point mutations reducing the binding of MPEP also decrease the ability of CDPPB to potentiate mGlu₅ response to glutamate (Chen et al., 2007). These results suggests that CDPPB, along with its derivative VU29, share a common or overlapping binding site with MPEP (Kinney et al., 2005; Chen et al., 2007).

The allosteric binding sites for the majority of allosteric modulators of group I mGlus are located in similar regions. As seen in Fig. 4D, overlaying the key residues for allosteric modulation from both receptors clearly demonstrates the similarity between the two receptor subtypes. Experiments performing residue swaps provide further evidence for similar binding sites between mGlu₁ and mGlu₅. Substituting non-conserved residues of mGlu₁, known to be important for CPCCOEt and Ro 67-7476 allosteric modulation, onto mGlu₅ results in a gain of function for these mGlu₁ selective modulators at mGlu₅ (Litschig et al., 1999; Knoflach et al., 2001). Similarly, substitution of residues important for MPEP binding onto mGlu₁ results in the gain of $[{}^{3}H]MPEP$ binding (Pagano et al., 2000). Clearly, there is evidence that the location of at least one allosteric site is very similar for the group I mGlus, despite the availability of selective allosteric modulators for these sites. In contrast, the residues identified that perturb modulation by group II selective PAMs are found in TM 4 and 5 (Figs. 3 and 4B) (Schaffhauser et al., 2003; Hemstapat et al., 2007; Rowe et al., 2008). The two residues identified in TM5 cluster near the common allosteric site of group I mGlus, whilst those in TM4 do not. Unlike the mutations in group I mGlus, the existing mGlu₂ data relies entirely upon functional assays, thus, it remains to be seen whether these residues are required for modulator binding or the transmission of cooperativity. More studies are required of mGlu₂ selective modulators to determine whether or not the binding pocket utilized is similar to that shared by the majority of group I mGlu allosteric modulators.

5.2. Multiple allosteric sites within a single metabotropic glutamate receptor type

While commonalities between allosteric binding sites within subtypes of mGlus have been the prevailing trend, there is evidence for multiple allosteric sites on the same receptor. Inhibition binding assays with radioligands and Schild-like analysis with neutral allosteric ligands has enabled the detection of mGlu allosteric modulators that do not interact with the common binding sites. This has been most definitively shown for CPPHA, a group I PAM. CPPHA does not displace the binding of [³H]methoxyPEPy at mGlu₅, even at concentrations several orders of magnitude higher than its potency as a PAM (O'Brien et al., 2004; Chen et al., 2008). The same occurs with the mGlu₁ radioligand [³H]R214127, which is thought to bind to site on mGlu₁ homologous with the MPEP binding site on mGlu₅ (Pagano et al., 2000; Lavreysen et al., 2003). CPPHA does not compete with [³H]R214127 (Chen et al., 2008), despite having PAM activity at both group I mGlus. Furthermore, the neutral allosteric modulator 5MPEP noncompetitively inhibits CPPHA potentiation of glutamate, suggesting that ligands at the MPEP and CPPHA sites can allosterically regulate one another (Chen et al., 2008). This is in contrast to other mGlu₅ PAMs and NAMs that display a competitive interaction with 5MPEP (Chen et al., 2007). Collectively, these data suggest that CPPHA interacts with a different site to other known allosteric ligands. In site-directed mutagenesis studies, only F585I/ mGlu₅, and its equivalent at mGlu₁ (F599I), in TM1 eliminated the potentiation of mGlu₅ by 1µM CPPHA (Chen et al., 2008). As seen in Fig. 4E, this residue on TM1 is spatially in a different region of the receptor compared to the other residues implicated in allosteric modulation in both mGlu₁ and mGlu₅. Because CPPHA potentiates responses to activation of both mGlu₅ and mGlu₁ in sites that are clearly distinct from previously characterized allosteric sites, the data suggests that multiple distinct allosteric sites exist on group I mGlus that can serve as targets for PAMs.

In a similarly designed study to the CPPHA work, two mGlu₁ selective PAMs, VU48 and VU71, were shown to be non-competitive with [³H]R214127 and were not susceptible to mutations known to affect NAMs that bind the common group I mGlu allosteric site (Hemstapat et al., 2006). Multiple binding sites have also been suggested for mGlu₄ PAMs and mGlu₂ NAMs compared to PAMs. At mGlu₂, mutations known to perturb the allosteric modulation by PAMs had no effect on NAMs from the MNI series of compounds (Hemstapat et al., 2007). However, given that these $mGlu_2$ data rely upon functional measures alone, it remains to be seen whether or not these differential effects correspond to different binding sites or merely reflect the manifestation of positive versus negative cooperativity. Interestingly, at mGlu₄, PHCCC was unable to influence the concentration-response curve of VU0155041, a PAM from a different chemical class, suggesting that these two ligands do not act at a single allosteric site (Niswender et al., 2008). Furthermore, VU0155041 also has agonist activity in its own right, whilst PHCCC does not (Niswender et al., 2008), such differences in pharmacology of these PAMs could be postulated to arise due to interaction with different binding sites. It is possible that allosteric modulators acting at different sites could regulate mGlus via different pathways. Indeed, CPPHA has been shown to differentially effect ERK1/2 phosphorylation relative to inositol phosphate accumulation in rat cortical astrocytes (Zhang et al., 2005). In contrast, mGlu₅ PAMs from the CDPPB series have equivalent effects in both assays. Such differences between the activities of PAMs interacting at different sites have important implications with respect to therapeutic intervention and lead compound choice in drug discovery programs.

This evidence bears the potential that instead of (or in addition to) multiple well-defined and separated allosteric binding sites a larger binding region for allosteric modulation may exist defined by the inward-facing top half of the TM helices. Allosteric modulators interact with part of that region in multiple, possibly overlapping binding modes depending on their chemotype. Such a scenario increases the possibility to design allosteric modulators with finely tuned pharmacological effects as the determinants of the receptor/ligand interaction are optimized.

6. Conclusions

Since the discovery of the first mGlu allosteric modulator in 1996, the field of mGlu allosteric modulation has seen a number of major advances. For the majority of subtypes, selective allosteric modulators have now been discovered. Positive, negative and neutral allosteric ligands have been identified for some subtypes, providing much needed pharmacological tools to probe the physiological roles of these important receptors. With the clinical validity of allosteric modulation of GPCRs as a therapeutic avenue being proven, allosteric modulators of mGlus have considerable promise as candidates for therapeutic intervention for a variety of psychiatric and neurological disorders. Much progress has also been made in our understanding of the locations of allosteric binding sites on these receptors. The studies reported to date suggest both common binding sites across the different subtypes that can be selectively targeted as well as evidence for the presence of multiple binding sites on a single subtype. With the growing number of GPCR templates, information-rich homology models can be developed in the absence of a crystal structure for the transmembrane region of a class C GPCR. As presented above homology models are successfully utilized to interpret mutagenesis-based studies, allowing 3D visualization of these regions of the receptor.

Studies of mGlus have also utilized homology models to manually dock ligand-based pharmacophore maps to interpret structure activity relationships of a particular chemical series (Noeske et al., 2007, 2009). In the future, the combination of ligand-based and receptor-based pharmacophores (Kratochwil et al., 2005; Radestock et al., 2008) is likely to aid in the identification of novel chemotypes and optimization of allosteric modulators to improve specificity and potency for use as therapeutic agents.

Appendix. Supplementary data

Supplementary data associated with this article can be found in the online version, at doi:10.1016/j.neuropharm.2010.07.007.

References

- Addex Pharma, 2010. ADX10059 Migraine Prevention Study. Available from:. In: ClinicalTrials.gov [Internet]. National Library of Medicine (US), Bethesda (MD) http://clinicaltrials.gov/show/NCT00820105 NLM Identifier: NCT00820105, 2000 (cited 2010 Jun 23).
- Alagarsamy, S., Marino, M.J., Rouse, S.T., Gereau, R.W.T., Heinemann, S.F., Conn, P.J., 1999. Activation of NMDA receptors reverses desensitization of mGlu5 in native and recombinant systems. Nat. Neurosci. 2, 234–240.
- Alagarsamy, S., Saugstad, J., Warren, L., Mansuy, I.M., Gereau, R.W.T., Conn, P.J., 2005. NMDA-induced potentiation of mGlu5 is mediated by activation of protein phosphatase 2B/calcineurin. Neuropharmacology 49 (Suppl. 1), 135–145.
- Alexander, G.M., Godwin, D.W., 2006. Metabotropic glutamate receptors as a strategic target for the treatment of epilepsy. Epilepsy Res. 71, 1–22.
- Ametamey, S.M., Treyer, V., Streffer, J., Wyss, M.T., Schmidt, M., Blagoev, M., Hintermann, S., Auberson, Y., Gasparini, F., Fischer, U.C., Buck, A., 2007. Human PET studies of metabotropic glutamate receptor subtype 5 with 11C-ABP688. J. Nucl. Med. 48 (2), 247–252.
- Anderson, J.J., Bradbury, M.J., Giracello, D.R., Chapman, D.F., Holtz, G., Roppe, J., King, C., Cosford, N.D., Varney, M.A., 2003. In vivo receptor occupancy of mGlu5 receptor antagonists using the novel radioligand [3H]3-methoxy-5-(pyridin-2ylethynyl)pyridine). Eur. J. Pharmacol. 473, 35–40.
- Anderson, J.J., Rao, S.P., Rowe, B., Giracello, D.R., Holtz, G., Chapman, D.F., Tehrani, L., Bradbury, M.J., Cosford, N.D., Varney, M.A., 2002. [3H]Methoxymethyl-3-[(2methyl-1,3-thiazol-4-yl)ethynyl]pyridine binding to metabotropic glutamate receptor subtype 5 in rodent brain: in vitro and in vivo characterization. J. Pharmacol. Exp. Ther. 303, 1044–1051.
- Annoura, H., Fukunaga, A., Uesugi, M., Tatsuoka, T., Horikawa, Y., 1996. A novel class of antagonists for metabotropic glutamate receptors, 7-(hydroxyimino)cyclopropa[b]chromen-1a-carboxylates. Bioorg. Med. Chem. Lett. 6, 763–766.
- Antony, J., Kellershohn, K., Mohr-Andra, M., Kebig, A., Prilla, S., Muth, M., Heller, E., Disingrini, T., Dallanoce, C., Bertoni, S., Schrobang, J., Trankle, C., Kostenis, E., Christopoulos, A., Holtje, H.D., Barocelli, E., De Amici, M., Holzgrabe, U., Mohr, K., 2009. Dualsteric GPCR targeting: a novel route to binding and signaling pathway selectivity. FASEB J. 23, 442–450.
- Anwyl, R., 1999. Metabotropic glutamate receptors: electrophysiological properties and role in plasticity. Brain Res. Brain Res. Rev. 29, 83–120.
 Attucci, S., Carla, V., Mannaioni, G., Moroni, F., 2001. Activation of type 5 metabo-
- Attucci, S., Carla, V., Mannaioni, G., Moroni, F., 2001. Activation of type 5 metabotropic glutamate receptors enhances NMDA responses in mice cortical wedges. Br. J. Pharmacol. 132, 799–806.
- Awad, H., Hubert, G.W., Smith, Y., Levey, A.I., Conn, P.J., 2000. Activation of metabotropic glutamate receptor 5 has direct excitatory effects and potentiates NMDA receptor currents in neurons of the subthalamic nucleus. J. Neurosci. 20, 7871–7879.
- Ayala, J.E., Chen, Y., Banko, J.L., Sheffler, D.J., Williams, R., Telk, A.N., Watson, N.L., Xiang, Z., Zhang, Y., Jones, P.J., Lindsley, C.W., Olive, M.F., Conn, P.J., 2009. mGlu5 positive allosteric modulators facilitate both hippocampal LTP and LTD and enhance spatial learning. Neuropsychopharmacology 34, 2057–2071.
- Baldwin, J.M., Schertler, G.F., Unger, V.M., 1997. An alpha-carbon template for the transmembrane helices in the rhodopsin family of G-protein-coupled receptors. J. Mol. Biol. 272, 144–164.
- Ballesteros, J., Palczewski, K., 2001. G protein-coupled receptor drug discovery: implications from the crystal structure of rhodopsin. Curr. Opin. Drug Discov. Devel. 4, 561–574.
- Ballesteros, J., Weinstein, H., 1995. Integrated methods for the construction of three dimensional models and computational probing of structure-function relations in G-protein coupled receptors. Methods Neurosci. 25, 366–428.
- Balschun, D., Zuschratter, W., Wetzel, W., 2006. Allosteric enhancement of metabotropic glutamate receptor 5 function promotes spatial memory. Neuroscience 142, 691–702.
- Battaglia, G., Busceti, C.L., Molinaro, G., Biagioni, F., Traficante, A., Nicoletti, F., Bruno, V., 2006. Pharmacological activation of mGlu4 metabotropic glutamate receptors reduces nigrostriatal degeneration in mice treated with 1-methyl-4phenyl-1,2,3,6-tetrahydropyridine. J. Neurosci. 26, 7222–7229.
- Baumann, C.A., Mu, L., Johannsen, S., Honer, M., Schubiger, P.A., Ametamey, S.M., 2010. Structure–activity relationships of fluorinated (E)-3-((6-Methylpyridin-2-

yl)ethynyl)cyclohex-2-enone-O-methyloxime (ABP688) derivatives and the discovery of a high affinity analogue as a potential candidate for imaging metabotropic glutamate receptors subtype 5 (mGluR5) with positron emission tomography (PET). J. Med. Chem. 53, 4009–4017.

- Bear, M.F., Dolen, G., Österweil, E., Nagarajan, N., 2008. Fragile X: translation in action. Neuropsychopharmacology 33, 84–87.
 Bellone, C., Luscher, C., Mameli, M., 2008. Mechanisms of synaptic depression
- Bellone, C., Luscher, C., Mameli, M., 2008. Mechanisms of synaptic depression triggered by metabotropic glutamate receptors. Cell Mol. Life Sci. 65, 2913–2923.
- Benneyworth, M.A., Xiang, Z., Smith, R.L., Garcia, E.E., Conn, P.J., Sanders-Bush, E., 2007. A selective positive allosteric modulator of metabotropic glutamate receptor subtype 2 blocks a hallucinogenic drug model of psychosis. Mol. Pharmacol. 72, 477–484.
- Berry-Kravis, E., Hessl, D., Coffey, S., Hervey, C., Schneider, A., Yuhas, J., Hutchison, J., Snape, M., Tranfaglia, M., Nguyen, D.V., Hagerman, R., 2009. A pilot open label, single dose trial of fenobam in adults with fragile X syndrome. J. Med. Genet. 46, 266–271.
- Bessis, A.S., Bertrand, H.O., Galvez, T., De Colle, C., Pin, J.P., Acher, F., 2000. Threedimensional model of the extracellular domain of the type 4a metabotropic glutamate receptor: new insights into the activation process. Protein Sci. 9, 2200–2209.
- Bessis, A.S., Rondard, P., Gaven, F., Brabet, I., Triballeau, N., Prezeau, L., Acher, F., Pin, J.P., 2002. Closure of the Venus flytrap module of mGlu8 receptor and the activation process: Insights from mutations converting antagonists into agonists. Proc. Natl. Acad. Sci. U.S.A. 99, 11097–11102.
- Beurrier, C., Lopez, S., Revy, D., Selvam, C., Goudet, C., Lherondel, M., Gubellini, P., Kerkerian-LeGoff, L., Acher, F., Pin, J.P., 2009. Electrophysiological and behavioral evidence that modulation of metabotropic glutamate receptor 4 with a new agonist reverses experimental parkinsonism. FASEB J. 23 (10), 3619–3628.
- Bhave, G., Nadin, B.M., Brasier, D.J., Glauner, K.S., Shah, R.D., Heinemann, S.F., Karim, F., Gereau, R.W.T., 2003. Membrane topology of a metabotropic glutamate receptor. J. Biol. Chem. 278, 30294–30301.
- Black, J.W., Leff, P., 1983. Operational models of pharmacological agonism. Proc. R. Soc. Lond. B Biol. Sci. 220, 141–162.
- Brauner-Osborne, H., Jensen, A.A., Krogsgaard-Larsen, P., 1999. Interaction of CPCCOEt with a chimeric mGlu1b and calcium sensing receptor. Neuroreport 10, 3923–3925.Campbell, U.C., Lalwani, K., Hernandez, L., Kinney, G.G., Conn, P.J., Bristow, L.J., 2004.
- Campbell, U.C., Lalwani, K., Hernandez, L., Kinney, G.G., Conn, P.J., Bristow, L.J., 2004. The mGluos antagonist 2-methyl-6-(phenylethynyl)-pyridine (MPEP) potentiates PCP-induced cognitive deficits in rats. Psychopharmacology (Berl) 175, 310–318.
- Carroll, F.Y., Stolle, A., Beart, P.M., Voerste, A., Brabet, I., Mauler, F., Joly, C., Antonicek, H., Bockaert, J., Muller, T., Pin, J.P., Prezeau, L., 2001. BAY36-7620: a potent non-competitive mGlu1 receptor antagonist with inverse agonist activity. Mol. Pharmacol. 59, 965–973.
- Cartmell, J., Monn, J.A., Schoepp, D.D., 1999. The metabotropic glutamate 2/3 receptor agonists LY354740 and LY379268 selectively attenuate phencyclidine versus d-amphetamine motor behaviors in rats. J. Pharmacol. Exp. Ther. 291, 161–170.
- Chen, Y., Goudet, C., Pin, J.P., Conn, P.J., 2008. N-{4-Chloro-2-[(1,3-dioxo-1,3-dihydro-2H-isoindol-2-yl]methyl]phenyl]-2-hy droxybenzamide (CPPHA) acts through a novel site as a positive allosteric modulator of group 1 metabotropic glutamate receptors. Mol. Pharmacol. 73, 909–918.
- Chen, Y., Nong, Y., Goudet, C., Hemstapat, K., de Paulis, T., Pin, J.P., Conn, P.J., 2007. Interaction of novel positive allosteric modulators of metabotropic glutamate receptor 5 with the negative allosteric antagonist site is required for potentiation of receptor responses. Mol. Pharmacol. 71, 1389–1398.
- Cherezov, V., Rosenbaum, D.M., Hanson, M.A., Rasmussen, S.G., Thian, F.S., Kobilka, T.S., Choi, H.J., Kuhn, P., Weis, W.I., Kobilka, B.K., Stevens, R.C., 2007. High-resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor. Science 318, 1258–1265.
- Chojnacka-Wojcik, E., Tatarczynska, E., Pilc, A., 1997. The anxiolytic-like effect of metabotropic glutamate receptor antagonists after intrahippocampal injection in rats. Eur. J. Pharmacol. 319, 153–156.
- Conn, P.J., Battaglia, G., Marino, M.J., Nicoletti, F., 2005. Metabotropic glutamate receptors in the basal ganglia motor circuit. Nat. Rev. Neurosci. 6, 787–798.
- Conn, P.J., Christopoulos, A., Lindsley, C.W., 2009b. Allosteric modulators of GPCRs: a novel approach for the treatment of CNS disorders. Nat. Rev. Drug Discov. 8, 41–54.
- Conn, P.J., Lindsley, C.W., Jones, C.K., 2009a. Activation of metabotropic glutamate receptors as a novel approach for the treatment of schizophrenia. Trends Pharmacol. Sci. 30, 25–31.
- Conn, P.J., Pin, J.P., 1997. Pharmacology and functions of metabotropic glutamate receptors. Annu. Rev. Pharmacol. Toxicol. 37, 205–237.
- Conn, P.J., Tamminga, C., Schoepp, D.D., Lindsley, C., 2008. Schizophrenia: moving beyond monoamine antagonists. Mol. Interv. 8, 99–107.
- Cosford, N.D., Tehrani, L., Roppe, J., Schweiger, E., Smith, N.D., Anderson, J., Bristow, L., Brodkin, J., Jiang, X., McDonald, I., Rao, S., Washburn, M., Varney, M.A., 2003a. 3-[(2-Methyl-1,3-thiazol-4-yl)ethynyl]-pyridine: a potent and highly selective metabotropic glutamate subtype 5 receptor antagonist with anxiolytic activity. J. Med. Chem. 46, 204–206.
- Cosford, N.D., Roppe, J., Tehrani, L., Schweiger, E.J., Seiders, T.J., Chaudary, A., Rao, S., Varney, M.A., 2003b. [3H]-methoxymethyl-MTEP and [3H]-methoxy-PEPy: potent and selective radioligands for the metabotropic glutamate subtype 5 (mGlu5) receptor. Bioorg. Med. Chem. Lett. 13, 351–354.

Coutinho, V., Knopfel, T., 2002. Metabotropic glutamate receptors: electrical and chemical signaling properties. Neuroscientist 8, 551–561.

- Crawford, D.C., Acuna, J.M., Sherman, S.L., 2001. FMR1 and the fragile X syndrome: human genome epidemiology review. Genet. Med. 3, 359–371.
- Cube, R.V., Vernier, J.M., Hutchinson, J.H., Gardner, M.F., James, J.K., Rowe, B.A., Schaffhauser, H., Daggett, L., Pinkerton, A.B., 2005. 3-(2-Ethoxy-4-{4-[3hydroxy-2-methyl-4-(3-methylbutanoyl)phenoxy]butoxy] phenyl)propanoic acid: a brain penetrant allosteric potentiator at the metabotropic glutamate receptor 2 (mGlu2). Bioorg, Med. Chem. Lett. 15, 2389–2393.
- Cuomo, D., Martella, G., Barabino, E., Platania, P., Vita, D., Madeo, G., Selvam, C., Goudet, C., Oueslati, N., Pin, J.P., Acher, F., Pisani, A., Beurrier, C., Melon, C., Kerkerian-Le Goff, L., Gubellini, P., 2009. Metabotropic glutamate receptor subtype 4 selectively modulates both glutamate and GABA transmission in the striatum: implications for Parkinson's disease treatment. J. Neurochem. 109, 1096–1105.
- de Paulis, T., Hemstapat, K., Chen, Y., Zhang, Y., Saleh, S., Alagille, D., Baldwin, R.M., Tamagnan, G.D., Conn, P.J., 2006. Substituent effects of N-(1,3-diphenyl-1Hpyrazol-5-yl)benzamides on positive allosteric modulation of the metabotropic glutamate-5 receptor in rat cortical astrocytes. J. Med. Chem. 49, 3332–3344.
- Doherty, A.J., Palmer, M.J., Bortolotto, Z.A., Hargreaves, A., Kingston, A.E., Ornstein, P.L., Schoepp, D.D., Lodge, D., Collingridge, G.L., 2000. A novel, competitive mGlu(5) receptor antagonist (LY344545) blocks DHPG-induced potentiation of NMDA responses but not the induction of LTP in rat hippocampal slices. Br. J. Pharmacol. 131, 239–244.
- Doherty, J.J., Alagarsamy, S., Bough, K.J., Conn, P.J., Dingledine, R., Mott, D.D., 2004. Metabotropic glutamate receptors modulate feedback inhibition in a developmentally regulated manner in rat dentate gyrus. J. Physiol. 561, 395–401.
- Dolen, G., Osterweil, E., Rao, B.S., Smith, G.B., Auerbach, B.D., Chattarji, S., Bear, M.F., 2007. Correction of fragile X syndrome in mice. Neuron 56, 955–962.
- Dorr, P., Westby, M., Dobbs, S., Griffin, P., Irvine, B., Macartney, M., Mori, J., Rickett, G., Smith-Burchnell, C., Napier, C., Webster, R., Armour, D., Price, D., Stammen, B., Wood, A., Perros, M., 2005. Maraviroc (UK-427,857), a potent, orally bioavailable, and selective small-molecule inhibitor of chemokine receptor CCR5 with broad-spectrum anti-human immunodeficiency virus type 1 activity. Antimicrob. Agents Chemother. 49, 4721–4732.
- Ehlers, M.D., 1999. Synapse structure: glutamate receptors connected by the shanks. Curr. Biol. 9, R848–R850.
- Ehlert, F.J., 1988. Estimation of the affinities of allosteric ligands using radioligand binding and pharmacological null methods. Mol. Pharmacol 33, 187–194.
- Eli Lilly, 2010. A long-term, open-label, study on Schizophrenia. In: ClinicalTrials.gov [Internet]. National Library of Medicine (US), Bethesda (MD) Available from: http://clinicaltrials.gov/show/NCT01129674 NLM Identifier: NCT01129674, 2000 (cited 2010 Jun 23).
- Ferraguti, F., Shigemoto, R., 2006. Metabotropic glutamate receptors. Cell Tissue Res. 326, 483–504.
- Friedmann, C.T.H., Davis, L.J., Ciccone, P.E., Rubin, R.T., 1980. Phase II double blind controlled study of a new anxiolytic, fenobam (McN-3377) vs placebo. Curr. Ther. Res. 27, 144–151.
- Flor, P.J., Maj, M., Dragic, Z., Bruno, V., Battaglia, G., Inderbitzin, W., van der Putten, H., Kuhn, R., Nicoletti, F., Gasparini, F., 2002. Positive allosteric modulators of metabotropic glutamate receptor subtype 4: pharmacological and molecular charaterization. Neuropharmacology 43, 286.
- Fukuda, J., Suzuki, G., Kimura, T., Nagatomi, Y., Ito, S., Kawamoto, H., Ozaki, S., Ohta, H., 2009. Identification of a novel transmembrane domain involved in the negative modulation of mGlu1 using a newly discovered allosteric mGlu1 antagonist, 3-cyclohexyl-5-fluoro-6-methyl-7-(2-morpholin-4-ylethoxy)-4Hchromen-4-one. Neuropharmacology 57, 438–445.
- Galandrin, S., Oligny-Longpre, G., Bouvier, M., 2007. The evasive nature of drug efficacy: implications for drug discovery. Trends Pharmacol. Sci. 28, 423–430.
- Galici, R., Echemendia, N.G., Rodriguez, A.L., Conn, P.J., 2005. A selective allosteric potentiator of metabotropic glutamate (mGlu) 2 receptors has effects similar to an orthosteric mGlu2/3 receptor agonist in mouse models predictive of antipsychotic activity. J. Pharmacol. Exp. Ther. 315, 1181–1187.
- Galici, R., Jones, C.K., Hemstapat, K., Nong, Y., Echemendia, N.G., Williams, L.C., de Paulis, T., Conn, P.J., 2006. Biphenyl-indanone A, a positive allosteric modulator of the metabotropic glutamate receptor subtype 2, has antipsychotic- and anxiolytic-like effects in mice. J. Pharmacol. Exp. Ther. 318, 173–185.
- Garber, K.B., Visootsak, J., Warren, S.T., 2008. Fragile X syndrome. Eur. J. Hum. Genet. 16, 666–672.
- Gaspar, P.A., Bustamante, M.L., Silva, H., Aboitiz, F., 2009. Molecular mechanisms underlying glutamatergic dysfunction in schizophrenia: therapeutic implications. J. Neurochem. 111, 891–900.
- Gasparini, F., Andres, H., Flor, P.J., Heinrich, M., Inderbitzin, W., Lingenhohl, K., Muller, H., Munk, V.C., Omilusik, K., Stierlin, C., Stoehr, N., Vranesic, I., Kuhn, R., 2002. [(3)H]-M-MPEP, a potent, subtype-selective radioligand for the metabotropic glutamate receptor subtype 5. Bioorg. Med. Chem. Lett. 12, 407–409.
- Gasparini, F., Floersheim, P., Flor, P.J., Heinrich, M., Inderbitzin, W., Ott, D., Pagano, A., Stierlin, C., Stoehr, N., Vranesic, I., Kuhn, R., 2001. Discovery and characterization of non-competitive antagonists of group I metabotropic glutamate receptors. Farmaco 56, 95–99.
- Gasparini, F., Lingenhohl, K., Stoehr, N., Flor, P.J., Heinrich, M., Vranesic, I., Biollaz, M., Allgeier, H., Heckendorn, R., Urwyler, S., Varney, M.A., Johnson, E.C., Hess, S.D., Rao, S.P., Sacaan, A.I., Santori, E.M., Velicelebi, G., Kuhn, R., 1999. 2-Methyl-6-(phenylethynyl)-pyridine (MPEP), a potent, selective and systemically active mGlu5 receptor antagonist. Neuropharmacology 38, 1493–1503.

- Gass, J.T., Olive, M.F., 2009. Positive allosteric modulation of mGlu5 receptors facilitates extinction of a cocaine contextual memory. Biol. Psychiatry 65, 717–720.
- Ginovart, N., Wilson, A.A., Hussey, D., Houle, S., Kapur, S., 2009. D2-Receptor upregulation is dependent upon temporal course of D2-occupancy: a longitudinal [11C]-Raclopride PET study in cats. Neuropsychopharmacology 34, 662–671.
- Goldberg, M.E., Salama, A.I., Patel, J.B., Malick, J.B., 1983. Novel non-benzodiazepine anxiolytics. Neuropharmacology 22, 1499–1504.
- Goudet, C., Gaven, F., Kniazeff, J., Vol, C., Liu, J., Cohen-Gonsaud, M., Acher, F., Prezeau, L., Pin, J.P., 2004. Heptahelical domain of metabotropic glutamate receptor 5 behaves like rhodopsin-like receptors. Proc. Natl. Acad. Sci. U.S.A. 101, 378–383.
- Govek, S.P., Bonnefous, C., Hutchinson, J.H., Kamenecka, T., McQuiston, J., Pracitto, R., Zhao, L.X., Gardner, M.F., James, J.K., Daggett, L.P., Rowe, B.A., Schaffhauser, H., Bristow, L.J., Campbell, U.C., Rodriguez, D.E., Vernier, J.M., 2005. Benzazoles as allosteric potentiators of metabotropic glutamate receptor 2 (mGlu2): efficacy in an animal model for schizophrenia. Bioorg. Med. Chem. Lett. 15, 4068–4072.
- Gravius, A., Pietraszek, M., Schäfer, D., Schmidt, W.J., Danysz, W., 2005. Effects of mGlu1 and mGlu5 receptor antagonists on negatively reinforced learning. Behav. Pharmacol. 16 (2), 113–121.
- Hall, D.A., 2000. Modeling the functional effects of allosteric modulators at pharmacological receptors: an extension of the two-state model of receptor activation. Mol. Pharmacol. 58, 1412–1423.
- Hayashi, Y., Sekiyama, N., Nakanishi, S., Jane, D.E., Sunter, D.C., Birse, E.F., Udvarhelyi, P.M., Watkins, J.C., 1994. Analysis of agonist and antagonist activities of phenylglycine derivatives for different cloned metabotropic glutamate receptor subtypes. J. Neurosci. 14, 3370–3377.
- Hemstapat, K., Da Costa, H., Nong, Y., Brady, A.E., Luo, Q., Niswender, C.M., Tamagnan, G.D., Conn, P.J., 2007. A novel family of potent negative allosteric modulators of group II metabotropic glutamate receptors. J. Pharmacol. Exp. Ther. 322, 254–264.
- Hemstapat, K., de Paulis, T., Chen, Y., Brady, A.E., Grover, V.K., Alagille, D., Tamagnan, G.D., Conn, P.J., 2006. A novel class of positive allosteric modulators of metabotropic glutamate receptor subtype 1 interact with a site distinct from that of negative allosteric modulators. Mol. Pharmacol. 70, 616–626.
- Holst, B., Frimurer, T.M., Mokrosinski, J., Halkjaer, T., Cullberg, K.B., Underwood, C.R., Schwartz, T.W., 2009. Overlapping binding site for the endogenous agonist, small-molecule agonists, and ago-allosteric modulators on the ghrelin receptor. Mol. Pharmacol. 75, 44–59.
- Huber, K.M., Gallagher, S.M., Warren, S.T., Bear, M.F., 2002. Altered synaptic plasticity in a mouse model of fragile X mental retardation. Proc. Natl. Acad. Sci. U.S.A. 99, 7746–7750.
- Itil, T.M., Seaman, B.A., Huque, M., Mukhopadhyay, S., Blasucci, D.N.K.T., Ciccone, P.E., 1978. The clinical and quantitative EEG effects and plasma levels of fenobam (McN-3377) in subjects with anxiety: an open rising dose tolerance and efficacy study. Curr. Ther. Res., 708–724.
- Jaakola, V.P., Griffith, M.T., Hanson, M.A., Cherezov, V., Chien, E.Y., Lane, J.R., Ijzerman, A.P., Stevens, R.C., 2008. The 2.6 angstrom crystal structure of a human A2A adenosine receptor bound to an antagonist. Science 322, 1211–1217.
- Johnson, K.A., Conn, P.J., Niswender, C.M., 2009. Glutamate receptors as therapeutic targets for Parkinson's disease. CNS Neurol. Disord. Drug Targets 8, 475–491.
- Johnson, M.P., Baez, M., Jagdmann Jr., G.E., Britton, T.C., Large, T.H., Callagaro, D.O., Tizzano, J.P., Monn, J.A., Schoepp, D.D., 2003. Discovery of allosteric potentiators for the metabotropic glutamate 2 receptor: synthesis and subtype selectivity of N-(4-(2-methoxyphenoxy)phenyl)-N-(2,2,2ylmethylamine. J. Med. Chem. 46, 3189–3192.
- Johnson, M.P., Barda, D., Britton, T.C., Emkey, R., Hornback, W.J., Jagdmann, G.E., McKinzie, D.L., Nisenbaum, E.S., Tizzano, J.P., Schoepp, D.D., 2005. Metabotropic glutamate 2 receptor potentiators: receptor modulation, frequency-dependent synaptic activity, and efficacy in preclinical anxiety and psychosis model(s). Psychopharmacology (Berl) 179, 271–283.
- Jones, C.K., Brady, A.E., Davis, A.A., Xiang, Z., Bubser, M., Tantawy, M.N., Kane, A.S., Bridges, T.M., Kennedy, J.P., Bradley, S.R., Peterson, T.E., Ansari, M.S., Baldwin, R.M., Kessler, R.M., Deutch, A.Y., Lah, J.J., Levey, A.I., Lindsley, C.W., Conn, P.J., 2008. Novel selective allosteric activator of the M1 muscarinic acetylcholine receptor regulates amyloid processing and produces antipsychotic-like activity in rats. J. Neurosci. 28, 10422–10433.
- Kenakin, T., 2007. Functional selectivity through protean and biased agonism: who steers the ship? Mol. Pharmacol. 72, 1393–1401.
- Keywood, C., Wakefield, M., Tack, J., 2009. A proof-of-concept study evaluating the effect of ADX10059, a metabotropic glutamate receptor-5 negative allosteric modulator, on acid exposure and symptoms in gastro-oesophageal reflux disease. Gut 58 (9), 1192–1199.
- Kinney, G.G., O'Brien, J.A., Lemaire, W., Burno, M., Bickel, D.J., Clements, M.K., Chen, T.B., Wisnoski, D.D., Lindsley, C.W., Tiller, P.R., Smith, S., Jacobson, M.A., Sur, C., Duggan, M.E., Pettibone, D.J., Conn, P.J., Williams Jr., D.L., 2005. A novel selective positive allosteric modulator of metabotropic glutamate receptor subtype 5 has in vivo activity and antipsychotic-like effects in rat behavioral models. J. Pharmacol. Exp. Ther. 313, 199–206.
- Knoflach, F., Mutel, V., Jolidon, S., Kew, J.N., Malherbe, P., Vieira, E., Wichmann, J., Kemp, J.A., 2001. Positive allosteric modulators of metabotropic glutamate 1 receptor: characterization, mechanism of action, and binding site. Proc. Natl. Acad. Sci. U.S.A. 98, 13402–13407.
- Kola, I., Landis, J., 2004. Can the pharmaceutical industry reduce attrition rates? Nat. Rev. Drug Discov. 3, 711–715.

- Kratochwil, N.A., Malherbe, P., Lindemann, L., Ebeling, M., Hoener, M.C., Muhlemann, A., Porter, R.H., Stahl, M., Gerber, P.R., 2005. An automated system for the analysis of G protein-coupled receptor transmembrane binding pockets: alignment, receptor-based pharmacophores, and their application. J. Chem. Inf. Model 45, 1324–1336.
- Krystal, J.H., Abi-Saab, W., Perry, E., D'Souza, D.C., Liu, N., Gueorguieva, R., McDougall, L., Hunsberger, T., Belger, A., Levine, L., Breier, A., 2005. Preliminary evidence of attenuation of the disruptive effects of the NMDA glutamate receptor antagonist, ketamine, on working memory by pretreatment with the group II metabotropic glutamate receptor agonist, LY354740, in healthy human subjects. Psychopharmacology (Berl) 179, 303–309.
- Kunishima, N., Shimada, Y., Tsuji, Y., Sato, T., Yamamoto, M., Kumasaka, T., Nakanishi, S., Jingami, H., Morikawa, K., 2000. Structural basis of glutamate recognition by a dimeric metabotropic glutamate receptor. Nature 407, 971–977.
- Langmead, C.J., Fry, V.A., Forbes, I.T., Branch, C.L., Christopoulos, A., Wood, M.D., Herdon, H.J., 2006. Probing the molecular mechanism of interaction between 4– n-butyl-1-[4-(2-methylphenyl)-4-oxo-1-butyl]-piperidine (AC-42) and the muscarinic M(1) receptor: direct pharmacological evidence that AC-42 is an allosteric agonist. Mol. Pharmacol. 69, 236–246.
- Lavreysen, H., Janssen, C., Bischoff, F., Langlois, X., Leysen, J.E., Lesage, A.S., 2003. [3H]R214127: a novel high-affinity radioligand for the mGlu1 receptor reveals a common binding site shared by multiple allosteric antagonists. Mol. Pharmacol. 63, 1082–1093.
- Lazareno, S., Dolezal, V., Popham, A., Birdsall, N.J., 2004. Thiochrome enhances acetylcholine affinity at muscarinic M4 receptors: receptor subtype selectivity via cooperativity rather than affinity. Mol. Pharmacol. 65, 257–266.
- Leach, K., Sexton, P.M., Christopoulos, A., 2007. Allosteric GPCR modulators: taking advantage of permissive receptor pharmacology. Trends Pharmacol. Sci. 28, 382–389.
- Lebois, E.P., Bridges, T.M., Lewis, L.M., Dawson, E.S., Kane, A.S., Xiang, Z., Jadhav, S.B., Yin, H., Kennedy, J.P., Meiler, J., Niswender, C.M., Jones, C.K., Conn, P.J., Weaver, C.D., Lindsley, C., 2010. Discovery and characterization of novel subtype-selective allosteric agonists for the investigation of M1 receptor function in the central nervous system. ACS Chem. Neurosci. 1, 104–121.
- Lecourtier, L., Homayoun, H., Tamagnan, G., Moghaddam, B., 2007. Positive allosteric modulation of metabotropic glutamate 5 (mGlu5) receptors reverses N-Methylp-aspartate antagonist-induced alteration of neuronal firing in prefrontal cortex. Biol Psychiatry 62, 739–746.
- Lee, H.G., Zhu, X., O'Neill, M.J., Webber, K., Casadesus, G., Marlatt, M., Raina, A.K., Perry, G., Smith, M.A., 2004. The role of metabotropic glutamate receptors in Alzheimer's disease. Acta Neurobiol. Exp. (Wars) 64, 89–98.
- Lee, H.J., Mun, H.C., Lewis, N.C., Crouch, M.F., Culverston, E.L., Mason, R.S., Conigrave, A.D., 2007. Allosteric activation of the extracellular Ca2+-sensing receptor by 1-amino acids enhances ERK1/2 phosphorylation. Biochem. J. 404, 141–149.
- Lindberg, J.S., Culleton, B., Wong, G., Borah, M.F., Clark, R.V., Shapiro, W.B., Roger, S.D., Husserl, F.E., Klassen, P.S., Guo, M.D., Albizem, M.B., Coburn, J.W., 2005. Cinacalcet HCl, an oral calcimimetic agent for the treatment of secondary hyperparathyroidism in hemodialysis and peritoneal dialysis: a randomized, double-blind, multicenter study. J. Am. Soc. Nephrol. 16, 800–807.
- Lindsley, C.W., Wisnoski, D.D., Leister, W.H., O'Brien, J.A., Lemaire, W., Williams Jr., D.L., Burno, M., Sur, C., Kinney, G.G., Pettibone, D.J., Tiller, P.R., Smith, S., Duggan, M.E., Hartman, G.D., Conn, P.J., Huff, J.R., 2004. Discovery of positive allosteric modulators for the metabotropic glutamate receptor subtype 5 from a series of N-(1,3diphenyl-1H- pyrazol-5-yl)benzamides that potentiate receptor function in vivo. J. Med. Chem. 47, 5825–5828.
- Lindsley, C.W., Zhao, Z., Leister, W.H., O'Brien, J., Lemaire, W., Williams Jr., D.L., Chen, T.B., Chang, R.S., Burno, M., Jacobson, M.A., Sur, C., Kinney, G.G., Pettibone, D.J., Tiller, P.R., Smith, S., Tsou, N.N., Duggan, M.E., Conn, P.J., Hartman, G.D., 2006. Design, synthesis, and in vivo efficacy of glycine transporter-1 (GlyT1) inhibitors derived from a series of [4-phenyl-1-(propylsulfonyl)piperidin-4-yl]methyl benzamides. Chem. Med. Chem. 1, 807–811.
- Litschig, S., Gasparini, F., Rueegg, D., Stoehr, N., Flor, P.J., Vranesic, I., Prezeau, L., Pin, J.P., Thomsen, C., Kuhn, R., 1999. CPCCOEt, a noncompetitive metabotropic glutamate receptor 1 antagonist, inhibits receptor signaling without affecting glutamate binding. Mol. Pharmacol. 55, 453–461.
- Liu, F., Grauer, S., Kelley, C., Navarra, R., Graf, R., Zhang, G., Atkinson, P.J., Popiolek, M., Wantuch, C., Khawaja, X., Smith, D., Olsen, M., Kouranova, E., Lai, M., Pruthi, F., Pulicicchio, C., Day, M., Gilbert, A., Pausch, M.H., Brandon, N.J., Beyer, C.E., Comery, T.A., Logue, S., Rosenzweig-Lipson, S., Marquis, K.L., 2008. ADX47273 [S-(4-fluoro-phenyl)-{3-[3-(4-fluoro-phenyl)-+[1,24]-oxadiazo1-5yl]-piper idin-1-yl]-methanone]: a novel metabotropic glutamate receptor 5selective positive allosteric modulator with preclinical antipsychotic-like and procognitive activities. J. Pharmacol. Exp. Ther. 327, 827–839.
- Liu, X., He, Q., Studholme, D.J., Wu, Q., Liang, S., Yu, L., 2004. NCD3G: a novel ninecysteine domain in family 3 GPCRs. Trends Biochem. Sci. 29, 458–461.
- Lorrain, D.S., Schaffhauser, H., Campbell, U.C., Baccei, C.S., Correa, L.D., Rowe, B., Rodriguez, D.E., Anderson, J.J., Varney, M.A., Pinkerton, A.B., Vernier, J.M., Bristow, L.J., 2003. Group II mGlu receptor activation suppresses norepinephrine release in the ventral hippocampus and locomotor responses to acute ketamine challenge. Neuropsychopharmacology 28, 1622–1632.
- Macek, T.A., Winder, D.G., Gereau, R.W.T., Ladd, C.O., Conn, P.J., 1996. Differential involvement of group II and group III mGlus as autoreceptors at lateral and medial perforant path synapses. J. Neurophysiol. 76, 3798–3806.

- MacInnes, N., Duty, S., 2008. Group III metabotropic glutamate receptors act as hetero-receptors modulating evoked GABA release in the globus pallidus in vivo. Eur. J. Pharmacol. 580, 95–99.
- Maj, M., Bruno, V., Dragic, Z., Yamamoto, R., Battaglia, G., Inderbitzin, W., Stoehr, N., Stein, T., Gasparini, F., Vranesic, I., Kuhn, R., Nicoletti, F., Flor, P.J., 2003. (-)-PHCCC, a positive allosteric modulator of mGlu4: characterization, mechanism of action, and neuroprotection. Neuropharmacology 45, 895–906.
- Malherbe, P., Kratochwil, N., Knoflach, F., Zenner, M.T., Kew, J.N., Kratzeisen, C., Maerki, H.P., Adam, G., Mutel, V., 2003a. Mutational analysis and molecular modeling of the allosteric binding site of a novel, selective, noncompetitive antagonist of the metabotropic glutamate 1 receptor. J. Biol. Chem. 278, 8340–8347.
- Malherbe, P., Kratochwil, N., Zenner, M.T., Piussi, J., Diener, C., Kratzeisen, C., Fischer, C., Porter, R.H., 2003b. Mutational analysis and molecular modeling of the binding pocket of the metabotropic glutamate 5 receptor negative modulator 2-methyl-6-(phenylethynyl)-pyridine. Mol. Pharmacol. 64, 823–832.
- Malherbe, P., Kratochwil, N., Muhlemann, A., Zenner, M.-T., Fischer, C., Stahl, M., Gerber, P.R., Jaeschke, G., Porter, R.H.P., 2006. Comparison of the binding pockets of two chemically unrelated allosteric antagonists of the mGlu5 receptor and identification of crucial residues involved in the inverse agonism of MPEP. J. Neurochem. 98, 601–615.
- Mannaioni, G., Marino, M.J., Valenti, O., Traynelis, S.F., Conn, P.J., 2001. Metabotropic glutamate receptors 1 and 5 differentially regulate CA1 pyramidal cell function. J. Neurosci. 21, 5925–5934.
- Marino, M.J., Conn, P.J., 2002. Direct and indirect modulation of the N-methyl D-aspartate receptor. Curr. Drug Targets CNS Neurol. Disord. 1, 1–16.
- Marino, M.J., Conn, P.J., 2006. Glutamate-based therapeutic approaches: allosteric modulators of metabotropic glutamate receptors. Curr. Opin. Pharmacol. 6, 98–102.
- Marino, M.J., Williams Jr., D.L., O'Brien, J.A., Valenti, O., McDonald, T.P., Clements, M.K., Wang, R., DiLella, A.G., Hess, J.F., Kinney, G.G., Conn, P.J., 2003. Allosteric modulation of group III metabotropic glutamate receptor 4: a potential approach to Parkinson's disease treatment. Proc. Natl. Acad. Sci. U.S.A. 100, 13668–13673.
- Mathiesen, J.M., Svendsen, N., Brauner-Osborne, H., Thomsen, C., Ramirez, M.T., 2003. Positive allosteric modulation of the human metabotropic glutamate receptor 4 (hmGlu4) by SIB-1893 and MPEP. Br. J. Pharmacol. 138, 1026–1030.
- Matsui, T., Kita, H., 2003. Activation of group III metabotropic glutamate receptors presynaptically reduces both GABAergic and glutamatergic transmission in the rat globus pallidus. Neuroscience 122, 727–737.
- May, L.T., Avlani, V.A., Langmead, C.J., Herdon, H.J., Wood, M.D., Sexton, P.M., Christopoulos, A., 2007a. Structure-function studies of allosteric agonism at M2 muscarinic acetylcholine receptors. Mol. Pharmacol. 72, 463–476.
- May, L.T., Leach, K., Sexton, P.M., Christopoulos, A., 2007b. Allosteric modulation of g protein-coupled receptors. Annu. Rev. Pharmacol. Toxicol. 47, 1–51.
- Miedlich, S.U., Gama, L., Seuwen, K., Wolf, R.M., Breitwieser, G.E., 2004. Homology modeling of the transmembrane domain of the human calcium sensing receptor and localization of an allosteric binding site. J. Biol. Chem. 279, 7254–7263.
- Mitsukawa, K., Yamamoto, R., Ofner, S., Nozulak, J., Pescott, O., Lukic, S., Stoehr, N., Mombereau, C., Kuhn, R., McAllister, K.H., van der Putten, H., Cryan, J.F., Flor, P.J., 2005. A selective metabotropic glutamate receptor 7 agonist: activation of receptor signaling via an allosteric site modulates stress parameters in vivo. Proc. Natl. Acad. Sci. U.S.A. 102, 18712–18717.
- Moghaddam, B., Adams, B.W., 1998. Reversal of phencyclidine effects by a group II metabotropic glutamate receptor agonist in rats. Science 281, 1349–1352.
- Mohler, H., Fritschy, J.M., Rudolph, U., 2002. A new benzodiazepine pharmacology. J. Pharmacol. Exp. Ther. 300, 2–8.
- Muhlemann, A., Ward, N.A., Kratochwil, N., Diener, C., Fischer, C., Stucki, A., Jaeschke, G., Malherbe, P., Porter, R.H., 2006. Determination of key amino acids implicated in the actions of allosteric modulation by 3,3'-difluorobenzaldazine on rat mGlu5 receptors. Eur. J. Pharmacol. 529, 95–104.
- Muto, T., Tsuchiya, D., Morikawa, K., Jingami, H., 2007. Expression, purification, crystallization and preliminary X-ray analysis of the ligand-binding domain of metabotropic glutamate receptor 7. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 63, 627–630.
- Natesan, S., Reckless, G.E., Nobrega, J.N., Fletcher, P.J., Kapur, S., 2005. Dissociation between in vivo occupancy and functional antagonism of dopamine D2 receptors: comparing aripiprazole to other antipsychotics in animal models. Neuropsychopharmacology 31, 1854–1863.
- Nawaratne, V., Leach, K., Suratman, N., Loiacono, R.E., Felder, C.C., Armbruster, B.N., Roth, B.L., Sexton, P.M., Christopoulos, A., 2008. New insights into the function of M4 muscarinic acetylcholine receptors gained using a novel allosteric modulator and a DREADD (designer receptor exclusively activated by a designer drug). Mol. Pharmacol. 74, 1119–1131.
- Nicholls, R.E., Zhang, X.L., Bailey, C.P., Conklin, B.R., Kandel, E.R., Stanton, P.K., 2006. mGlu2 acts through inhibitory Galpha subunits to regulate transmission and long-term plasticity at hippocampal mossy fiber-CA3 synapses. Proc. Natl. Acad. Sci. U.S.A. 103, 6380–6385.
- Niswender, C.M., Conn, P.J., 2010. Metabotropic glutamate receptors: physiology, pharmacology, and disease. Annu. Rev. Pharmacol. Toxicol. 50, 295–322.
- Niswender, C.M., Johnson, K.A., Miller, N.R., Ayala, J.E., Luo, Q., Williams, R., Saleh, S., Orton, D., Weaver, C.D., Conn, P.J., 2010. Context-dependent pharmacology exhibited by negative allosteric modulators of metabotropic glutamate receptor 7. Mol. Pharmacol. 77, 459–468.
- Niswender, C.M., Johnson, K.A., Weaver, C.D., Jones, C.K., Xiang, Z., Luo, Q., Rodriguez, A.L., Marlo, J.E., de Paulis, T., Thompson, A.D., Days, E.L.,

Nalywajko, T., Austin, C.A., Williams, M.B., Ayala, J.E., Williams, R., Lindsley, C.W., Conn, P.J., 2008. Discovery, characterization, and antiparkinsonian effect of novel positive allosteric modulators of metabotropic glutamate receptor 4. Mol. Pharmacol. 74, 1345–1358.

- Noeske, T., Jirgensons, A., Starchenkovs, I., Renner, S., Jaunzeme, I., Trifanova, D., Hechenberger, M., Bauer, T., Kauss, V., Parsons, C.G., Schneider, G., Weil, T., 2007. Virtual screening for selective allosteric mGlu1 antagonists and structureactivity relationship investigations for coumarine derivatives. Chem. Med. Chem. 2, 1763–1773.
- Noeske, T., Trifanova, D., Kauss, V., Renner, S., Parsons, C.G., Schneider, G., Weil, T., 2009. Synergism of virtual screening and medicinal chemistry: identification and optimization of allosteric antagonists of metabotropic glutamate receptor 1. Bioorg. Med. Chem. 17, 5708–5715.
- Novartis, 2010a. Efficacy, safety and tolerability of AFQ056 in Fragile X Patients. In: ClinicalTrials.gov [Internet]. National Library of Medicine (US), Bethesda (MD) Available from: http://clinicaltrials.gov/ct2/show/NCT00718341 NLM Identifier: NCT00718341, 2000 (cited 2010 Jun 23).
- Novartis, 2010b. Efficacy and safety of AFQ056 in reducing L-dopa induced dyskinesias in Parkinson's Disease patients, and safety in combination With L-dopa. In: ClinicalTrials.gov [Internet]. National Library of Medicine (US), Bethesda (MD) Available from: http://clinicaltrials.gov/show/NCT00582673 NLM Identifier: NCT00582673, 2000 (cited 2010 Jun 23).
- Novartis, 2010c. Efficacy and Safety of AFQ056 in Reducing L-dopa Induced Dyskinesias in Parkinson's Disease Patients. In: ClinicalTrials.gov [Internet]. National Library of Medicine (US), Bethesda (MD) Available from: http://clinicaltrials.gov/show/ NCT00888004 NLM Identifier: NCT00888004, 2000 (cited 2010 Jun 23).
- Novartis, 2010d. Evaluation of the efficacy and safety of AFQ056 in reducing moderate to severe L-dopa induced dyskinesias in patients with Parkinson's disease. In: ClinicalTrials.gov [Internet]. National Library of Medicine (US), Bethesda (MD) Available from: http://clinicaltrials.gov/show/NCT00986414 NLM Identifier: NCT00986414, 2000 (cited 2010 Jun 23).
- O'Brien, J.A., Lemaire, W., Chen, T.B., Chang, R.S., Jacobson, M.A., Ha, S.N., Lindsley, C.W., Schaffhauser, H.J., Sur, C., Pettibone, D.J., Conn, P.J., Williams Jr., D.L., 2003. A family of highly selective allosteric modulators of the metabotropic glutamate receptor subtype 5. Mol. Pharmacol. 64, 731–740.
- O'Brien, J.A., Lemaire, W., Wittmann, M., Jacobson, M.A., Ha, S.N., Wisnoski, D.D., Lindsley, C.W., Schaffhauser, H.J., Rowe, B., Sur, C., Duggan, M.E., Pettibone, D.J., Conn, P.J., Williams Jr., D.L., 2004. A novel selective allosteric modulator potentiates the activity of native metabotropic glutamate receptor subtype 5 in rat forebrain. J. Pharmacol. Exp. Ther. 309, 568–577.
- Ott, D., Floersheim, P., Inderbitzin, W., Stoehr, N., Francotte, E., Lecis, G., Richert, P., Rihs, G., Flor, P.J., Kuhn, R., Gasparini, F., 2000. Chiral resolution, pharmacological characterization, and receptor docking of the noncompetitive mGlu1 receptor antagonist (+/-)-2-hydroxyimino- 1a, 2-dihydro-1H-7-oxacyclopropa [b]naphthalene-7a-carboxylic acid ethyl ester. J. Med. Chem. 43, 4428–4436.
- Pagano, A., Ruegg, D., Litschig, S., Stoehr, N., Stierlin, C., Heinrich, M., Floersheim, P., Prezeau, L., Carroll, F., Pin, J.P., Cambria, A., Vranesic, I., Flor, P.J., Gasparini, F., Kuhn, R., 2000. The non-competitive antagonists 2-methyl-6-(phenylethynyl) pyridine and 7-hydroxyiminocyclopropan[b]chromen-1a-carboxylic acid ethyl ester interact with overlapping binding pockets in the transmembrane region of group 1 metabotropic glutamate receptors. J. Biol. Chem. 275, 33750–33758.
- Palczewski, K., Kumasaka, T., Hori, T., Behnke, C.A., Motoshima, H., Fox, B.A., Trong, I.L., Teller, D.C., Okada, T., Stenkamp, R.E., Yamamoto, M., Miyano, M., 2000. Crystal structure of rhodopsin: A G protein-coupled receptor. Science 289, 739–745.
- Palucha, A., Pilc, A., 2007. Metabotropic glutamate receptor ligands as possible anxiolytic and antidepressant drugs. Pharmacol. Ther. 115, 116–147.
- Parmentier, M.L., Prezeau, L., Bockaert, J., Pin, J.P., 2002. A model for the functioning of family 3 GPCRs. Trends Pharmacol. Sci. 23, 268–274.
- Patel, J.B., Martin, C., Malick, J.B., 1982. Differential antagonism of the anticonflict effects of typical and atypical anxiolytics. Eur. J. Pharmacol. 86, 295–298.
- Patil, S.T., Zhang, L., Martenyi, F., Lowe, S.L., Jackson, K.A., Andreev, B.V., Avedisova, A.S., Bardenstein, L.M., Gurovich, I.Y., Morozova, M.A., Mosolov, S.N., Neznanov, N.G., Reznik, A.M., Smulevich, A.B., Tochilov, V.A., Johnson, B.G., Monn, J.A., Schoepp, D.D., 2007. Activation of mGlu2/3 receptors as a new approach to treat schizophrenia: a randomized Phase 2 clinical trial. Nat. Med. 13, 1102–1107.
- Pecknold, J.C., McClure, D.J., Appeltauer, L., Wrzesinski, L., Allan, T., 1982. Treatment of anxiety using fenobam (a nonbenzodiazepine) in a double-blind standard (diazepam) placebo-controlled study. J. Clin. Psychopharmacol. 2, 129–133.
- Pelkey, K.A., Yuan, X., Lavezzari, G., Roche, K.W., McBain, C.J., 2007. mGlu7 undergoes rapid internalization in response to activation by the allosteric agonist AMN082. Neuropharmacology 52, 108–117.
- Pietraszek, M., Sukhanov, I., Maciejak, P., Szyndler, J., Gravius, A., Wisłowska, A., Płaźnik, A., Bespalov, A.Y., Danysz, W., 2005. Anxiolytic-like effects of mGlu1 and mGlu5 receptor antagonists in rats. Eur. J. Pharmacol. 514 (1), 25–34.
- Pin, J.P., Galvez, T., Prezeau, L., 2003. Evolution, structure, and activation mechanism of family 3/C G-protein-coupled receptors. Pharmacol. Ther. 98, 325–354.
 Pinheiro, P.S., Mulle, C., 2008. Presynaptic glutamate receptors: physiological
- functions and mechanisms of action. Nat. Rev. Neurosci. 9, 423–436. Pinkerton, A.B., Cube, R.V., Hutchinson, J.H., James, J.K., Gardner, M.F., Rowe, B.A.,
- Prinkerton, A.B., Cube, K.V., Hutchinson, J.H., Jahles, J.K., Gatther, M.F., Kowe, B.A., Schaffhauser, H., Rodriguez, D.E., Campbell, U.C., Daggett, L.P., Vernier, J.M., 2005. Allosteric potentiators of the metabotropic glutamate receptor 2 (mGlu2). Part 3: Identification and biological activity of indanone containing mGlu2 receptor potentiators. Bioorg. Med. Chem. Lett. 15, 1565–1571.
- Pisani, A., Gubellini, P., Bonsi, P., Conquet, F., Picconi, B., Centonze, D., Bernardi, G., Calabresi, P., 2001. Metabotropic glutamate receptor 5 mediates the

potentiation of N-methyl-p-aspartate responses in medium spiny striatal neurons. Neuroscience 106, 579–587.

- Poewe, W.H., Lees, A.J., Stern, G.M., 1986a. Low-dose L-dopa therapy in Parkinson's disease: a 6-year follow-up study. Neurology 36, 1528–1530.
- Poewe, W.H., Lees, A.J., Stern, G.M., 1986b. Treatment of motor fluctuations in Parkinson's disease with an oral sustained-release preparation of L-dopa: clinical and pharmacokinetic observations. Clin. Neuropharmacol. 9, 430–439.
- Poisik, O., Raju, D.V., Verreault, M., Rodriguez, A., Abeniyi, O.A., Conn, P.J., Smith, Y., 2005. Metabotropic glutamate receptor 2 modulates excitatory synaptic transmission in the rat globus pallidus. Neuropharmacology 49 (Suppl. 1), 57–69.
- Porter, R.H., Jaeschke, G., Spooren, W., Ballard, T.M., Buttelmann, B., Kolczewski, S., Peters, J.U., Prinssen, E., Wichmann, J., Vieira, E., Muhlemann, A., Gatti, S., Mutel, V., Malherbe, P., 2005. Fenobam: a clinically validated nonbenzodiazepine anxiolytic is a potent, selective, and noncompetitive mGlu5 receptor antagonist with inverse agonist activity. J. Pharmacol. Exp. Ther. 315, 711–721.
- Price, M.R., Baillie, G.L., Thomas, A., Stevenson, L.A., Easson, M., Goodwin, R., McLean, A., McIntosh, L., Goodwin, G., Walker, G., Westwood, P., Marrs, J., Thomson, F., Cowley, P., Christopoulos, A., Pertwee, R.G., Ross, R.A., 2005. Allosteric modulation of the cannabinoid CB1 receptor. Mol. Pharmacol. 68, 1484–1495.
- Radestock, S., Weil, T., Renner, S., 2008. Homology model-based virtual screening for GPCR ligands using docking and target-biased scoring. J. Chem. Inf. Model 48, 1104–1117.
- Rasmussen, S.G., Choi, H.J., Rosenbaum, D.M., Kobilka, T.S., Thian, F.S., Edwards, P.C., Burghammer, M., Ratnala, V.R., Sanishvili, R., Fischetti, R.F., Schertler, G.F., Weis, W.I., Kobilka, B.K., 2007. Crystal structure of the human beta2 adrenergic G-protein-coupled receptor. Nature 450, 383–387.
- Rodrigues, S.M., Bauer, E.P., Farb, C.R., Schafe, G.E., LeDoux, J.E., 2002. The group I metabotropic glutamate receptor mGlu5 is required for fear memory formation and long-term potentiation in the lateral amygdala. J. Neurosci. 22, 5219–5229.
- Rodriguez, A.L., Nong, Y., Sekaran, N.K., Alagille, D., Tamagnan, G.D., Conn, P.J., 2005. A close structural analog of 2-methyl-6-(phenylethynyl)-pyridine acts as a neutral allosteric site ligand on metabotropic glutamate receptor subtype 5 and blocks the effects of multiple allosteric modulators. Mol. Pharmacol. 68, 1793–1802.
- Romano, C., Sesma, M.A., McDonald, C.T., O'Malley, K., Van den Pol, A.N., Olney, J.W., 1995. Distribution of metabotropic glutamate receptor mGlu5 immunoreactivity in rat brain. J. Comp. Neurol. 355, 455–469.
- Romano, C., Yang, W.L., O'Malley, K.L., 1996. Metabotropic glutamate receptor 5 is a disulfide-linked dimer. J. Biol. Chem. 271, 28612–28616.
- Rosenbaum, D.M., Cherezov, V., Hanson, M.A., Rasmussen, S.G., Thian, F.S., Kobilka, T.S., Choi, H.J., Yao, X.J., Weis, W.I., Stevens, R.C., Kobilka, B.K., 2007. GPCR engineering yields high-resolution structural insights into beta2-adrenergic receptor function. Science 318, 1266–1273.
- Rondard, P., Liu, J., Huang, S., Malhaire, F., Vol, C., Pinault, A., Labesse, G., Pin, J.P., 2006. Coupling of agonist binding to effector domain activation in metabotropic glutamate-like receptors. J. Biol. Chem. 281, 24653–24661.
- Rowe, B.A., Schaffhauser, H., Morales, S., Lubbers, L.S., Bonnefous, C., Kamenecka, T.M., McQuiston, J., Daggett, L.P., 2008. Transposition of three amino acids transforms the human metabotropic glutamate receptor (mGlu)-3-positive allosteric modulation site to mGlu2, and additional characterization of the mGlu2-positive allosteric modulation site. J. Pharmacol. Exp. Ther. 326, 240–251.
- Rylander, D., Iderberg, H., Li, Q., Dekundy, A., Zhang, J., Li, H., Baishen, R., Danysz, W., Bezard, E., Cenci, M.A., 2010. A mGluR5 antagonist under clinical development improves L-DOPA-induced dyskinesia in parkinsonian rats and monkeys. Neurobiol. Dis 39, 352–361.
- Sachpatzidis, A., Benton, B.K., Manfredi, J.P., Wang, H., Hamilton, A., Dohlman, H.G., Lolis, E., 2003. Identification of allosteric peptide agonists of CXCR4. J. Biol. Chem. 278, 896–907.
- Schaffhauser, H., Rowe, B.A., Morales, S., Chavez-Noriega, L.E., Yin, R., Jachec, C., Rao, S.P., Bain, G., Pinkerton, A.B., Vernier, J.M., Bristow, L.J., Varney, M.A., Daggett, L.P., 2003. Pharmacological characterization and identification of amino acids involved in the positive modulation of metabotropic glutamate receptor subtype 2. Mol. Pharmacol. 64, 798–810.
- Schlumberger, C., Pietraszek, M., Gravius, A., Danysz, W., 2010. Effects of a positive allosteric modulator of mGlu5 ADX47273 on conditioned avoidance response and PCP-induced hyperlocomotion in the rat as models for schizophrenia. Pharmacol. Biochem. Behav. 95, 23–30.
- Schlumberger, C., Pietraszek, M., Gravius, A., Klein, K.U., Greco, S., More, L., Danysz, W., 2009. Comparison of the mGlu(5) receptor positive allosteric modulator ADX47273 and the mGlu(2/3) receptor agonist LY354740 in tests for antipsychotic-like activity. Eur. J. Pharmacol. 623, 73–83.
- Schoepp, D.D., 2004. Case Study: utility of metabotropic glutamate agonists in psychiatric illness. 5th World Conference on Stress, Abs 120.
- Schoepp, D.D., Wright, R.A., Levine, L.R., Gaydos, B., Potter, W.Z., 2003. LY354740, an mGlu2/3 receptor agonist as a novel approach to treat anxiety/stress. Stress 6, 189–197.
- Schulz, B., Fendt, M., Gasparini, F., Lingenhohl, K., Kuhn, R., Koch, M., 2001. The metabotropic glutamate receptor antagonist 2-methyl-6-(phenylethynyl)-pyridine (MPEP) blocks fear conditioning in rats. Neuropharmacology 41, 1–7.
- Schwartz, T.W., Holst, B., 2007. Allosteric enhancers, allosteric agonists and agoallosteric modulators: where do they bind and how do they act? Trends Pharmacol. Sci. 28, 366–373.

- Slassi, A., Isaac, M., Edwards, L., Minidis, A., Wensbo, D., Mattsson, J., Nilsson, K., Raboisson, P., McLeod, D., Stormann, T.M., Hammerland, L.G., Johnson, E., 2005. Recent advances in non-competitive mGlu5 receptor antagonists and their potential therapeutic applications. Curr. Top. Med. Chem. 5, 897–911.
- Spalding, T.A., Ma, J.N., Ott, T.R., Friberg, M., Bajpai, A., Bradley, S.R., Davis, R.E., Brann, M.R., Burstein, E.S., 2006. Structural requirements of transmembrane domain 3 for activation by the M1 muscarinic receptor agonists AC-42, AC-260584, clozapine, and N-desmethylclozapine: evidence for three distinct modes of receptor activation. Mol. Pharmacol. 70, 1974–1983.
- Spalding, T.A., Trotter, C., Skjaerbaek, N., Messier, T.L., Currier, E.A., Burstein, E.S., Li, D., Hacksell, U., Brann, M.R., 2002. Discovery of an ectopic activation site on the M(1) muscarinic receptor. Mol. Pharmacol. 61, 1297–1302.
- Spooren, W., Gasparini, F., 2004. mGlu5 receptor antagonists: a novel class of anxiolytics? Drug News Perspect. 17, 251–257.
- Spooren, W.P., Schoeffter, P., Gasparini, F., Kuhn, R., Gentsch, C., 2002. Pharmacological and endocrinological characterisation of stress-induced hyperthermia in singly housed mice using classical and candidate anxiolytics (LY314582, MPEP and NKP608). Eur. J. Pharmacol. 435, 161–170.
- Spooren, W.P., Vassout, A., Neijt, H.C., Kuhn, R., Gasparini, F., Roux, S., Porsolt, R.D., Gentsch, C., 2000. Anxiolytic-like effects of the prototypical metabotropic glutamate receptor 5 antagonist 2-methyl-6-(phenylethynyl)pyridine in rodents. J. Pharmacol. Exp. Ther. 295, 1267–1275.
- Steckler, T., Lavreysen, H., Oliveira, A.M., Aerts, N., Craenendonck, H., Prickaerts, J., Megens, A., Lesage, A.S., 2005a. Effects of mGlu1 receptor blockade on anxiety-related behaviour in the rat lick suppression test. Psychopharmacology 179, 198–206.
- Steckler, T., Oliveira, A.F., Van Dyck, C., Van Craenendonck, H., Mateus, A.M., Langlois, X., Lesage, A.S., Prickaerts, J., 2005b. Metabotropic glutamate receptor 1 blockade impairs acquisition and retention in a spatial Water maze task. Behav. Brain Res. 164, 52–60.
- Stefani, M.R., Moghaddam, B., 2010. Activation of type 5 metabotropic glutamate receptors attenuates deficits in cognitive flexibility induced by NMDA receptor blockade. Eur. J. Pharmacol. 639, 26–32.
- Stockton, J.M., Birdsall, N.J., Burgen, A.S., Hulme, E.C., 1983. Modification of the binding properties of muscarinic receptors by gallamine. Mol. Pharmacol 23, 551–557.
- Surin, A., Pshenichkin, S., Grajkowska, E., Surina, E., Wroblewski, J.T., 2007. Cyclothiazide selectively inhibits mGlu1 receptors interacting with a common allosteric site for non-competitive antagonists. Neuropharmacology 52, 744–754.
- Suzuki, G., Kimura, T., Satow, A., Kaneko, N., Fukuda, J., Hikichi, H., Sakai, N., Maehara, S., Kawagoe-Takaki, H., Hata, M., Azuma, T., Ito, S., Kawamoto, H., Ohta, H., 2007. Pharmacological characterization of a new, orally active and potent allosteric metabotropic glutamate receptor 1 antagonist, 4–[1-(2-fluoropyridin-3-yl)-5methyl-1H-1,2,3-triazol-4-yl]-N-isopropyl-N- methyl-3,6-dihydropyridine-1 (2H)-carboxamide (FTIDC). J. Pharmacol. Exp. Ther. 321, 1144–1153.
- Swanson, C.J., Bures, M., Johnson, M.P., Linden, A.M., Monn, J.A., Schoepp, D.D., 2005. Metabotropic glutamate receptors as novel targets for anxiety and stress disorders. Nat. Rev. Drug Discov. 4, 131–144.
- Takahashi, K., Tsuchida, K., Tanabe, Y., Masu, M., Nakanishi, S., 1993. Role of the large extracellular domain of metabotropic glutamate receptors in agonist selectivity determination. J. Biol. Chem. 268, 19341–19345.
- Tatarczynska, E., Klodzinska, A., Kroczka, B., Chojnacka-Wojcik, E., Pilc, A., 2001. The antianxiety-like effects of antagonists of group I and agonists of group II and III metabotropic glutamate receptors after intrahippocampal administration. Psychopharmacology (Berl) 158, 94–99.
- Teller, D.C., Okada, T., Behnke, C.A., Palczewski, K., Stenkamp, R.E., 2001. Advances in determination of a high-resolution three-dimensional structure of rhodopsin, a model of G-protein-coupled receptors (GPCRs). Biochemistry 40, 7761–7772.
- Tones, M.A., Bendali, N., Flor, P.J., Knopfel, T., Kuhn, R., 1995. The agonist selectivity of a class III metabotropic glutamate receptor, human mGlu4a, is determined by the N-terminal extracellular domain. Neuroreport 7, 117–120.
- Treyer, V., Streffer, J., Ametamey, S.M., Bettio, A., Bläuenstein, P., Schmidt, M., Gasparini, F., Hock, C., Buck, A., 2008. Radiation dosimetry and biodistribution of 11C-ABP688 measured in healthy volunteers. Eur. J. Nucl. Med. Mol. Imaging 35 (4), 766–770.
- Tsuchiya, D., Kunishima, N., Kamiya, N., Jingami, H., Morikawa, K., 2002. Structural views of the ligand-binding cores of a metabotropic glutamate receptor complexed with an antagonist and both glutamate and Gd3+. Proc. Natl. Acad. Sci. U.S.A. 99, 2660–2665.

- Tu, H., Rondard, P., Xu, C., Bertaso, F., Cao, F., Zhang, X., Pin, J.P., Liu, J., 2007. Dominant role of GABAB2 and Gbetagamma for GABAB receptor-mediated-ERK1/2/CREB pathway in cerebellar neurons. Cell Signal 19, 1996–2002.
- Ugolini, A., Corsi, M., Bordi, F., 1999. Potentiation of NMDA and AMPA responses by the specific mGlu5 agonist CHPG in spinal cord motoneurons. Neuropharmacology 38, 1569–1576.
- Urban, J.D., Clarke, W.P., von Zastrow, M., Nichols, D.E., Kobilka, B., Weinstein, H., Javitch, J.A., Roth, B.L., Christopoulos, A., Sexton, P.M., Miller, K.J., Spedding, M., Mailman, R.B., 2007. Functional selectivity and classical concepts of quantitative pharmacology. J. Pharmacol. Exp. Ther. 320, 1–13.
- Ure, J., Baudry, M., Perassolo, M., 2006. Metabotropic glutamate receptors and epilepsy. J. Neurol. Sci. 247, 1–9.
- Uslaner, J.M., Parmentier-Batteur, S., Flick, R.B., Surles, N.O., Lam, J.S., McNaughton, C.H., Jacobson, M.A., Hutson, P.H., 2009. Dose-dependent effect of CDPPB, the mGlu5 positive allosteric modulator, on recognition memory is associated with GluR1 and CREB phosphorylation in the prefrontal cortex and hippocampus. Neuropharmacology 57, 531–538.Valant, C., Gregory, K.J., Hall, N.E., Scammells, P.J., Lew, M.J., Sexton, P.M.,
- Valant, C., Gregory, K.J., Hall, N.E., Scammells, P.J., Lew, M.J., Sexton, P.M., Christopoulos, A., 2008. A novel mechanism of G protein-coupled receptor functional selectivity. Muscarinic partial agonist McN-A-343 as a bitopic orthosteric/allosteric ligand. J. Biol. Chem. 283, 29312–29321.
- Valenti, O., Conn, P.J., Marino, M.J., 2002. Distinct physiological roles of the Gq-coupled metabotropic glutamate receptors Co-expressed in the same neuronal populations. J. Cell Physiol. 191, 125–137.
- Valenti, O., Mannaioni, G., Seabrook, G.R., Conn, P.J., Marino, M.J., 2005. Group III metabotropic glutamate-receptor-mediated modulation of excitatory transmission in rodent substantia nigra pars compacta dopamine neurons. J. Pharmacol. Exp. Ther. 313, 1296–1304.
- Valenti, O., Marino, M.J., Wittmann, M., Lis, E., DiLella, A.G., Kinney, G.G., Conn, P.J., 2003. Group III metabotropic glutamate receptor-mediated modulation of the striatopallidal synapse. J. Neurosci. 23, 7218–7226.
- Vanejevs, M., Jatzke, C., Renner, S., Muller, S., Hechenberger, M., Bauer, T., Klochkova, A., Pyatkin, I., Kazyulkin, D., Aksenova, E., Shulepin, S., Timonina, O., Haasis, A., Gutcaits, A., Parsons, C.G., Kauss, V., Weil, T., 2008. Positive and negative modulation of group I metabotropic glutamate receptors. J. Med. Chem. 51, 634–647.
- Varney, M.A., Cosford, N.D., Jachec, C., Rao, S.P., Sacaan, A., Lin, F.F., Bleicher, L., Santori, E.M., Flor, P.J., Allgeier, H., Gasparini, F., Kuhn, R., Hess, S.D., Velicelebi, G., Johnson, E.C., 1999. SIB-1757 and SIB-1893: selective, noncompetitive antagonists of metabotropic glutamate receptor type 5. J. Pharmacol. Exp. Ther. 290, 170–181.
- Wadenberg, M.L., Soliman, A., VanderSpek, S.C., Kapur, S., 2001. Dopamine D(2) receptor occupancy is a common mechanism underlying animal models of antipsychotics and their clinical effects. Neuropsychopharmacology 25, 633–641.
- Wichmann, T., DeLong, M.R., 2003. Functional neuroanatomy of the basal ganglia in Parkinson's disease. Adv. Neurol. 91, 9–18.
- Yan, Q.J., Rammal, M., Tranfaglia, M., Bauchwitz, R.P., 2005. Suppression of two major Fragile X Syndrome mouse model phenotypes by the mGlu5 antagonist MPEP. Neuropharmacology 49, 1053–1066.
- Yarnitzky, T., Levit, A., Niv, M.Y., 2010. Homology modeling of G-protein-coupled receptors with X-ray structures on the rise. Curr. Opin. Drug Discov. Devel. 13 (3), 317–325.
- Yu, M., 2007. Recent developments of the PET imaging agents for metabotropic glutamate receptor subtype 5. Curr. Top. Med. Chem. 7, 1800–1805.
- Zerbib, F., Keywood, C., Strabach, G., 2010. Efficacy, tolerability and pharmacokinetics of a modified release formulation of ADX10059, a negative allosteric modulator of metabotropic glutamate receptor 5: an esophageal pH-impedance study in healthy subjects. Neurogastroenterol. Motil. 22, 859-e231.
- Zhang, Y., Rodriguez, A.L., Conn, P.J., 2005. Allosteric potentiators of metabotropic glutamate receptor subtype 5 have differential effects on different signaling pathways in cortical astrocytes. J. Pharmacol. Exp. Ther. 315, 1212–1219.
- Zhao, Z., Wisnoski, D.D., O'Brien, J.A., Lemaire, W., Williams Jr., D.L., Jacobson, M.A., Wittman, M., Ha, S.N., Schaffhauser, H., Sur, C., Pettibone, D.J., Duggan, M.E., Conn, P.J., Hartman, G.D., Lindsley, C.W., 2007. Challenges in the development of mGlu5 positive allosteric modulators: the discovery of CPPHA. Bioorg. Med. Chem. Lett. 17, 1386–1391.