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Site-directed spin labeling electron paramagnetic resonance (SDSL-EPR) is often used for the structural
characterization of proteins that elude other techniques, such as X-ray crystallography and nuclear mag-
netic resonance (NMR). However, high-resolution structures are difficult to obtain due to uncertainty in
the spin label location and sparseness of experimental data. Here, we introduce RosettaEPR, which has
been designed to improve de novo high-resolution protein structure prediction using sparse SDSL-EPR
distance data. The ‘‘motion-on-a-cone’’ spin label model is converted into a knowledge-based potential,
which was implemented as a scoring term in Rosetta. RosettaEPR increased the fractions of correctly
folded models (RMSDCa < 7.5 Å) and models accurate at medium resolution (RMSDCa < 3.5 Å) by 25%.
The correlation of score and model quality increased from 0.42 when using no restraints to 0.51 when
using bounded restraints and again to 0.62 when using RosettaEPR. This allowed for the selection of accu-
rate models by score. After full-atom refinement, RosettaEPR yielded a 1.7 Å model of T4-lysozyme, thus
indicating that atomic detail models can be achieved by combining sparse EPR data with Rosetta. While
these results indicate RosettaEPR’s potential utility in high-resolution protein structure prediction, they
are based on a single example. In order to affirm the method’s general performance, it must be tested on a
larger and more versatile dataset of proteins.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

1.1. Protein modeling with Rosetta can serve as an alternative means
of structure elucidation

The vast majority of proteins in the Protein Data Bank (PDB)
have been determined by X-ray crystallography or nuclear mag-
netic resonance (NMR) (Berman et al., 2002). However, a large
number of biomedically relevant proteins continue to evade
structural elucidation by these techniques due to membrane
environment (Tusnady et al., 2004), high flexibility (Haley et al.,
2000), and size (Harrison, 2004). Alternative techniques, such as
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computational structure prediction methods, can be employed in
order to define the structure of such proteins. The usual experi-
mental bottlenecks, such as obtaining highly pure, concentrated
samples of protein, are thereby avoided. Rosetta routinely folds
soluble proteins of less than 150 amino acids correctly (Bonneau
et al., 2002). It is generally among the top performers in the Critical
Assessment of protein Structure Prediction, or CASP, experiments
(Bonneau et al., 2001; Bradley et al., 2003, 2005; Das et al., 2007;
Raman et al., 2009). In addition, Rosetta’s ability to obtain the cor-
rect fold of membrane proteins of various sizes and topologies has
been demonstrated (Yarov-Yarovoy et al., 2006; Barth et al., 2007,
2009). More recently, Das et al., introduced Rosetta FOLD-AND-DOCK,
which allows for the de novo structure prediction of homomeric
proteins (Das et al., 2009).

Rosetta’s sampling and scoring capabilities for protein folding
have been reviewed extensively elsewhere (Simons et al., 1997;
Rohl and Baker, 2002; Bradley et al., 2005; Kaufmann et al.,
2010). Briefly, the Rosetta de novo protein structure prediction
algorithm is divided into two steps: low-resolution protein folding
to obtain the overall topology and high-resolution refinement of
the backbone and sidechains. Metropolis Monte Carlo peptide
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fragment insertion is driven by a variety of knowledge-based
potentials to rapidly predict protein folds. In high-resolution
refinement, the protein backbone u and w angles are perturbed
while the overall fold is maintained. Sidechain conformations are
predicted via a Metropolis Monte Carlo search of rotamer space,
and all torsional degrees of freedom are subjected to gradient-
based minimization.

1.2. Sparse NMR restraints can be combined with Rosetta to obtain
atomic detail structures

While the algorithm described above performs well in the de
novo prediction of relatively small, soluble proteins, effectively
sampling protein conformational space remains the limiting factor
in the accurate prediction of more complex proteins. To this end,
distance and orientational restraints, such as those obtained by
NMR, have been incorporated into the Rosetta protein folding pro-
tocol (Rohl, 2005). Chemical shifts are converted into backbone
torsional angle restraints, which are used in the generation of the
peptide fragment libraries. Distance restraints from nuclear Over-
hauser effects (NOEs) are also employed in this process. Addition-
ally, distance and orientational restraints (NOEs and residual
dipolar couplings, or RDCs, respectively) have been incorporated
into the scoring function and are evaluated during protein folding.
Bowers et al., demonstrated that Rosetta, combined with a sparse
set of NOEs (approximately one restraint per residue) and back-
bone chemical shifts, can produce models with atomic detail accu-
racy (Bowers et al., 2000). Similarly, a combination of sparse RDCs
and chemical shifts was used to produce correctly folded models
(Rohl and Baker, 2002). Shen et al., have made significant progress
in improving the robustness and accuracy of CS-Rosetta with
incomplete chemical shift datasets. CS-Rosetta is able to obtain
atomic detail models based on data that would otherwise be con-
sidered unsuitable for high-resolution structure determination
(Shen et al., 2008, 2010, 2009).

1.3. SDSL-EPR offers an advantage over traditional structure
determination techniques

Despite such advances, some proteins remain un-amenable to
structure determination by these methods. Site-directed spin label-
ing electron paramagnetic resonance spectroscopy (SDSL-EPR)
compute dSL−dCβ
frequencies based on 
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Fig. 1. Flowchart outlining the c
allows for structural studies of membrane proteins and large macro-
molecular assemblies in native or native-like environments (Cartes
et al., 2001; Hubbell et al., 1996; Hubbell and Altenbach, 1994;
Liu et al., 2001; Zou and Mchaourab, 2009; Zou et al., 2009; Mchaourab
et al., 2009; Koteiche and Mchaourab, 2002). SDSL involves mutat-
ing residues of interest to cysteines, which can be reacted with a
paramagnetic spin label, such as methanethiosulfonate (MTS). A
sensitive structural probe at a known sequence position is created,
forgoing the need to ‘‘assign’’ signals in the spectrum as is necessary
in NMR spectroscopy. Additionally, the resolution of SDSL-EPR is not
limited by the size of the system. Similar to fluorescence and NMR
spectroscopy, however, SDSL-EPR generates information concern-
ing both the local environment of the spin label and the overall
global fold of the protein. SDSL-EPR has been used to characterize con-
formational changes, such as those seen in MsbA (Zou and Mchaourab,
2009; Zou et al., 2009), rhodopsin (Altenbach et al., 1994, 1996, 1999),
and KcsA (Liu et al., 2001; Gross et al., 1999; Cordero-Morales et al.,
2006). More recently, it has been demonstrated that the fold of a
protein can be determined by structural restraints derived from
SDSL-EPR data alone (Alexander et al., 2008).

1.4. Atomic detail protein structure determination by SDSL-EPR is
difficult and computationally demanding

Challenges in using SDSL-EPR structural data arise from the pos-
sible perturbation of the system by introduction of the spin label,
sparseness of datasets resulting from the need to construct a ded-
icated mutant for every data point collected, and uncertainty in the
position and dynamics of the spin label relative to the protein
backbone. In the past, proteins have displayed a surprising robust-
ness with respect to the introduction of spin labels (Mchaourab
et al., 1996; Langen et al., 2000; Vasquez et al., 2006; Perozo
et al., 1998; Brown et al., 2002). Molecular dynamics simulations
(Sale et al., 2005) and crystallography (Langen et al., 2000; Fleiss-
ner et al., 2009) have been employed to explicitly model the spin
label in order to help interpret SDSL-EPR structural data. However,
these calculations are relatively slow and computationally
demanding. In addition, most studies of this nature are designed
to examine a specific protein and are not easily expanded to other
systems. For the purpose of protein structure determination, a fas-
ter, broadly applicable approach to relate the spin label position to
the protein backbone is needed. As an exhaustive experimental
de novo fold 500,000 
models

filter based on energy 
and restraint satisfaction 

full-atom refinement of 
filtered models 

choose best-scoring 
model as final 
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mapping of intra-protein distances is infeasible given the time and
labor intensiveness of the SDSL-EPR method, a limited dataset that
unambiguously describes the fold of the protein needs to be de-
fined (see Kazmier et al., accompanying article in this issue).

1.5. RosettaEPR is designed specifically to work with sparse SDSL-EPR
data

In 2008, Alexander et al. introduced the implicit ‘‘motion-on-a-
cone’’ model, or cone model (Fig. 2B), which is based on the struc-
ture of the MTS spin label (Fig. 2A) (Alexander et al., 2008). This
model was used to convert an observed spin label distance, dSL,
into an ‘‘allowed’’ range for the distance of the Cb atoms, dCb

2
[dSL � 12.5 Å, dSL + 2.5 Å] (Fig. 2C). The authors demonstrate that
these distance restraints are sufficient to determine the structure
of T4-lysozyme to atomic detail accuracy from 25 SDSL-EPR re-
straints. The present study introduces RosettaEPR, which replaces
the soft interpretation of the distance constraints used in the pre-
vious study with a knowledge-based restraint potential optimized
for SDSL-EPR distance data. Alexander et al. utilized RosettaNMR,
with the consequence that all dCb

distances falling within the al-
lowed range were considered equally favorable during de novo
folding. All other distances were disfavored using a quadratic pen-
alty function (Fig. S1). However, while the distance difference,
dSL � dCb

, falls within a wide range, values between 0 and 5 Å are
more likely than values outside this range. We used the cone mod-
el, in combination with the PDB, to derive a probability function for
dSL � dCb

, which was then converted into a scoring function using
Cα
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Fig. 2. The ‘‘motion-on-a-cone’’ model. (A) Methanethiosulfonate (MTS) spin label. The
(SLeffective) is assumed to be 6 Å, and the cone has an opening angle of 90�. The Ca-Cb-S
model is used to calculate dSL � dCb values. (D) The normalized frequency of dSL � dCb val
observed values for T4-lysozyme and aA-crystallin (open and filled bars, respectively, le
based potential according to the Boltzmann relation. The resulting energies were norm
Rosetta Energy Unit (REU), and the least favored dSL � dCb value correlates with a Rosett
the Boltzmann relation. We demonstrate that treatment of SDSL-
EPR distance restraints with this scoring function is superior. Fol-
lowing the benchmarking presented in this paper, RosettaEPR will
be made available to the scientific community.
2. Materials and methods

The protocol described in the present work is outlined in Fig. 1.
It is divided into two subsections corresponding to the implemen-
tation and development of RosettaEPR and the prediction of the
T4-lysozyme structure to atomic detail.
2.1. Conversion of the motion-on-a-cone model into a knowledge-
based potential

The dSL � dCb
histogram (Fig. 2D) was generated by placing a

cone model-based simulated spin label at every exposed amino
acid position in 3584 proteins from a non-redundant protein data-
base (Wang and Dunbrack, 2003). That is, the simulated spin label
was placed at residue positions that had a neighbor count (Durham
et al., 2009) of less than ten, resulting in over 140 million measured
distances. For every pairwise distance within each protein, the pro-
tein’s dCb

was subtracted from the simulated dSL and stored in
0.5 Å-wide bins. Because the highest frequency of dSL � dCb

values
was on the order of 106, a pseudocount of 106 was added to the to-
tal counts computed so that less commonly observed values are
also considered.
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a energy of 0.0 REU.
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The potential (Fig. 2E) was calculated by taking the negative
logarithm (�ln) of the propensity of each dSL � dCb

value, where
the propensity is defined as:

propensity ¼
frequencyþPseudoCounts

TotalCounts

� �

1
# bins

� �

PseudoCount equals 106, and # bins equals 64. The resulting val-
ues were normalized and shifted such that they were all negative.
This relationship is based on the Boltzmann relationship, which is
used to correlate a population of a species to an associated energy.
The potential was re-scaled to give a maximum bonus of �1.0 for
dSL � dCb

values between �12.0 and 12.0 (observed by the cone
model) and a 0.0 penalty for values outside this range.

2.2. Model quality was assessed according to RMSDCa relative to the
2LZM crystal structure

In order to best assess the ability of RosettaEPR to recover native-
like folds, only the a-helical core domain of T4-lysozyme (residues
58–164) was modeled, as experimental restraints for other regions
of this protein were not available. The experimentally determined
distances used as restraints are reported in Table S1 and are mapped
onto the T4-lysozyme crystal structure in Fig. S2. Models of the pro-
tein were generated (a) without restraints, (b) with restraints using
RosettaEPR’s knowledge-based potential, and (c) with restraints
defined by the same boundaries as those used by Alexander et al.
Model quality was assessed by computing the RMSDCa relative to
the X-ray crystal structure of T4-lysozyme (PDBID: 2LZM, Weaver
and Matthews, 1987). Only core residues 70–155, excluding loops,
were considered in computing the RMSDCa (see Table S2).

2.3. Weight optimization for the knowledge-based SDSL-EPR restraint
potential

To optimize the factor by which the RosettaEPR scoring function
should be applied, 10,000 models of the a-helical region of T4-
lysozyme were constructed for a wide variety of weights
(Table S3). The fraction of models with RMSDCa values below
7.5 Å was taken as measure for the correct fold. The fraction of
models with RMSDCa values below 3.5 Å was employed to identify
candidate models for successful atomic detail refinement; models
generated with this level of accuracy are considered to be ‘‘na-
tive-like.’’ The knowledge-based potential was implemented as a
spline approximation in the Rosetta AtomPairConstraint score.
The bounded restraint uses the AtomPairConstraint score as com-
puted according to a bounded quadratic equation (Fig. S1).

2.4. Rosetta was used to de novo fold and refine T4-lysozyme

Secondary structure prediction of the 107 C-terminal residues
of T4-lysozyme was performed using Jufo (Meiler and Baker,
2003), Psipred (Jones, 1999), and Sam (Karplus et al., 1997). Pep-
tide fragments to be used in de novo structure prediction were gen-
erated as previously described, and fragments based on
homologous proteins were excluded during folding. Rosetta’s
low-resolution de novo protein folding algorithm was used to gen-
erate 10,000 models of T4-lysozyme guided by experimental re-
straints (Table S1) Alexander et al., 2008 weighted to various
extents, resulting in models containing structural information of
the protein backbone only. During de novo folding, residues are
represented as superatoms, or ‘‘centroids’’ (Simons et al., 1997).
After determining that the RosettaEPR knowledge-based potential
optimally predicts the fold of T4-lysoyzme when multiplied by a
factor of 4.0, this weight was used in the generation of 500,000
models of the protein.
The 500,000 models were filtered according to their overall Ro-
setta energy and the extent to which they satisfied the experimen-
tal restraints. Only the top 1% of models by total score that had a
restraint score of at least 85% of the optimum value were included
in the filtered ensemble. These 1388 models were then refined to
atomic detail, in which the centroids were replaced with sidechain
rotamers based on a backbone-dependent rotamer library (Dun-
brack and Karplus, 1993). During refinement, Rosetta’s full-atom
scoring potentials are used to guide refinement through an itera-
tive cycle of sidechain repacking and gradient-based minimization
(Bradley et al., 2005; Misura and Baker, 2005). Each round of
refinement yielded ten times the initial number of models. That
is, one round of refinement resulted in 13880 new, refined models.
All de novo folding and full-atom refinement computations were
performed using Rosetta trunk revision 34586.

2.5. Structure determination with RosettaEPR is computationally
feasible

All models were generated by independent simulations using
Vanderbilt University’s Center for Structural Biology computing
cluster and the university’s Advanced Computing Center for Re-
search and Education (ACCRE). Computations were performed on
a combination of AMD Opteron and Intel Nehalem processor
nodes. The average time needed to fold one model of the 107 C-ter-
minal residues of T4-lysozyme was approximately 240 s. The same
time is required for a single round of high-resolution refinement of
one model.
3. Results

3.1. Knowledge-based potential reflects likelihood of model in light of
observed SDSL-EPR distance

Cone model-based statistics were collected over a database of
non-redundant proteins (see Section 2) and compared to dSL � dCb

values determined experimentally for T4-lysozyme and aA-crys-
tallin (Fig. 2D). The set of cone model statistics recovers several
features of the experimental data, including the range of dSL � dCb

values and a shift towards dSL � dCb
values greater than 0 Å. The

shift towards positive dSL � dCb
values indicates that spin labels

are more likely to point away from each other. This is expected
for soluble proteins, where mutations of surface residues are not
expected to destabilize the protein.

For conversion into a knowledge-based potential, the negative
logarithm (�ln) of the propensity of each dSL � dCb

value was com-
puted such that less frequently seen dSL � dCb

values are considered
less favorable than those that are more often observed (Fig. 2E). In
result, a restraint that is fulfilled in the most likely area of the dis-
tribution improves the total score by one point, and a restraint that
is violated is not counted towards the total score. This knowledge-
based potential was then incorporated into Rosetta’s low-resolu-
tion scoring function where it is affiliated with a dedicated weight
(see Section 3.2 below). The current model is an improvement
upon the original implementation of the cone model, in that a) pro-
tein structures, not ellipsoids, were used to generate the statistics,
and b) the knowledge-based potential considers the likelihood of
dSL � dCb

values instead of a simple binary classification.

3.2. Knowledge-based potential achieves up to 55% correctly folded T4-
lysozyme models

Ten thousand T4-lysozyme models were folded de novo in the
presence of the same restraints used previously (Table S1 and
Fig. S2) (Alexander et al., 2008). Restraints were incorporated with



510 S.J. Hirst et al. / Journal of Structural Biology 173 (2011) 506–514
various weights, and the results were compared to the bounded
potential used by Alexander et al. (Table S3). The usage of restraint
scoring functions results in more native-like folds than when fold-
ing with no restraints at all (Fig. 3 and Table 1). This reaffirms that
experimental data increases sampling of more native-like struc-
tures. RosettaEPR recovers the native topology of the T4-lysozyme
a-helical region in up to 55% of the models. This compares to 7% if
no restraints are used and 42% when using bounded restraints. Fur-
thermore, folding with bounded restraints consistently resulted in
approximately 1.0–1.5% of all built models having native-like con-
formations, compared to 2.1% when using the EPR knowledge-
based potential with an optimal weight of 4.0. This improvement
is significant, as additional starting structures for high-resolution
refinement increase the chance of successfully obtaining atomic
detail models (see Section 3.4). Further, conversion to a knowl-
edge-based potential enabled fine-tuning of the weight of the
SDSL-EPR potential for optimal performance, while the bounded
potential provided constant suboptimal performance over wide
ranges of the weight.

3.3. Knowledge-based function improves correlation of score and
model quality

The correlation of the scoring function with model quality is key
to selection of native-like models when the structure is not known.
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Fig. 3. Comparison of the RosettaEPR knowledge-based potential to the bounded potenti
Restraint violations were scored according to either a bounded potential or the EPR knowl
with optimally weighted restraint energies are compared to folding without restraints.

Table 1
Summary of benchmarking results of T4-Lysozyme using no restraints, 25 restraints scored
bounded restraints with a weight of 4.0a.

Restraint type % Models with RMSDCa < 3

None 0.03
Knowledge-based potential (weight = 4.0) 2.05
Bounded restraints (weight = 4.0) 1.62

a Results for all tested weights reported in Table S3.
b Enrichment = (fraction of low-RMSD models in filtered ensemble) � (fraction of low

models by total score, the top 35% of models according to restraint score.
c Enrichment could not be computed as with the other data sets due to lack of restra
The correlation coefficient improves from 0.42 in the absence of re-
straints to 0.51 when using the bounded function and further to
0.62 when using RosettaEPR (Fig. 4). To quantify the value of the
score for filtering native-like models, the enrichment for each opti-
mized scenario was also computed (see Table 1). For the knowl-
edge-based potential weighted by a factor of 4.0, the benchmark
resulted in an enrichment of 7.0. The same analysis was performed
on the models folded with the equally weighted bounded restraint
potential, resulting in an enrichment of 5.3. The ensemble of mod-
els generated with no restraints contained only three native-like
models, all of which were among the 10% best-scoring models,
but this method was unable to produce enough native-like models
to justify any high-resolution refinement.

3.4. Ten-fold enrichment of low-RMSD models through knowledge-
based SDSL-EPR score allows for high-resolution refinement

500,000 models of T4-lysozyme were de novo folded in Rosetta
guided by 25 EPR distance restraints (weight equals 4.0). From
the 1% best-scoring models, models achieving at least 85% of
the optimal knowledge-based restraint score were selected for
high-resolution refinement. The enrichment of native-like models
in the filtered pool was 10.6, while the enrichment of correctly
folded models was 2.3, where enrichment was defined as the
fraction of native-like or correctly folded models in the filtered
10 11 12 13 14 15 16 17 18 19 
DCα (Å) 

no restraints 

RosettaEPR knowledge-based 
potential 
bounded restraints 

al. T4-lysozyme was folded de novo in Rosetta guided by 25 experimental restraints.
edge-based potential. The RMSDCa distributions of the resulting models when folded

according to the optimally weighted RosettaEPR knowledge-based potential, and 25

.5 Å % Models with RMSDCa < 7.5 Å Enrichmentb

7.17 –c

42.08 7.0
41.09 5.3

-RMSD models of all models generated); filtered ensemble = within the top 1% of

int score.



Fig. 4. Correlation between total Rosetta energy and RMSDCa of de novo folded models. Score vs. RMSDCa for 10,000 models de novo folded (A) with no restraints, (B) with 25
bounded restraints, and (C) with 25 restraints guided by the RosettaEPR knowledge-based potential.
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pool divided by the fraction of native-like or correctly folded
models in the entire ensemble. Filtering decreases the number
of models considered for high-resolution refinement to a more
manageable ensemble and enriches the fraction of low-RMSD
models such that more native-like folds are refined to full-atom
detail.

3.5. High-resolution refinement of T4-lysozyme yields structural model
that is accurate at atomic detail

The resulting 1388 models of T4-lysozyme were refined to high-
resolution using Rosetta’s full-atom potentials, which include
knowledge-based van der Waals attraction, repulsion, hydrogen
bonding, solvation, and electrostatic terms (Bradley et al., 2005).
Each input model was refined ten times without experimental re-
straints, resulting in 13880 models. Ideally, low-RMSD models
would be considered energetically favored according to Rosetta’s
scoring function. Therefore, the models were then filtered such
that only the top 10% by total score were carried onto the next
round of refinement. This process was repeated through eight iter-
Fig. 5. Correlation between Rosetta energy and RMSDCa of refined models. (A) Score vs.
cycle of refinement resulted in ten times the number of input models. After each cycle, th
again. Color key: refined crystal structure, black; round 1, sky blue; round 2, bright blue; r
7, orange; round 8, red. (B) Percent of incorrectly predicted sidechains of core residues (s
was used. (For interpretation of the references to colour in this figure legend, the reade
ations, at which point the score of the refined models converged.
The total score of each model was plotted against its RMSDCa

(Fig. 5A). The correlation between energetically favorable and
low-RMSD models improves after each round of refinement until
it converges after the eighth iteration. The lowest energy model
produced with this strategy had an RMSDCa of 1.76 Å relative to
the native (Fig. 6), and the lowest RMSDCa observed was 1.73 Å.
The previously reported model was determined to have an
RMSDCa of 1.66 Å.

The ability of Rosetta to recover native-like sidechain conforma-
tions was tested by comparing sidechain rotamer agreement of re-
fined models of T4-lysozyme with the X-ray crystal structure. A
rotamer of a given amino acid residue is defined by its v1–4 angles.
Sidechain conformations are classified by assigning them to the
closest rotamer in terms of v1–4 angle deviation (Dunbrack and
Karplus, 1993; Dunbrack, 2002). The total Rosetta energy is plotted
as a function of the percentage of incorrectly predicted sidechain
rotamers (Fig. 5B). In general, the Rosetta energy correlates well
with rotamer agreement, with the percent of correct rotamers pre-
dicted increasing after each round of refinement.
RMSDCa plot of T4-lysozyme models for eight cycles of full-atom refinement. Each
e refined models were filtered by total Rosetta energy, and the top 10% were refined
ound 3, dark blue; round 4, light green; round 5, dark green; round 6, yellow; round

ee Table S2) as a function of total Rosetta score. The same coloring scheme in Fig. 5A
r is referred to the web version of this article.)



Fig. 6. Atomic detail model of T4-lysozyme de novo folded with RosettaEPR. (A) Superimposition of the lowest-scoring model of T4-lysozyme (rainbow) with the 2LZM crystal
structure (gray). The RMSDCa for the lowest-scoring model to the native is 1.76 Å. Sidechains are displayed as sticks. (B) Residues 86–104. (C) Residues 126–154.
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4. Discussion

4.1. The RosettaEPR knowledge-based potential proves to be superior
to the bounded potential during de novo folding

We have demonstrated the advantages of using a knowledge-
based potential to convert EPR distance data into structural re-
straints. The potential is derived from the cone model (Alexander
et al., 2008) and has been shown to perform better than a simple
bounded potential. From a conceptual standpoint alone, the ener-
getic bonus correlates with the likelihood of observing dSL � dCb

values. As a result, the knowledge-based potential inherently uses
the structural information from SDSL-EPR data more completely
compared to the bounded scoring function used by Alexander
et al. Furthermore, the knowledge-based potential, in combination
with Rosetta’s low-resolution scoring function and de novo folding
algorithm, proves more robust in obtaining low-RMSD models of
T4-lysozyme, from which atomic detail structures can be gener-
ated through full-atom refinement.

4.2. The correlation between score and RMSD improves through
multiple rounds of refinements

The Rosetta full-atom scoring function potentially allows the
most native-like model to be identified unambiguously by its over-
all score if model accuracy is better than 2.0 Å. This model should
have the lowest overall Rosetta energy and therefore exhibit not
only the correct topology, but also native-like sidechain and back-
bone conformations. Similarly, less favorable conformations
should have higher computed energies; these models will also
have higher computed RMSDs relative to the native structure.
One therefore expects to observe an energy ‘‘funnel’’ after several
rounds of full-atom refinement, where both the score and RMSD
of the models converge to the native structure. The overall scores
of the predicted models of T4-lysozyme are plotted against their
RMSDCa relative to the crystal structure in Fig. 5. The correlation
improves after each round of filtering and refinement, resulting
in several atomic detail models with Rosetta energies comparable
to the 2LZM crystal structure, which was refined using the same
potentials as the predicted models.

4.3. RosettaEPR will be developed continuously as more data become
available

Although a larger benchmarking set would be ideal, there are a
limited number of systems for which both experimentally deter-
mined three-dimensional structures and EPR data can be obtained.
However, the resulting atomic detail models of T4-lysozyme gen-
erally satisfy the experimental EPR data, and benchmarking will
be expanded to more diverse systems as more data become avail-
able. In the mean time, a larger benchmark on a variety of proteins
of known structure using simulated data will be performed to as-
sess the general performance of the method. The current work
serves as a proof of principle. It will be interesting to test whether
similar results will be obtained for other proteins. It has already
been shown that NMR restraints greatly aid Rosetta’s ability to re-
cover native-like models (Rohl and Baker, 2002; Rohl, 2005; Bow-
ers et al., 2000; Meiler and Baker, 2003; Raman et al., 2010), a
method which is widely applicable to other biological systems,
including the fumarate sensor DcuS (Meiler and Baker, 2005) and
a chordin-like cysteine-rich (CR) repeat from procollagen IIA
(O’Leary et al., 2004). It is believed that the same will be true with
RosettaEPR after further testing and refinement.

4.4. Sparse SDSL-EPR distance data alone are not able to yield atomic
detail models

SDSL-EPR affords several advantages over other structure deter-
mination techniques, such as X-ray crystallography and NMR. No
crystallization is required, there are few size constraints, proteins,
and membrane proteins in particular, can be studied in a native-
like environment, and there is no need to assign resonance signals.
Thereby, SDSL-EPR overcomes some experimental limitations in
the high-resolution structure determination of proteins that are
large, highly flexible, or natively reside in lipid bilayers.

However, while quantitative in nature, the structural informa-
tion obtained by SDSL-EPR is limited due to the flexibility of the
spin label, which adds large uncertainties to the distances deter-
mined. Introduction of spin labels into proteins requires removal
of native cysteine residues without affecting the protein structure
and assumes that the spin label itself does not perturb the struc-
ture. Datasets obtained by SDSL-EPR remain sparse due to the
requirement to create a dedicated double-mutant for each distance
to be measured. Therefore, SDSL-EPR (a) will be applied to systems
where crystallography and NMR spectroscopy are not applicable
and (b) will be combined with crystallography and other tech-
niques to study structural dynamics of proteins.

The current work and the results presented by Alexander et al.
provide the first indication that sparse (approximately 0.25 re-
straints per residue) SDSL-EPR distance data can be combined with
Rosetta for de novo protein structure elucidation with atomic detail
accuracy. While RosettaEPR can be applied to soluble proteins, it is
expected that the need and applicability of RosettaEPR will be
highest for the structure determination of membrane proteins,
the majority of which continue to evade more traditional tech-
niques. A benchmark of RosettaEPR involving more proteins and
membrane proteins in particular will be executed as suitable data-
sets become available.

4.5. RosettaEPR will be accessible to the scientific community

Other researchers will have access to RosettaEPR via software li-
censes granted by the RosettaCommons (www.ROSETTAcom-
mons.org). These licenses are free for academic and non-profit

http://www.rosettacommons.org
http://www.rosettacommons.org
http://www.rosettacommons.org
http://www.rosettacommons.org
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institutions. To encourage usage of RosettaEPR, web tutorials will
be made available.

5. Conclusions

RosettaEPR is the first tool designed to generate high-resolution
protein structures from sparse EPR data. It can also be used in
combination with an optimized restraint-selecting algorithm (see
Kazmier et al., accompanying article in this issue) to assist exper-
imentalists in determining protein structures to high-resolution. In
the future, RosettaEPR will be modified such that it can be used to
effectively determine the structures of membrane proteins, an EPR
accessibility knowledge-based potential will be implemented, and
high-resolution modeling of the MTS spin label will be included.
The ultimate goal of this research is to optimize the structural
information that can be achieved through EPR spectroscopy.
RosettaEPR will enable the high-resolution structure elucidation
of a plethora of proteins for which structures have, until now,
not yet been determined.
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