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Review
Computational design of protein–ligand interfaces finds
optimal amino acid sequences within a small-molecule
binding site of a protein for tight binding of a specific
small molecule. It requires a search algorithm that can
rapidly sample the vast sequence and conformational
space, and a scoring function that can identify low
energy designs. This review focuses on recent advances
in computational design methods and their application
to protein–small molecule binding sites. Strategies for
increasing affinity, altering specificity, creating broad-
spectrum binding, and building novel enzymes from
scratch are described. Future prospects for applications
in drug development are discussed, including limitations
that will need to be overcome to achieve computational
design of protein therapeutics with novel modes of
action.

Introduction
Protein-based therapeutics are an important part of the
current pharmacological arsenal. Proteins offer significant
advantages over small molecules, including high specifici-
ty, low cross-reactivity and off-target effects, novel modes
of action, and better patient tolerance [1,2]. As of 2008,
>130 therapeutic proteins had been approved for use in
humans for treatment of>30 different diseases [1,3]. Their
functions are quite diverse, and include replacing deficient
or defective proteins (e.g. insulin, for the treatment of
diabetes); sequestering ligands (e.g. etanercept, a tumor
necrosis factor-a inhibitor for treatment of various auto-
immune diseases); blocking receptor interactions [e.g. ana-
kinra, an interleukin (IL)-1 receptor antagonist for
management of rheumatoid arthritis]; stimulating signal-
ing pathways (e.g. erythropoietin, an erythropoiesis stim-
ulator for treating anemia); delivering other molecules to
sites of action (e.g. denileukin diftitox, a fusion of IL-2 and
diphtheria toxin for treatment of cutaneous T-cell lympho-
ma); and serving as in vivo diagnostics (e.g. capromab
pendetide, an anti-prostate specific antigen antibody for
prostate cancer detection) (reviewed in [1]). The market for
clinical protein therapeutics, some $94 billion in 2010, is
expected to grow to half of total prescription drug sales by
2014 [2].
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Antibodies are the dominant class of biologics, with>25
approved for use, including several that are blockbuster
drugs and over 200 in clinical studies [4]. Their popularity
partly results from their ability to bind to a wide range of
protein, peptide and small-molecule targets with high
affinity and specificity. However, antibodies also have
various disadvantages that stem from the fact that they
are large, glycosylated proteins with multiple chains and
disulfide linkages [5]. Consequently, there is considerable
interest in designing ligand binding sites within non-im-
munoglobulin scaffolds for clinical applications [6] (Box 1).

Controlled manipulation of the physical and chemical
properties of proteins is crucial for drug development.
Computational protein design offers a useful strategy for
optimizing properties of lead candidates, such as stability
(Box 2), and for developing novel reagents through the
design of new functions. Moreover, unlike screening meth-
ods (e.g. directed evolution), computational design pro-
vides a general approach that also tests and expands
our understanding of the fundamental forces that underlie
protein stability, structure, folding and function.

Although the ultimate goal of automated design of
binding sites to any target is still largely out of reach,
recent years have witnessed the successful execution of a
number of proof-of-concept experiments. These include the
design of metal binding sites [7,8], non-biological cofactor
binding sites [9], protein–protein interactions [10,11], pro-
tein–peptide interactions [12,13], protein–DNA interac-
tions [14], and novel enzymes [15–18] (Box 3). Here, we
review the state of computational design of protein–ligand
interfaces, including current capabilities, challenges in the
field, and prospects for protein drug development. For this
review, we consider ligands that are typically small organic
molecules of �1000 Da.

Methods for computational interface design
Computational protein design is often described as an
inverse-folding problem, the goal of which is to identify
amino acid sequences that are compatible with a given 3D
protein structure. For interface design, structures of the
protein scaffold and ligand are inputted, and the design
algorithm proceeds through repeated rounds of sequence-
conformation searching, followed by scoring of each resul-
tant model (Figure 1). If a given model does not meet the
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Box 1. Engineered protein scaffolds as alternatives to

antibody-based drugs

A variety of scaffolds, most of which are small, soluble monomeric

proteins or protein domains, have been used for designing ‘next

generation’ antibody therapeutics [69,70]. These re-engineered

molecules bind to specific targets with high affinities and provide

several practical advantages over antibodies, including high yields

in microbial expression systems and the ability to fine-tune their

properties in vitro. Moreover, non-immunoglobulin binding pro-

teins are particularly well-suited for applications, such as in vivo

diagnostics, because their smaller sizes allow for better tissue

penetration as well as rapid clearance, which is important for

reducing background in imaging. Short plasma half-life is also an

advantage for creating reagents that can bind to toxic molecules. A

modified lipocalin that binds digoxigenin with subnanomolar

affinity has been shown to reverse completely digitalis overdosing

in animal models [71].

More than 10 engineered protein scaffolds are in clinical trials

[72], and Kalbitor (ecallantide), a 60-amino acid Kunitz domain that

inhibits plasma kallikrein, has recently been approved by the US

Food and Drug Administration for the treatment of acute attacks of

hereditary angioedema [73]. Thus far, such re-engineered protein

scaffolds have been generated by in vitro directed evolution

methods. However, they represent potential design targets for

computational methods.

Box 3. Lessons learned from de novo enzyme design

Four of the computational designs that catalyze the Kemp elimina-

tion of 5-nitrobenzisoxazole have been studied using mixed

quantum and molecular mechanics calculations [80]. The single-

step catalytic mechanism is computed to be identical to reference

reactions that are catalyzed by the hydroxide ion or glutamate in

water. No new intermediates are formed in the enzymatic processes.

Hence, the authors have concluded that further improvement of the

designs requires optimizing interactions within the active site and

increasing the reactivity of the catalytic base.

Directed evolution of a computationally designed Kemp eliminase

produces a >200-fold increase in catalytic efficiency through

incorporation of up to eight mutations [17,81]. However, these

changes also decrease thermodynamic stability and reduce activity

at elevated temperature [81]. The crystal structure of an evolved

variant shows conformational changes in one of the molecules

within the asymmetric unit, which suggests increased flexibility

within the active site. These results illustrate the difficulty of

predicting the effect of stability and dynamics on catalysis.

Kinetic studies of the most active retro-aldolase designs have

found that the pKa values of the catalytic lysine are shifted, as

predicted, but contribute only �10-fold to the rate accelerations [60].

Hydrophobic substrate binding interactions contribute �500-fold to

the rate acceleration, whereas an explicitly-bound water designed to

aid in proton shuffling is not involved in catalysis. Tight product

inhibition and lack of stereospecificity are observed, which suggest

that positioning of substrate interactions and catalytic groups needs

to be optimized.

MD simulations of a different retro-aldol design have been

conducted, in which product inhibition is not a limiting factor [82].

Fluctuations within the active site distort its geometry and prevent

proton abstraction by the designed His–Asp dyad. These results

indicate that protein dynamics play an important role in the catalytic

efficiency of this enzyme.

Taken together, these studies indicate that more finely-tuned

geometries and a better understanding of dynamics in the active

site are needed to improve catalytic efficiencies of designed
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predetermined scoring criteria, it undergoes further per-
turbation by the search algorithm. The cycle continues
until a model meets the scoring criteria and is outputted
as a sequence and/or 3D protein–ligand model. Typically,
several thousandmodels are outputted for iterative rounds
of design and evaluation.

Designmethods share two general components: a search
algorithm to sample efficiently the vast sequence–conforma-
Box 2. Increasing stability through computational protein

design

One factor that often limits the efficacy of protein therapeutics is

their stability. Computational design offers an automated way of

improving the stability of proteins, and has been recently applied to

bacterial cocaine esterase (CocE), a potential candidate for treat-

ment of cocaine overdose and addiction. CocE is the most efficient

cocaine-degrading enzyme characterized thus far, and provides

effective protection and reversal of cocaine toxicity in mice [74].

However, CocE is unstable at physiological temperatures (in vitro

half-life �13 min at 378C) [75], which severely limits its development

as a therapeutic agent.

CocE presents distinct challenges for computational design

because it is relatively large (574 amino acids), contains three

domains, and is an enzyme. To help identify sites that could be

altered without affecting the structure or dynamics of the active site,

MD simulations have been performed at high temperature [76]. The

simulations reveal conformational changes in a stretch of �30

residues adjacent to the active site that might lead to enzyme

inactivation. Residues within this region have been selected for

computational redesign, and 34 mutations have been predicted to

be stabilizing [77].

The most thermostable variant is a double mutant (L169K/G173Q),

which displays an in vitro half-life of 2.9 days at 378C and

temperature inactivation at 42–488C [78]. Pretreatment of mice with

L169K/G173Q provides improved protection from cocaine-induced

lethality and suppresses the reinforcing properties of cocaine [78].

Although the in vitro half-life improves by 340-fold, the serum half-

life of L169K/G173Q is similar to WT (2.3 vs. 2.2 h). The pharmaco-

kinetic properties must be improved for L169K/G173Q to become a

viable therapeutic agent. The authors note that further modification

of L169K/G173Q, such as PEGylation [79], might help increase its

half-life in vivo.

enzymes. Methods for increased conformational sampling should

aid design efforts, although it is unclear whether existing protein

scaffolds can be easily remodeled to accommodate desired active

site features. New methods for constructing large numbers of de

novo backbone structures have been described recently [83], and

these templates might provide better starting points for introdu-

cing novel functionalities.
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tion space, and a scoring function to discriminate optimal
from sub-optimal sequences (Figure 1). Systematic or brute-
force searching of all possible sequence and conformational
permutations is not possible, even for relatively simple
systems; therefore, several approximations are typically
made. First, amino acid side chains are represented by a
set of discrete conformations called rotamers. Rotamers are
derived from the most frequently observed conformations
seen in the Protein Data Bank (PDB) [19], and rotamer
libraries can be dependent or independent of the local
backbone conformation. Second, the protein backbone is
often kept rigid during the actual design procedure; some
protocolsminimizeall degreesof freedomafter completionof
the design procedure, or in an iterative fashion [20]. Third,
iterative rounds of design with increasing resolution are
used to focus the conformation and sequence search.

The search space algorithms can be further classified as
either deterministic or stochastic (Figure 1). Deterministic
methods, suchasdead-endelimination, donotalways arrive
at a solution, however when they do, it can be mathemati-
cally proven to be the global energyminimum [21]. Stochas-
tic search algorithms, such as Monte Carlo–Metropolis
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Figure 1. General components of an interface design algorithm, with protein and ligand structures as inputs for design. Rotamer libraries of statistically probable

conformations of amino acid side chains or ligands reduce the degrees-of-freedom of the search. After multiple cycles of sequence–conformation searching and scoring,

models are outputted that meet scoring criteria.
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(MCM) with simulated annealing [22,23], fast and accurate
side chain topology and energy refinement (FASTER) [24],
genetic algorithms [25], and self-consistent mean-field
(SCMF) optimization [26], always find a solution to a search
query; however, the solution is not guaranteed to be math-
ematically optimal.

The energy functions used to score and evaluate protein
sequence–structure models represent a compromise be-
tween speed and accuracy (Figure 1). Physics-based energy
potentials rely on accurate models of the basic forces that
constitute the free energy of a protein [27], but are compu-
tationally expensive to be used for design.Knowledge-based
energy potentials are derived through statistical analysis of
structuresdeposited in thePDB, and capture largeamounts
of empirically-deriveddata intoefficientmathematical func-
tions [28,29]. In practice, most design programs use some
combination of both. Explicit modeling of individual water
molecules is impractical, thus, the solvent is treated implic-
itly as a continuum (e.g. by a desolvation penalty for the
burial of polar groups, as in theRosetta algorithm [30]). Van
der Waals interactions are typically described by a Len-
nard–Jones potential, which is sometimes softened so that it
is less sensitive to small-atom overlaps caused by fixed
rotamer sampling. Hydrogen bonds are explicitly consid-
ered because the strength of the interaction is dependent on
both distance and orientation between donor and acceptor
groups. The energies of designed sequences are determined
with respect to a reference state, usually the unfolded
protein [31]; however, most algorithms ignore the effect of
mutations on the unfolded state, and instead, represent it
through a constant amino acid reference energy [28]. The
relative weights of the various energy terms are adjusted
empirically to match experimental data.

To increase efficiency, design algorithms require pair-
wise decomposable terms (i.e. no interaction involves more
than two functional groups). This procedure allows deter-
mination of the interaction energy between two amino acid
side chains, independent from all others. As a result, pair-
wise interaction energies between all possible side chains
and conformations in all positions can be pre-computed
and stored in a database. The actual design simulation
relies on look-up and summation of these energy terms.
This strategy is impractical for higher-order interactions
because their number increases exponentially.

Design protocols have difficulty modeling flexibility at
binding interfaces
Traditionally, protein design has relied on methods that
approximate the lock-and-key (LK) model of binding
(Figure 2). Protein backbones are held fixed, and only
residue side chains are allowed to change conformation.
In some cases, small w/c angle adjustments are allowed on
the protein backbone during gradient minimization of the
ligand complex to accommodate slight changes in confor-
mation. The magnitude of these changes is small; there-
fore, these methods severely restrict the diversity of
sequences that can be designed. These limitations in sam-
pling can bemitigated by using expanded rotamer libraries
at the cost of increased computing times [32,33].

Conformational mobility is an intrinsic property of pro-
teins that allows them to adjust upon binding. In crystal
structures of protein–ligand complexes, 70–100% of the
ligand is usually buried [34], which is consistent with in-
duced fit (IF)models of binding (Figure 2). It has been shown
that using a single, static receptor conformation in molecu-
lar docking algorithms results in incorrect binding poses for
50–70% of all ligands [35]. Thus, for the computational
design of protein–ligand interfaces to progress, structural
plasticity of the interacting partners needs to be considered.
Incorporation of backbone flexibility into protein design is
161
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Figure 2. Ligand binding paradigms and corresponding computational design strategies. The four binding paradigms outlined in the text are listed in the colored badges,

with schematics immediately to the right: LK (orange); CS (purple); IF (blue); hybrid CS/IF (green). Possible computational design strategies are presented for each binding

mode. Abbreviations: BB, backbone; lig, ligand.
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non-trivial because it massively increases the search space
and requires scoring functions that can discriminate be-
tween alternate backbone conformations. However, recent
designs of protein–peptide, protein–protein and protein–

small molecule interfaces illustrate some of the methodo-
logical advances in sampling strategies.

Protein backbone flexibility

The conformational selection (CS)model of bindingproposes
that unbound receptors exist as an ensemble of conformers,
and that energetically preferred states are selected upon
ligand binding [36] (Figure 2). Normal mode analysis has
been used to create a backbone ensemble, which enables the
design ofmore diverse BH3 peptide sequences that bind the
anti-apoptotic protein Bcl-xl [37]. Structural ensembles
generated from either NMR data (60 backbones) or molecu-
lar dynamics (MD) simulations (128 backbones) have been
successfully used as inputs for design using a new FASTER
search algorithm [38].

Sampling correlated side chain–backbone ‘backrub’
motions that are frequently seen in high-resolution crystal
structures [39] has allowed efficient approximation of local
conformational changes [40,41]. Small backrub moves
improve modeling of side chain order parameters obtained
from NMR experiments [42]. Moreover, larger amplitude
backrub moves have been used to obtain backbone ensem-
bles of ubiquitin that are consistent with native-state
dynamics measured by residual dipolar couplings [43].

A method that uses constrained backbone sampling to
remodel flexible loops has been used to alter the substrate
specificity of human guanine deaminase [44]. The goal is to
162
introduce cytosine deaminase activity into a human scaf-
fold to create a prodrug-activating enzyme with low immu-
nogenicity, for use in suicide gene chemotherapy.
Remodeling of a crucial active-site loop produces an en-
zyme that is 25,000-fold less active on guanine than the
wild type (WT) enzyme and 100-fold more active on amme-
lide, a structural intermediate between guanine and cyto-
sine. An X-ray structure of the designed apoprotein shows
that the backbone root mean square deviation between the
remodeled loop and the computational model is within 1 Å.
The authors note that further optimization of the substrate
binding interface might require flexible backbone design of
the surrounding regions to increase catalytic activity.

Ligand flexibility

In addition to protein flexibility, efforts have been made to
develop methods for accommodating ligand flexibility in
interface design [45,46]. The use of rotamer libraries for
small molecules is advantageous because it aligns with the
rotamer libraries that are used for sampling amino acid
side chains. Although this procedure is relatively straight-
forward for ligands that contain standard amino acids,
Kaufmann et al. have demonstrated that modeling of
ligands with more than four rotatable bonds requires
splitting the ligand into multiple fragments for dense
sampling [47]. The authors have created ligand rotamers
using the Cambridge Structural Database of small mole-
cules. Statistically derived potentials similar to those for
the protein design energy functions have been generated
and used to populate a predefined ligand rotamer library.
By combining the techniques to model ligand flexibility
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Figure 3. Crystallographic B-factors mapped onto X-ray structures of 1m4w designs. WT protein (1m4w_WT) and two design variants (1m4w_6 and 1m4w_6w20v48) are

shown as ribbon diagrams, in which the width and color are proportional to the B-factor at each residue (values increase from blue to red and as ribbon gets wider). The

protein resembles a hand with the binding pocket located in a cleft between the ‘thumb’ and ‘fingers’. Higher B-factors in the thumb and fingers of the designed structures

indicate a shift in the dynamics of the binding pocket.
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with those to model protein flexibility, both the IF binding
model and a hybrid CS/IF binding model can be approxi-
mated [48] (Figure 2).

Interface dynamics

A recent study has highlighted the still little understood
influence of protein dynamics on designing a ligand inter-
face de novo. Mutations introduced into a thermophilic
jellyroll template (1m4w) to achieve binding to a ligand,
altered the dynamics observed in the binding site [49]
(Figure 3). A high-resolution X-ray structure of one of
the designs (1m4w_6) was determined and revealed an
unanticipated expansion of the binding pocket. Increased
temperature factors (B-factors) in two regions on either
side of the interface were also observed (Figure 3). B-
factors reflect the thermal vibrations of an atom and are
indicative of dynamic flexibility. Two residues of 1m4w_6
were mutated back to WT (1m4w_6w20v48), which closed
the binding pocket as predicted but failed to restore the
rigidity of the structure (Figure 3). Increased dynamics at
the designed interface might explain the absence of high-
affinity ligand binding.

Prediction of the effects of internal dynamics on compu-
tationally designed models is an inherent limitation of the
design process. Computational design methods ignore
changes in protein dynamics, and although sets of discrete
conformations are sampled, the time scale of motions is not
considered. New MD approaches help define the dynamic
properties of interfaces upon binding [50–52]. Unfortunate-
ly, MD methods are typically computationally too expen-
sive to be incorporated in sequence–conformation sampling
during protein design. Present strategies use MD to gen-
erate conformational ensembles beforehand [38,53] or to
analyze selected models afterwards [54]. Finding ways of
integrating dynamics into ligand-interface design will be
important for achieving precise placement of functional
groups and improving the activity of de novo designed
enzymes (Box 3).

Accurate modeling of solvation and electrostatics at
interfaces is crucial
Electrostatic interactions, such as salt bridges and hydro-
gen bonds, are often essential for binding specificity and
catalysis, but are difficult to model because their strength
is determined by their environment (i.e. they are not pair-
wise additive). Moreover, electrostatics are coupled tightly
to solvation. Polar residues on the surface interact with
solvent molecules; therefore, to form intermolecular con-
tacts, the gain in energy must be sufficient to overcome the
cost of desolvation. The challenge is to model solvation
energies and electrostatic effects rapidly, yet accurately.

For continuum solvent models, the electrostatic poten-
tial of an amino acid residue is most accurately measured
by solving the Poisson–Boltzmann (PB) equation [55]. In
PB calculations, the protein is treated as a low dielectric
solute that contains point charges surrounded by a high
dielectric medium. The PB model captures the environ-
ment-dependent nature of electrostatic interactions, but is
computationally too expensive to be used during the pro-
tein design protocol. Generalized Born (GB) models offer a
fast approximation to the PB equation [56] and have been
used in protein design. The unmodified physics-based
CHARMM22 molecular mechanics potential energy func-
tion and GBmodels of solvation have been used to redesign
the ligand binding site of ribose binding protein [33]. It has
been found that ligand interactions with polar groups in
the protein are almost exactly counterbalanced by inter-
actions with water in the unbound protein; using a less-
accurate GB model produces sequences that bind poorly to
ribose. Likewise, the added computational expense of in-
cluding accurate GBmodels has been necessary to alter the
cofactor specificity of a xylose reductase [57].

Strategies employed in the redesign of antibody–anti-
gen interactions can help guide the design of high-affinity
protein–protein interfaces. An iterative computational de-
sign procedure that focuses on electrostatics has been used
to introduce point mutations that improve target binding
through one of two mechanisms: (i) by replacing a poorly
satisfied hydrogen bond donor/acceptor with a hydrophobic
residue; or (ii) by introducing a charged interaction at the
binding site periphery [58]. Combination of designedmuta-
tions has led to a 140-fold improvement in a lysozyme-
binding antibody and a 10-fold improvement in cetuximab,
a therapeutic antibody that binds to epidermal growth
factor receptor, and that is used for treatment ofmetastatic
colorectal cancer and squamous cell carcinoma. The
163
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authors also have shown that computed electrostatics
alone using a PB model is a better predictor of stabilizing
mutations than total free energy [58]. The identification of
known affinity-enhancing mutations in the anti-fluoresce-
in antibody 4-4-20 demonstrates the applicability to small-
molecule haptens, although other mutations that are pre-
dicted to improve fluorescein binding remain to be tested.

Explicit water molecules

Continuum solvation models fail to capture the energetics
of tightly boundwatermolecules, which can be problematic
if individual water molecules are directly involved in li-
gand interactions or catalysis. One solution is to use sol-
vated rotamers that include themost common positions for
coordinated water atoms, as observed in the PDB [59].
Solvated rotamers are, however, limited by the fixed ori-
entation of the water in relation to the coordinating side
chain atoms. Furthermore, bridging water molecules that
are bound by more than one residue cannot be accommo-
dated. Improved modeling of explicit water molecules
should aid protein–ligand design efforts. Inclusion of an
explicit water molecule in the active site significantly
improves the success rate in designs of retro-aldol enzymes
[16], although the water molecule does not appear to
contribute to catalysis [60] (Box 3).

Designing for specificity versus promiscuity
Therapeutic proteins must be able to recognize their
targets in the context of crowded cellular environments.
This requires high specificity in addition to stability.
Positive design alone has been sufficient to achieve spe-
cific binding when the structure of the desired complex is
significantly different from undesirable ones [13]. How-
ever, explicit design against competing states (i.e. nega-
tive design) is crucial when the structures of the target
and off-target complexes are similar [61–63]. Although
most studies have designed against one or a few alterna-
tive complexes, Grigoryan et al. have conducted a large
experiment that has combined integer linear program-
ming with cluster expansion to maximize the energy
difference between target and off-target complexes, while
minimizing losses in stability [12]. Using these methods,
basic leucine zipper (bZIP)-binding peptides selective for
targets over all other 19 bZIP families have been
designed. Multi-state design has also been applied to
large structural ensembles [38].

Computational methods have been developed that en-
able the design of a single protein sequence that binds to
multiple targets. For example, a ‘multi-constraint’ design
has been used to optimize binding of promiscuous inter-
faces to all known partners simultaneously [64]. These
results can then be compared to interfaces that are rede-
signed against each interaction partner separately. These
studies have revealed two different strategies for binding:
shared interfaces, in which a small subset of residues form
‘hot spots’ that are used by all binding partners, and multi-
faceted interfaces, in which different subsets of residues
are used by each binding partner. Shared interfaces might
be better small-molecule targets; as such, it might be
possible to predict mutations at specific positions that alter
specificity or promiscuity.
164
De novo enzyme design
Although the automated design of protein–ligand interfaces
is ‘not a solved problem’ [65], there has been exciting prog-
ress in the computational design of new enzyme active sites.
To this end, a series of papers has been published on the de
novodesignof enzymes that catalyzeKempelimination [17],
retro-aldol cleavage [16], and Diels–Alder reactions [18].
The basic strategy is to build a model of the reaction transi-
tion state surrounded by suitably placed catalytic groups.
Formultiple step reactions, suchas retro-aldol cleavage, the
active site is described by a composite of superimposed
transition states and intermediates [16]. One might then
search a set of protein scaffolds for potential positions that
can retain the active site geometry. After grafting the active
site onto a selected candidate, the protein is redesigned to
optimize transition state binding affinity [66].

High-resolution crystal structures of active designs con-
firm the atomic accuracy of the design process. Still, the
designed proteins are rather poor catalysts compared to
naturally-occurring enzymes. Follow-up studies have
helped to reveal the origins of catalytic efficiency for the
computationally designed Kemp eliminases and retro-
aldolases, and to identify reasons for the reduced activities
(Box 3).

Concluding remarks
Although computational design holds great potential for
the development of new protein-based therapeutics with
novel modes of action, many challenges remain. To achieve
de novo design of protein–ligand interfaces, technological
advances are needed in: (i) accommodating backbone and
ligand flexibility; (ii) developing rapid methods to accu-
rately model electrostatics and solvation; and (iii) explicit
modeling of cofactors and water molecules at the binding
interface. In particular, comprehensive benchmark sys-
tems are needed to monitor methodological progress in
all three areas. Modeling dynamic modes of binding part-
ners in bound and unbound states during the design
procedure remains computationally intractable for the
time being. Experimental and computational analysis of
the dynamics of starting scaffold and designed proteins
should be conducted to build a body of data; such data will
help to adjust computational design protocols to account
better for protein and ligand dynamics during the design
simulation. High-resolution structures of designed inter-
faces together with detailed characterization of successful
and unsuccessful designs will be crucial for improving
computational methods.

Using computational methods in conjunction with func-
tional screening techniques could be themost effective way
to design protein drugs. On one hand, in silicomethods can
exploremuch larger portions of sequence space than can be
accessed experimentally, and can be used to design tar-
geted libraries that are enriched in functional sequences
[64,67,68]. Directed evolution, on the other hand, allows
high-throughput identification of lead candidates even if
the underlying mechanisms of action are not well under-
stood. Iterating between computational and experimental
techniques should also provide greater insights into struc-
ture–dynamic-activity relationships that will further in-
form protein therapeutic development.
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