
 
Abstract—Machine Learning techniques are successfully 

applied to establish quantitative relations between chemical 
structure and biological activity (QSAR), i.e. classify compounds 
as active or inactive with respect to a specific target biological 
system. This paper presents a comparison of Artificial Neural 
Networks (ANN), Support Vector Machines (SVM), and Decision 
Trees (DT) in an effort to identify potentiators of metabotropic 
glutamate receptor 5 (mGluR5), compounds that have potential 
as novel treatments against schizophrenia. When training and 
testing each of the three techniques on the same dataset 
enrichments of 61, 64, and 43 were obtained and an area under 
the curve (AUC) of 0.77, 0.78, and 0.63 was determined for 
ANNs, SVMs, and DTs, respectively. For the top percentile of 
predicted active compounds, the true positives for all three 
methods were highly similar, while the inactives were diverse 
offering the potential use of jury approaches to improve 
prediction accuracy. 

Index Terms—Machine Learning, quantitative structure 
activity relationship (QSAR), Artificial Neural Network (ANN), 
Support Vector Machine (SVM), Decision Trees (DT), area under 
the curve (AUC), receiver operator characteristics (ROC), high-
throughput screening (HTS) 

I. INTRODUCTION

N this paper we present a comparison of three machine 
learning techniques applied to a specific Quantitative 

Structure Activity Relationship (QSAR) [1], [2] problem. 
Machine Learning algorithms have proven to be of practical 
value for approximating nonlinear separable data, especially 
for classifying biological target data [3], [4]. Artificial neural 
networks (ANN) [5], [6] support vector machines (SVM) [7], 
[8] as well as decision trees (DT) [9] have been applied in the 
past.  

Burton et al. [10] reviewed application of several types of 
ANNs for establishing QSARs and highlighted potential 
difficulties and challenges in their application. An overview of 
ANNs, their limitations, and their use in evaluating chemical 
structure data was presented by Winkler [5]. Hecht et al. [11] 
predict dihydrofolate reductase inhibition based on data 
derived from high-throughput screening (HTS). Fogel [12] 
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analyzed a combination of clustering and ANNs prescreen 
compounds for HIV inhibition optimizing specificity and 
potency.  

Fang et al. [13] presented an effective application of SVMs 
in mining HTS data from a type I methionine aminopeptidases 
(MetAPs) inhibition study. This method was applied on a 
compound library of 43,736 organic small molecules and 50% 
of the active molecules could be recovered by screening just 
7% of the test set. According to Plewczynski et al. [14], a 
SVM was able to achieve classification rates of up to 100% in 
evaluating the activity of compounds with respect to specific 
targets. Their overall hit rate, however, was somewhat lower, 
80%. Stahura and Bajorath [15] looked at several 
computational approaches, including SVMs, as a way to 
complement HTS.  

An approach combining SVMs and recursive partitioning 
by DTs to predict the metabolic stability of compounds is 
described by Sakiyama et al. [16]. The same publication also 
discusses logistic regression and random forest approaches. 
Similarly, Baurin et al. [17] consider numerous statistical and 
computational techniques, including DTs, in their 2D-QSAR 
models for COX-2 inhibition based on the 193,447-compound 
NCI database. 

Burton et al. [10] applied DTs in combination with a 
statistical learning method for predicting the CYP1A2 and 
CYP2D6 inhibition. CYP2D6 datasets provided eleven models 
with an accuracy of over 80%, while CYP1A2 datasets 
counted five high-accuracy models for HTS. The application 
of DTs in drug discovery is discussed by Rusinko et al. [18]. 
Their research focuses on a dataset with 1,650 monoamine 
oxidase inhibitors. Recently, Simmons et al. [19], [20] 
described an ensemble based DT model to virtually screen and 
prioritize compounds for acquisition. 

In the present work three different approaches are applied to 
in silico screening for potentiators of metabotropic glutamate 
receptor subtype 5 (mGluR5). Selective potentiators of the 
metabotropic glutamate receptor subtype mGluR5 have 
exciting potential for development of novel treatment 
strategies for schizophrenia and other disorders that disrupt 
cognitive function [21]. The latest generation of selective 
mGluR5 potentiators is based on the lead compound CDPPB 
and features systemically active compounds with long half-
lives that cross the blood-brain barrier [22]. 

The accuracy of each of the machine learning techniques is 
depicted by way of receiver operating characteristic (ROC) 
curves [23] and compared by area under the curve (AUC) as 
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well as enrichment values. This paper is organized as follows: 
Section II provides an overview of the Machine Learning 
techniques used, section III describes the generated QSAR 
training data and its descriptors. Section IV introduces the 
methods and their implementations. Section V states the result 
achieved with the approach. Concluding remarks are given in 
Section VI.  

II. MACHINE LEARNING TECHNIQUES

A. Artificial Neural Networks 
ANNs model the human brain and its capability to 

recognize patterns. Therefore, in the simplest ANN in silico
model systems interlink several layers of neurons by weighted 
connections wij. The input data xi to the first layer are summed 
up according to their weights and modified by the activation 
function K:

(1) 

The output fj then serves as input to the j-th neuron of the next 
layer (Fig. 1). 

Fig. 1. Schematic view of an ANN: Schematic view of an ANN: Up to 1,252 
descriptors are fed into the input layer. The weighted sum of the input data is 
modified by the activation function and serves as input to the next layer. The 
output describes the biological activity of the molecule.

The difference between the calculated output and the target 
value in a supervised training scheme determines the change 
of each weight (back-propagation of errors). The training of 
the ANN consists of an iteration of weight changes that 
minimizes the root mean square deviation rmsd between 
experimental and predicted biological activity. For an 
overview on ANNs and their application in chemistry see for 
instance Zupan [24]. 

(2) 

The present ANNs have up to 1,252 inputs, eight hidden 
neurons, and one output (biological activity). The logistic 
function  

 (3) 

is applied as activation function K of the neurons. The training 

method used is Resilient Propagation [25], a supervised 
learning approach. 

B. Support Vector Machines 
SVM learning with the extension for regression estimation 

is the second approach of machine learning [26], [27]. The 
main characteristics are the estimation of the regression using 
linear functions defined in high-dimensional feature space 
[28], risk minimization according to Vapnik’s  - intensive 
loss function [29], as well as structural risk minimization 
which minimizes the risk function consisting of the empirical 
error and the regularized term [29]. 

A training data set can be described as 
 with  where  is the total number of 

available input data pairs consisting of molecular descriptor 
data and biological activity. For the approximation the SVM 
considers the following function: 

(4) 

where  describes a function that performs a nonlinear 
transformation from the given input space . The parameters 

 and  are estimated by finding the minimum of Vapnik’s 
linear loss function with insensitivity zone as a measure of the 
error of approximation: 

 (5)  

        

Thus, the loss is equal to zero if the difference between the 
predicted  and the measured value  is less than .
Vapnik’s insensitivity loss function defines an  - tube       
(Fig 2). 

Fig. 2. Schematic of a Support Vector  - tube : data points in   – tube are not 
penalized, while points outside  the tube get a penalty  according  to their 
distance from the tube edge.

If the predicted value is within the  - tube the loss (error) is 
zero. For all other predicted points outside the tube, the loss 
equals the magnitude of the difference between the predicted 
value and the edge of the tube. Minimizing the following 
function  results in solving the regression problem: 
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(6) 

under constraints  

(7)

where and are slack variables shown in Fig. 2 for 
measurements above and below an  - tube, respectively. 
Both slack variables are positive values and their magnitude 
can be controlled by penalty parameter . This optimization 
problem is then transformed into the dual problem, and its 
solution is given by: 

 (8)  

where  and are the Lagrange multipliers corresponding 
to and , is the number of support vectors  and 

 is the kernel function. The Gaussian kernel was used 
to train the Support Vector Machine. The constant
influences a tradeoff between an approximation error and the 
weight vector norm. The optimal parameter  is chosen 
using cross validation on a monitoring dataset. An increase in 

penalizes larger errors (large and  ) and leads to an 
decrease of the prediction error for the training dataset. 
However, this can be achieved only by increasing the weight 
vector norm . While an increase in  reduces the 
prediction error for the training dataset it does not guarantee a 
small generalization performance of a model due to possible 
over-fitting. Hence needs to be optimized by minimizing 
the error of a monitoring dataset. Another design parameter is 
the required precision embodied in an  value that defines the 
size of an  - tube.  

C. Decision Trees 
The third type of machine learning approach used in this 

research is DT learning. Its output is a tree diagram or 
dendrogram (Fig. 3), a model that describes how a given 
dataset can be classified by assessing a number of predictor 
variables and a dependent variable. 

 (9)  

This is achieved by way of a partitioning algorithm, which 
gauges each predictor to determine which values of that 
predictor, if any, can be used to forecast the value of the 
dependant variable. The dataset is then successively split into 
subsets (nodes) by the descriptor that produces the greater 
purity in the resulting subsets. The predictive power of a 
descriptor can be ascertained in a number of ways. 

For instance, the CHAID algorithm, developed by Kass [30] 
uses a chi-squared test for predictor evaluation: 

 (10) 

where  is the test statistic,  is the observed frequency, 
is the expected frequency asserted by a null hypothesis and 
the number of possible outcomes of each event. 

Another common approach to selecting a descriptor for a 
split relies on entropy (11) and information gain (12) (e.g. ID3 
and C4.5 algorithms [31]): 

 (11) 

 (12) 

In equation 11, H(X) denotes entropy, X is a discrete random 
variable, x a given state of X, and p(x) the probability of x.
Equation 12 describes information gain, comparing a true 
probability distribution p(X) and an arbitrary probability 
distribution q(X).

The splitting process continues until a predefined number of 
nodes has been created (or some other termination criterion is 
met) to avoid over-fitting. Alternatively, the entire tree can 
first be generated and then reduced in size by a technique 
called pruning that eliminates nodes and branches that are not 
statistically significant.  

DT learning produces a sequence of splitting criteria, which 
after being established in an initial run (training), can be used 
to classify a new, independent dataset. 

Fig. 3. An example of a decision tree. The initial dataset is first split according 
to descriptor 1 into two subsets, set 1 and set 2. Set 2 is in turn partitioned into 
two more subsets by descriptor2, creating set 3 and set 4. Finally, set 3 is 
divided into set 5 and set 6 by descriptor 3.
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descriptor 1

set 1 set 2 

>32 <=32 

descriptor 2 

set 3 set 4 

>50 <=50 

descriptor 3

set 5 set 6 

<=3.45
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III. TRAINING DATA

Glutamate is the primary excitatory neurotransmitter in the 
mammalian central nervous system (CNS) and is responsible 
for generation of fast excitatory synaptic responses at the vast 
majority of CNS synapses [32]. Fast synaptic responses at 
glutamatergic synapses are mediated by activation of a well 
characterized family of glutamate receptor cation channels 
referred to as the ionotropic glutamate receptors (iGluRs). In 
addition, glutamate activates metabotropic glutamate receptors 
(mGluRs), which are coupled to effector systems through 
GTP-binding proteins [33], [34]. The mGluRs provide a 
mechanism by which glutamate can modulate or fine tune 
activity at the same synapses at which it elicits fast synaptic 
responses. Because of the ubiquitous distribution of 
glutamatergic synapses, mGluRs participate in a wide variety 
of functions of the CNS [33], [35], [36].  

A number of recent studies suggest that activation of one of 
the mGluRs, mGluR5, could have robust effects in forebrain 
circuits thought to be disrupted in schizophrenia. Hence, it was 
postulated that activators of mGluR5 could provide novel 
therapeutic agents that may be useful for treatment of this 
disorder [37], [38]. 

In a high throughput screen 144,475 compounds were tested 
for allosteric potentiation of mGluR5 using full automation in 
conjunction with the Vanderbilt HTS facility. Receptor-
induced intracellular release of calcium was measured by 
utilizing an imaging-based plate reader that makes 
simultaneous measurements of calcium levels in each well of a 
384 plate (Hamamatsu FDSS). Outliers were evaluated by 
visual inspection to ensure the quality of hit selection. Putative 
hits were confirmed and their concentration response was 
assayed. 1,387 compounds were verified as potentiators of 
mGluR5.  

To apply the compound data towards the machines learning 
approaches, each molecule is numerically described by a 
molecular fingerprint. For the descriptor calculation (Table I) 
the external software suite ADRIANA [39] was utilized. 

IV. IMPLEMENTATION / METHOD

The BioChemistryLibrary (BCL) is a class library written in 
the C++ programming language that includes classes to model 
both rather small organic molecules and larger molecules such 
as proteins, DNA, and RNA. Both the ANNs and SVMs were 
implemented within this framework. 

A third-party DT generation application called FIRM 
(Formal Inference-based Recursive Modeling) [40], which 
works with both categorical and continuous dependent 
variables and improves on the CHAID recursive partitioning 
algorithm [30], was used for the DT evaluation. FIRM was 
applied to the same training and independent datasets as the 
ANN and SVM.  

A. Dataset generation 
The datasets used in this research were derived from a 

database of 144,475 compounds as a maximally diverse subset 
of the commercially available compounds contained in the 
ChemBridge and ChemDiv libraries. An initial HTS revealed 
that 1,356 of these compounds were mGluR5 potentiators. Of 
the total, 14,448 (10%) compounds were set aside for 
monitoring and an additional 14,448 (10%) were reserved for 
independent testing of QSAR models, leaving 115,581 (80%) 
for the actual training. The overall number of active 
compounds in the independent dataset was 134, giving an 
active compound rate of 134/14,448=0.93%. 

B. Selection of optimal descriptor set 
A set of 1,252 descriptors in 35 categories was generated 

using the commercial ADRIANA.Code software [39]. The 35 
categories consist of eight scalar descriptors, eight 2D and 3D 
auto-correlation functions each, eight radial distribution 
functions, and three surface-auto-correlation functions (see 
Table I). 

TABLE I
 THE ORIGINAL MOLECULAR DESCRIPTORS BY CATEGORY

 Descriptor 
Name 

Description 

Scalar descriptors Weight Molecular weight of compound  
HDon Number of hydrogen bonding acceptors 

derived from the sum of nitrogen and 
oxygen atoms in the molecule 

HAcc Number of hydrogen bonding donors 
derived from the sum of N-H and O-H 
groups in the molecule 

XlogP Octanol/water partition coefficient in 
[log units] of the molecule following 
the XlogP approach 

TPSA Topological polar surface area in [Å2]
of the molecule derived from polar 2D 
fragments 

Polariz Mean molecular polarizability in [Å3] of 
the molecule  

 Dipol Dipole moment in [Debye] of the 
molecule 

 LogS Solubility of the molecule in water in 
[log units]  

Vector descriptors Ident  weighted by atom identities 
2D Autocorrelation SigChg weighted by  atom charges 
(11 descriptors) / PiChg weighted by  atom charges 
3D Autocorrelation TotChg weighted by sum of  and  charges 
(12 descriptors) / SigEN weighted by  atom electronegativities 
Radial Distribution PiEN weighted by  atom electronegativities 
Function (128 
descriptors)

LpEN weighted by lone pair 
electronegativities 

Polariz weighted by effective atom 
polarizabilities 

   
Surface 
autocorrelation 

ESP Autocorrelation functions weighted by 
the molecular electrostatic potential 

(12 descriptors) HBP Autocorrelation functions weighted by 
the hydrogen bonding potential  

HPP Autocorrelation functions weighted by 
the hydrophobicity potential 

To assess the capability of machine learning approaches for 
‘classic’ QSAR, an ANN was trained only on the eight scalar 
descriptors. The quality of the model was measured by 
generating a ROC curve from the independent data set (Fig. 
6). Implementing all 1,252 descriptors into the input gives a 
significant improvement in the quality of the model (Fig. 6). 
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In the next step systematically the least 
parameters were removed to reduce noise. T
significance of each input the ANN is con
multidimensional function 
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V. RESULT
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Fig. 6. ROC curves for all three methods on a logarithmic scale. The baseline 
is dotted, the solid black line is the DT, dashed line is the ANN, and the solid 
gray line is the SVM. Again, the scale of the horizontal axis is logarithmic. 

TABLE II
AUC AND ENRICHMENT FOR ALL THREE METHODS

Method ANN SVM DT 
AUC 0.77 0.78 0.63 
enrichment 61 64 43 

To test the predictive capabilities of the ANN, it was 
applied to the independent dataset containing compounds not 
used in training. At a cutoff of 2μM, the ANN predicted 19 
compounds to be active, eleven of which are known to be 
active (TP) and eight compounds to be inactive (FP), giving 
an enrichment of 61 (=11/19*144,475/1,356).  

In a similar procedure the SVM was trained and the 
compounds in the independent data set were predicted for their 
activity. Considering just the top 10th percentile of the data at a 
cutoff of 7 μM, 20 molecules were predicted to be active with 
12 of them being true positives. This results in an enrichment 
of 64 (=12/20*144,475/1,356) which is slightly better than the 
performance of the ANNs. The enrichments and AUCs 
achieved can be seen in Table II 

FIRM was trained on the training dataset and the generated 
partitioning data were then applied to the independent dataset. 
Each compound was evaluated and assigned a predicted 
activity ranging from 0 to 100 for each compound, zero 
denoting a total lack of projected activity, and 100 signifying a 
fully active compound.  

Each of the descriptor variables was evaluated individually, 
including the elements of the vector descriptors, and assigned 
merge/split values of 2.9/3.0. The maximum number of groups 
to be analyzed was set to 800, the minimum conservative 
significance level was given as 0.25, and all other parameters 
were left at their default values. These parameters were 
optimized on the monitoring dataset. Generation of the DT 

took slightly over an hour on a single core of a quad-core 
3GHz Intel Xeon microprocessor under the 64-bit version of 
Red Hat Enterprise Linux 5.2.  

Looking only at the top percentile, 34 compounds were 
predicted to be active, and 14 of them were true positives. The 
enrichment was therefore 43, which is slightly reduced when 
compared to the enrichment achieved by the other methods. 
Fig. 6 shows the ROC curves for the three methods. 

To determine the potential benefit from applying a 
combination of these machine learning techniques the 
predicted compounds were analyzed for overlap. The results 
are given in the table below. 

TABLE III
TRUE POSITIVES (TP) AND FALSE POSITIVES (FP) ACHIEVED BY EACH OF THE 

METHODS AND THEIR RESPECTIVE COMBINATIONS AS WELL AS  THE 
RESULTING ENRICHMENT (E) 

 ANN SVM DT ANN 
SVM 

ANN 
DT

DT 
SVM 

All  

TP 21 21 16 12 8 9 5 
FP 94 36 54 5 6 5 3 
E 19 39 24 75 61 68 67 

Fig. 7. This figure compares the ROC curves for the ANN, SVM, and DT 
(same line attributes as in Fig. 6) with a ROC curve created by averaging the 
values of the predictions made by the ANN and SVM (dotted gray line). The 
improvement is clear. Here too, the horizontal axis features a logarithmic 
scale. 

The enrichment improves for all combinations. However, if 
all three methods are combined, only a small number of active 
compounds is recovered. Therefore, it is optimal to consider 
molecules designated as active by at least two of the methods. 
Fig. 7 shows an improved ROC curve (dotted gray line) 
obtained by combining the activity predictions made by the 
ANN and SVM, as well as the ROC curves of the individual 
methods for comparison. 
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VI. CONCLUSIONS

We present the application of a combination of machine 
learning techniques to drug discovery based on 3D QSAR 
models derived from HTS. All three tools achieve a high level 
of predictive accuracy in the process. The SVM, however, was 
best at predicting potentiators, whereas the DT approach 
produced the least accurate results. Furthermore, combining 
the SVM and ANN produced a visible improvement in overall 
predictive ability. Each of these methods, as well as their 
combinations, enable independent datasets to be enriched for 
active compounds by factors of 40-65 in silico. A problem-
optimized descriptor set maximizes prediction accuracy for the 
presented project of finding new mGluR5 potentiators. 

The methods showed similar performance on the 
independent data sets. Enrichment, ROC curve, and number of 
active and inactive compounds are in the same range. 
However, SVM performs slightly better than ANN, which has 
in turn an advantage over the DT. The highest enrichment is 
achieved by considering the compounds predicted active by 
both the ANN and SVM. 
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