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Summary. A multi-layer feedforward neural network was used for the prediction and assignment of
13C NMR chemical shifts of substituted benzenes. The back-propagation neural network was trained

by supervised learning with the chemical shift values of about 1000 substituted benzenes from

literature. The average uncertainty for the prediction of the 13C chemical shifts is as low as 1.1 ppm.

In comparison to common incremental methods, essentially better results were obtained for highly

substituted systems with interacting substituents.
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Bestimmung der 13C-NMR-chemischen Verschiebungen substituierter Aromaten

mit Hilfe eines neuronalen Netzes

Zusammenfassung. Es wird eine Methode fuÈr die Berechnung der 13C-NMR-chemischen

Verschiebungen von aromatischen Kohlenstoffatomen in substituierten Benzolen vorgestellt. HierfuÈr

kam ein mehrschichtiges neuronales Netz mit FehlerruÈckfuÈhrung zum Einsatz, welches mit den

Literaturwerten der chemischen Verschiebungen von uÈber 1000 monosubstituierten Aromaten trainiert

wurde. Das neuronale Netz ist in der Lage, die 13C-chemischen Verschiebungen in Aromaten

unabhaÈngig von der Anzahl ihrer Substituenten genau vorherzusagen. Die durchschnittlichen

Abweichungen zu den experimentellen Werten sind kleiner als 1.1 ppm. Die Methode ist ins-

besondere fuÈr die Berechnung der Verschiebungswerte hoÈhersubstituierter Benzole deutlich besser

geeignet als die bekannten Inkrementverfahren, was an mehreren Beispielen gezeigt wird.

Introduction

Several different methods exist for predicting 13C NMR chemical shifts. A number
of powerful quantum chemical procedures are available [1]. However, these
calculations are rather time consuming and not possible for large molecules
anyway. Two other methods are mostly used in practice for the prediction of
13C NMR chemical shifts: searching in databases and calculations employing
incremental systems. Several databases exist containing a large amount of chemical
structures and the accompanying NMR spectra [2, 3], in same cases available via
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internet [4]. They allow the rapid search for chemical shifts for a given structure or
their calculation by means of statistical methods. However, the quality of a
database depends on the number and on the correctness of its entries. The last point
is a problem arising from uncertain experimental values as an input of databases.
Moreover, database research requires the availability of large computer-stored
systems, and they are sometimes cost expensive and incomplete. On the other hand,
the use of substituent induced chemical shifts (SCS) for the prediction of 13C NMR
chemical shifts of different classes of compounds is well-known [5]. Aromatic
compounds, especially substituted benzenes, have been intensively investigated.
Already in 1979, Ewing compiled the SCS of more than 700 mono-substituted
benzenes [6].

Several computer programs have been developped using additivity rules including the four

increments Iipso, Iortho, Imeta and Ipara for the calculation of chemical shifts of aromatic compounds

[7±9]. This method is very powerful when dealing with mono-substituted benzenes and with

substituents without sterical interference. In the presence of serious steric and electronic substituent

interactions, however, large deviations from additivity in the case of ortho- and para-substitution and

of ortho-disubstitution have been observed [9]. The additivity rule is limited at this point, and the

calculation of the 13C chemical shifts is a serious problem. In consequence, some authors have

proposed the use of numerous correction terms [10, 11].

A relatively new method for the treatment of chemical structures und NMR
chemical shift values is comprised by the use of neural networks. Unlike traditional
techniques, the aim of neural networks is not to analyze and understand data, but to
use them to predict and classify. Arti®cial neural networks are copied from natural
neural systems. Strongly simpli®ed, the present model of neurons consist of two
distinct steps in obtaining output from the incoming signals, i.e. evaluation and
transformation. This is schematically shown in Fig. 1. At the connections between

Fig. 1. Scheme of an individual arti®cial neuron; the input signals xi were weighted with a factor wi

and then summarized; the output signal y results from a subsequent processing with a transfer

function
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neurons, the numerical values which represent the input data are multiplied by
some `weights', simulating the different synaptic strength in neural cells. The
weight at each of the neurons numerous synapses can have a different value at any
given moment. So, the incoming signals can add together to a collective effect, the
summarized input signal. Afterwards, the input undergoes an additional nonlinear
transformation effected by a so-called `sigmoidal function' (Fig. 1). However, a
single neuron cannot ®nd solutions to complicated applications. Therefore, many
neurons must be interconnected as is the case in the brain. The resultant structure is
called a neural network (NN). At ®rst the values of the weights in the NN obtained
randomly must be corrected by the so-called training of the NN. The most
frequently used learning method in the ®eld is the strategy of back-propagation of
errors. This is achieved by a de®ned data set (training data). The main dif®culties
with performances of NN in solving complex problems are a relevant choice of
de®nition of input and output entities and of the number of hidden layers and of
neurons in these hidden layers. General rules do not exist, therefore various
possibilities must be tried to ®nd out the best one. Furthermore, the quality of the
trained NN must be controlled by another dataset (testing data).

Chemists have made increasing use of these non-linear methods [12]. Some
applications dealing with NMR spectroscopy have already been described. So,
arti®cial neural networks have been used for the prediction of 13C NMR chemical
shifts of alkanes [13, 14], cycloalkanes [15], trisaccharides [16], monosubstituted
benzenes [17], and substituted naphthalenes [18]. Moreover, the cross-peaks in
two-dimensional NMR spectra have also been determined with the aim of a NN
[19]. Furthermore, the boiling points and inner energies of alkanes have been
computed with a NN simulating the relationships between the properties and the
13C NMR spectra of these compounds [20].

In this paper, a neural network for the prediction and the assignment of the
13C NMR chemical shift values of aromatic carbons and its application for the
calculation of chemical shifts in polysubstituted benzenes is described.

Results and Discussion

A feedforward multi-layer neural network was used for the present investigation
with all neurons in two neighbouring layers connected to each other [21]. In order
to take into account the charge distribution over the whole � electronic system, the
13C NMR chemical shifts of all aromatic carbons were calculated by the NN
simultaneously. For each of the six aromatic carbons the four substituent induced
chemical shift increments I were used for coding the 24 input numbers. Coding of
output was also not dif®cult in our case, because the chemical shift value is a single
real number. Consequently, the NN contained 24 input units in the input layer and
six output neurons. Only one hidden layer was used. The number of neurons in this
layer ®xes the number of connections and depends therefore on the problem. An
optimized count was found to be 48 in our case. So, the resultant three-layer NN
contains about 1500 connections between neurons connected to each other in
neighbouring layers. This is shown for some neurons in Fig. 2. Using the simple
incremental system, the correlation coef®cients between the experimental values of
the 13C NMR chemical shifts and the calculated ones were found to be
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Rtrain� 0.978 for the training dataset and Rtest� 0.979 for the test dataset. The
comparison of the predicted chemical shift values with the experimental values is
shown in Fig. 3a. The mean deviation was found to be 1.5 ppm. These values were
improved by the NN to Rtrain� 0.997 for the training dataset and Rtest� 0.995 for
the test dataset (Fig. 3b). The standard errors decreased to 1.1 ppm for training and
test data. The aromatic compounds used here contain one to six substituents. With
increasing the number of substituents the chemical shift values predicted by the
NN became signi®cant better than the incrementally calculated 13C-NMR chemical
shifts. In Fig. 4 the dependence of the average deviation on the substituent number
is shown.

Of special interest is the prediction of shift values for compounds where steric
effects or hydrogen bonding are effective. Some structures where the consideration
of interacting substituents is essential are displayed in Table 1; all calculated and
experimentally determined chemical shifts [2] are also given. For 2-ethoxyphenol
(1), the experimental chemical shift of C-1 is 146.1 ppm. Whereas the NN calculated
145.6 ppm, 141.5 ppm were obtained using increments. In 2,3-dichloroanilin (2), the

Fig. 2. a) Schematic pattern of the neural network used in this investigation; b) the results computed

in this way for 2,6-dibromo-4-nitrophenol compared to the experimental values [2] and to the values

achieved with the incremental method
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chemical shift of the C-1 carbon (144.7 ppm) was also very well predicted by the NN
(144.9 ppm); using increments afforded 148.5 ppm in this case. The chemical shift of
C-1 in in 2,4-dimethoxy-5-chloroanilin (3) shows a clearly smaller difference by
calculation with NN (1 ppm) in contrast to the value calculated using increments
(4 ppm). For benzene, which was not a member of the training dataset, the chemical
shift value was predicted with high accuracy to be 128.4 ppm. For hexamethylben-
zene, the incremental system comes out with an offset of almost 4 ppm, whereas the
network predicts the precise value (132.1 ppm).

Fig. 3. Correlation of the 13C NMR chemical shift values of the 300 substituted benzenes used in this

investigation as a test data set calculated a) by the incremental method (R� 0.969) and b) by the

neural network (R� 0.984) with their experimental values [2]

Fig. 4. Comparison of the average deviations which were achieved with the two calculation methods

(neural network and incremental system) depending on the number of the substituents; for these

calculations, 292 mono-, 891 di-, 401 tri-, 113 tetra- 15 hepta-, and 17 hexasubstituted compounds

were used
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Conclusions

It is demonstrated that a neural network can learn the association between 13C
NMR chemical shifts of aromatic carbons in mono- and polysubstituted benzenes
allowing for steric and electronic substituent interactions. Compared to a well-
known incremental system, signi®cantly better values were computed with the
neural network. Especially for ortho and para as also for highly substituted
benzenes this NN is an effective method for predicting 13C NMR chemical shifts.
The average error between the calculated and experimental chemical shift values
amounts to 1.1 ppm, i.e. it lies within the range of the chemical shift distribution in
databases. For this reason, this system is outstandingly suitable for the entry
inspection of data material for NMR databases.

Experimental

The NN was trained by a supervised learning method (backpropagation of errors) with about 1000

aromatic structures containing over 200 different substituents [2, 6]. For testing, an independent

dataset with about 300 structures was applied. All 13C NMR chemical shifts used here were

estimated in CDCl3 or CCl4 and refer to tetramethylsilane as an internal standard (�TMS� 0.0 ppm).
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