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Abstract

Computational methods that produce accurate protein structure models from limited

experimental data, for example, from nuclear magnetic resonance (NMR) spectros-

copy, hold great potential for biomedical research. The NMR-assisted modeling chal-

lenge in CASP13 provided a blind test to explore the capabilities and limitations of

current modeling techniques in leveraging NMR data which had high sparsity, ambi-

guity, and error rate for protein structure prediction. We describe our approach to

predict the structure of these proteins leveraging the Rosetta software suite. Protein

structure models were predicted de novo using a two-stage protocol. First, low-

resolution models were generated with the Rosetta de novo method guided by non-

ambiguous nuclear Overhauser effect (NOE) contacts and residual dipolar coupling

(RDC) restraints. Second, iterative model hybridization and fragment insertion with

the Rosetta comparative modeling method was used to refine and regularize models

guided by all ambiguous and nonambiguous NOE contacts and RDCs. Nine out of

16 of the Rosetta de novo models had the correct fold (global distance test total

score > 45) and in three cases high-resolution models were achieved (root-mean-

square deviation < 3.5 Å). We also show that a meta-approach applying iterative

Rosetta + NMR refinement on server-predicted models which employed non-NMR-

contacts and structural templates leads to substantial improvement in model quality.

Integrating these data-assisted refinement strategies with innovative non-data-

assisted approaches which became possible in CASP13 such as high precision contact

prediction will in the near future enable structure determination for large proteins

that are outside of the realm of conventional NMR.
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1 | INTRODUCTION

A current focus in structural biology has been the development of

advanced integrative modeling techniques that can determine struc-

tures of proteins and their interactions from limited experimental

data.1,2 Those methods are called in when classical structural biology

techniques such as X-ray crystallography and nuclear magnetic reso-

nance (NMR) spectroscopy fail to obtain complete and unambiguous

data at atomic-detail. NMR can obtain such data for small proteins

under physiologically conditions but loses quickly resolution and sen-

sitivity when the protein under study becomes large (>20 kDa). The

classical approach of collecting short-range inter-proton distance mea-

surements by nuclear Overhauser effect spectroscopy (NOESY)

becomes difficult due to peak line broadening and low signal-to-noise

ratio. Low-resolution and sparse NMR datasets thus call for computa-

tional methods that can translate them into accurate structural

Received: 20 February 2019 Revised: 25 May 2019 Accepted: 6 July 2019

DOI: 10.1002/prot.25769

Proteins. 2019;1–10. wileyonlinelibrary.com/journal/prot © 2019 Wiley Periodicals, Inc. 1

https://orcid.org/0000-0003-1799-346X
mailto:georg.kuenze@gmail.com
http://wileyonlinelibrary.com/journal/prot


models. At the same time these methods add atomic-detail informa-

tion to the model which may not be present in the NMR data, for

example, sidechain positions.

The Rosetta program3 offers a unique platform of integrative

modeling tools and has been designed to make use of different types

of NMR data. For example, chemical shifts (CSs)4-6 and residual dipo-

lar couplings (RDCs)7 can be used to guide the search and assembly of

small peptide fragments with known conformations from which

Rosetta builds a protein structure de novo. Using only this kind of

backbone NMR data, which is available at an early stage of the NMR

structure determination process, this method, called “CS-Rosetta,”

was able to correctly model the structure of proteins up to 25 kDa.8

Incorporation of sparse NOEs from selectively methyl labeled Ile, Leu

and Val sidechains in deuterated proteins and improvements to the

conformational sampling algorithm were shown to increase the appli-

cation limit to 40 kDa.9 Moreover, the CS-Rosetta method was

extended to include sparse contact information10 and structural tem-

plates11 from homologous proteins with guidance from CS-based

alignments. With the impressive advancement in coevolution- and

deep-learning-based contact prediction methods,12 evolutionary cou-

plings (ECs) become now increasingly available as new type of dis-

tance restraints to supplement sparse NMR data13 and facilitate de

novo protein structure prediction in Rosetta.14,15

The aforementioned CS-Rosetta studies used expert-collected

experimental NMR datasets with high completeness in the sense that

CS assignments were available for almost all residues. In addition, two

or more RDC datasets and one to two NOEs per residue were used.9

The data provided in CASP13 comprised simulated data and one real

NMR dataset. The number of NOE restraints was comparable to that

one in previous CS-Rosetta studies but datasets contained a consider-

able number of NOEs with high ambiguity as well as incorrectly

assigned NOEs. Furthermore, in order to simulate realistic difficulties

in the data collection process, for example, line broadening due to

internal protein motions, residues were removed from the peak list,

and hence, the assignment became incomplete; RDCs, CS-derived tor-

sion angle restraints and NOEs were available for only part of the pro-

tein. It is an interesting question how sparse and ambiguous NMR

data are best incorporated into modeling methods, to which extent

they can improve the accuracy of the predicted structural model and

whether they can provide higher accuracy than so-called “free model-

ing” techniques which omit the use of experimental data.

In CASP13, we employed a two-stage approach adopted to the

ambiguity level of the restraints: initial fold-level modeling guided by

unambiguous data followed by iterative model hybridization and

refinement using all NMR data. Our results show that with this low

amount of NMR information Rosetta can generate models that have

the correct fold and are in some cases very close to the native struc-

ture. In our analysis after CASP13, we further explored the possibility

of combining NMR-assisted modeling with state-of-the-art free

modeling techniques which have seen considerable improvements in

the last CASP assessment. The main driving forces seem to be the

increasing availability of structural templates16-18 and the high preci-

sion of contact predictions which have become possible due to new

technologies like deep convolutional neural networks that allow effi-

cient use of coevolution information.19-22 As those new modeling

techniques are made available to users, for example, in the form of a

public webserver, they can be easily incorporated into the NMR

structure prediction protocol. Here, we demonstrate that models

submitted by modeling servers can be easily recombined and hybrid-

ized with Rosetta and refined with NMR data to yield structure pre-

dictions with better accuracy than Rosetta-NMR models and the

original server predictions. We therefore suggest a “meta-approach”

to NMR structure prediction which supplements sparse experimental

data with complementary restraints, for example, from homolog tem-

plates and predicted contacts. This meta-approach can be a con-

structive way to determine the structures of challenging protein

targets which till now were outside of the realm of solution

state NMR.

2 | MATERIALS AND METHODS

2.1 | Overall structure prediction protocol

As in previous CASP contact-assisted experiments,23,24 a two-stage

modeling approach consisting of initial fold-level modeling and subse-

quent model refinement was employed (Figure 1).

The provided NMR data comprised simulated 1H-1H-NOE and
1H-15N-RDC data for 11 out of 12 protein targets as well as one real

experimental 1H-1H-NOE dataset for one protein target. In addition,

φ/ψ dihedral angle ranges (with ±30� uncertainty) which had been

back-calculated from the simulated or real CSs were provided by the

organizers. The NMR data were sparse and ambiguous, that is, many

NOE cross-peaks could be assigned to more than one possible pair of

H-atoms. In addition, the NOE dataset contained a considerable frac-

tion of false positive (FP) contacts arising from incorrect peak assign-

ments because NOEs had been extracted from NOESY-NMR spectra

simulated with realistic peak line widths and signal-to-noise ratio.

Thus, denoising and optimal use of the ambiguous data along the

modeling pipeline was important.

In the first modeling stage, only nonambiguous NOEs and RDCs

were used. In the following refinement stage, starting from these fold-

level models, ambiguous data were included (Figure 1A). These NMR

data were further supplemented by EC distance restraints which were

provided by the CASP organizers and had been computed with the

MetaPSICOV method.31

Parallel to calculations with this full set of restraints (ie, dihedral,

NOE, RDC, and EC restraints), a second independent prediction using

only dihedral and RDC restraints was made for every target, except

N1008 for which no RDCs had been measured. Purpose of this mini-

mal restraint set was to test the efficacy of backbone-only data for

NMR structure prediction. The best-scoring model made with the full

set of restraints was submitted as model 1, whereas the RDC-only

model was submitted as one of the remaining four models, usually

model 2.

Proteins larger than 200 residues in length for which domain

boundaries could be unambiguously identified based on the NOE

2 KUENZE AND MEILER



contact map were parsed manually into domains. These domains

were modeled and refined separately, and afterwards recombined

to the full-length model with RosettaCM.32 This strategy was

applied to targets N0989 (246 residues) and N1005

(326 residues). Similarly, the heterodimeric target N0980 was

predicted by first modeling and refining its two subunits

(N0980s1 and N0980s2) separately, and afterward assembling

them with RosettaDock.33

F IGURE 1 Legend on next page.
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2.2 | Fold-level modeling

The Rosetta de novo structure prediction protocol,34,35 referred to as

RosettaAbInitio, was used for initial fold-level modeling (Figure 1A)

generating 10 000 models for each target. The fragment library for

the RosettaAbInitio protocol contained 200 3mer and 9mer peptide

fragments per residue position which were selected with the Rosetta

Fragment Picker36 guided by PSIPRED37 and Jufo9D38 secondary

structure predictions and the CS-derived dihedral angle restraints.

Non-ambiguous NOEs, ECs, and RDCs were included in the scoring

function with weights that were adjusted such that the sum of the

restraint scores was approximately equal to the Rosetta energy.

After fragment assembly, “centroid” (ie, coarse-grained represen-

tation in Rosetta) models were converted to all-atom models and sub-

jected to a short optimization in both internal and Cartesian space

using the RosettaFastRelax39 protocol.

One hundred models with the lowest combined Rosetta energy

and restraint score were selected for the subsequent refinement

stage. In order to maintain structural diversity in the model pool a

minimum mutual distance between models corresponding roughly to

a TM-score40 of 0.75 was enforced in the selection step. Furthermore,

a penalty was applied to models which were dissimilar to the “refer-

ence” model, that is, the lowest energy representative from the three

largest model clusters, by more than 25% GDT-HA.

2.3 | Model refinement

Initial fold-level models were recombined and refined using an itera-

tive version of the RosettaCM32 protocol (Figure 1B) which was origi-

nally developed for comparative modeling. Structural optimization

was accomplished by extracting and recombining secondary structure

segments from a pool of low energy models together with fragment

insertion. At each refinement step, 480 to 720 new models were gen-

erated and the best 100 models were selected based on the sum of

their Rosetta energy and NMR restraint score for the next iteration.

The minimal mutual model distance was gradually lowered in subse-

quent selection steps. Refinement was continued until the model pool

was converged in terms of the pairwise GDT-HA or the maximum

refinement step which was possible within the time constraint of the

CASP experiment was reached.

After the final refinement step, the models with the lowest

Rosetta all-atom energy and restraint score were visually inspected. If

convergence was reached the top-scoring model was selected and

submitted as model 1. If these models varied significantly, they were

clustered. Models usually fell within two to three clusters and the

models corresponding to the cluster centroids were selected for

submission.

2.4 | Incorporation of server-models into Rosetta +
NMR refinement

As small adjustment to the described two-stage protocol, we explored

in our analysis after CASP13 whether the use of template information

can improve our structure predictions (Figure 1C). We chose to

include the submitted models of five publicly available servers which

had the best performance in the previous CASP12 experiment

(Robetta,25 I-TASSER,26,27 QUARK,28 RaptorX-Contact,29 RaptorX-

TBM30) into the RosettaCM refinement stage. Those models leverage

other types of restraints than NMR data which is why we consider

their incorporation a “meta-approach” to NMR structure prediction

(Figure 1C). Models were recombined and refined with NMR data

through 20 rounds of RosettaCM. The model with the lowest com-

bined Rosetta energy and restraint score after the last refinement step

was deemed the final model and compared to the experimental refer-

ence structure.

2.5 | Incorporation of NMR restraints

Contacts inferred from nonambiguously assigned NOE cross-peaks

were used as “strong” restraints with a flat-bottom bounded penalty

function and applied during all stages of the modeling protocol. Only

contacts between residues which were more than five sequence posi-

tions apart were kept in order to avoid over-constraining and dis-

torting the local model geometry.

The applied NOE penalty function grows quadratically outside of

the lower (lb) and upper (ub) bound, and linearly at distances larger

F IGURE 1 Overview of the modeling protocol employed in the CASP13 NMR-assisted structure prediction category. A, Overall flowchart:
Initial fold-level modeling was done with RosettaAbInitio guided by nonambiguous NOEs, evolutionary coupling restraints (ECs) and RDCs. The
library of 3mer and 9mer peptide fragments was created with the Rosetta Fragment Picker using CS-derived φ/ψ dihedral angle restraints.

Proteins with >200 residues were manually parsed into domains guided by nonambiguous NOE contacts, and domains were modeled separately.
After fold-level modeling, models were iteratively refined by hybridization and fragment insertion guided by all ambiguous and nonambiguous
NOEs, ECs, and RDCs. B, Improvement in model accuracy for target N0968s1 through an iterative refinement protocol. The protocol maintains a
pool of low-energy models which are hybridized with RosettaCM and diversified through fragment insertion. The protocol stops when models are
converged in terms of their pairwise GDT-HA or the final refinement step is reached. The bottom row demonstrates the improvement in the
accuracy of N0968s1 models as the protocol proceeds: (i) GDT-TS = 47.5, (ii) GDT-TS = 58.0, (iii) GDT-TS = 60.2, (iv) GDT-TS = 72.4. C,
Suggested meta-approach to NMR structure modeling by incorporating structural restraints retrieved from bioinformatical sources/databases
(DB), for example, predicted residue-residue contacts and structural templates. In our post-CASP13 analysis, we used the initial predictions of five
different servers (Robetta,25 I-TASSER,26,27 QUARK,28 RaptorX-Contact,29 RaptorX-TBM30) and refined them iteratively with Rosetta and NMR
data leading to more accurate models than each individual technique. Model improvement is exemplified for target N0981-D5 for which the
GDT-TS score increased by >15. ECs, evolutionary couplings; NMR, nuclear magnetic resonance; NOE, nuclear Overhauser effect; RDCs, residual
dipolar couplings
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than 0.5 Å beyond the upper bound which was set to the simulated

NOE distance plus an additional 1.5 Å padding. The lower bound was

set to 1.5 Å.

In the low-resolution phase of the RosettaAbInitio and RosettaCM

protocols in which the protein adopts a coarse-grained representation

and the sidechain is treated by a single “centroid” atom, sidechain-

sidechain NOEs were mapped onto the centroid atom as described

previously.9 The upper bound of the mapped restraint was increased

to ub,map = ub + h where h is the number of methyl groups involved in

the restraint (0, 1, or 2). During full-atom modeling, sidechain-

sidechain NOE restraints involving groups of equivalent or non-

stereochemically assigned protons were evaluated after applying a r−6

distance averaging.

Ambiguous NOE contacts were incorporated in the second

refinement stage: as sigmoidal restraints between Cβ atoms (Cα in

case of glycine) in centroid phases and as groups of nested

bounded restraints when the protein was in full-atom representa-

tion. A sigmoidal restraint was created for every residue pair with

sequence separation of six or higher belonging to one or more

ambiguous contacts in the NOE peak list. A weighting factor was

applied for each restrained residue pair which was set inversely

proportional to the ambiguity level (ie, inverse of the group size) of

the ambiguous NOE. The final weight was the sum of this ratio

over all ambiguous NOEs which a particular residue pair had been

assigned to. Only the highest scoring 3L/2 (L is the sequence

length) restraints were used. The sigmoidal scoring function was

centered at a Cβ − Cβ distance of 8 Å and offset by a value of −0.5

such that the restraint score fell with the range from −1 (satisfied)

to 0 (nonsatisfied).

For full-atom modeling, ambiguous NOE contacts were represen-

ted as a group of nested bounded restraints with a penalty function

set up as described above. Only the lowest scoring restraint from

this group was considered in calculating the total NOE restraint

score.

Like ambiguous NOEs, the MetaPSICOV-predicted EC contacts

were incorporated as sigmoidal restraints between Cβ atoms (Cα in

case of glycine) centered at a 8 Å distance and weighted by their con-

fidence score. Only the L most confident restraints (L is the sequence

length) with a sequence separation more than five residues

were used.

Simulated amide-backbone RDCs were added as additional

pseudo-energy to the restraint score. The RDC score was thereby cal-

culated as sum of squared errors between simulated and model-

predicted RDC values after computation of the molecular alignment

tensor by singular value decomposition.

CS-back-calculated dihedral angle ranges were used as φ/ψ angle

restraints in the fragment selection process and scored with a periodic

bounded penalty function which had a periodicity of 2π and grew

quadratically outside of the specified dihedral angle range. A detailed

description of the Rosetta restraint file format and application of each

NMR restraint type can be found in supporting informa-

tion Method S1.

3 | RESULTS

3.1 | Rosetta modeling translates limited NMR data
into accurate structural models

An aim of the NMR-assisted structure prediction experiment in

CASP13 was to investigate whether modeling techniques can lever-

age limited and ambiguous NMR data for protein structure modeling

and whether NMR data improve the prediction accuracy. In order to

mimic realistic conditions typically found in NMR studies of larger

(>20 kDa) and dynamic proteins, the NMR datasets were sparse and

contained erroneous NOEs. In addition, NMR data assignments cov-

ered only part (~50%) of the protein.

With our strategy of translating the provided NMR data into

structural restraints after discarding contacts with minimal sequence

separation (|i − j| ≤ 5) the average number of NOE, RDC, and φ/ψ

restraints per residue was 2.2, 0.8, and 0.5, respectively (Figure S1a).

These are far fewer restraints than needed for experimentally driven

NMR structure calculations which typically require 40 to 50 NOE con-

tacts per residue. Moreover, a considerable fraction of NOE contacts

were false positives (FP-NOEs) due to assignment errors or missing

NOE peaks which were accounted for in the simulation by peak line

broadening and low signal-to-noise ratio. By comparison with the ref-

erence structure, we estimate that NOE contacts had an average pre-

cision of 83% for the 12 modeling targets (Figure S1b). Importantly,

only approximately half of the residues in the protein chain had at

least one true positive (TP) NOE contact assigned (Figure S1c). RDC

and φ/ψ angle restraints were available for 43% and 49% of the resi-

dues on average. Surprisingly, the precision of the MetaPSICOV EC

contact restraints (computed as fraction of residue-residue pairs with

a Cβ − Cβ distance <8 Å among the top-L scoring |i − j| ≥ 6 contacts)

was clearly better (93%) than for the simulated NOE restraints

reflecting the great improvement in the computational contact predic-

tion methods.

Our submitted models agreed with the NMR restraints nearly as

good as the native structure. The number of NOE contacts made in

the submitted model 1 was comparable to the contacts made in the

reference structure, and importantly, a considerable number of TP-

NOEs was made (Table S1). Excluding the two targets with the lowest

GDT-TS score (N0989, N0981-D3) the average recall (ie, number of

TP-NOEs satisfied in the model vs the native structure) was ca. 89%,

and the average precision (ie, number of TP-NOEs vs number of all

satisfied NOEs in the restraint set) was 86%. In addition, Rosetta

models showed good RDC Q-factors41 (Table S2); the average RDC

Q-factor was 43% (excluding targets N0989 and N0981-D3).

Model accuracy was significantly improved in regions with rich

NOE contact information, and a clear inverse correlation between

model-to-reference structure Cα-atom distance deviation and number

and location of TP-NOE restraints was observed (see Figures S2 and

S3). However, we also found cases with accurate backbone structure

predictions despite limited or missing NOE contact information (eg,

for targets N0968s1 and N1008) showing that Rosetta modeling can

supplement sparse data. Importantly, modeling was not misguided by
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erroneous NOE data; no significant correlation between model accu-

racy and number and location of FP-NOEs could be found.

3.2 | Accuracy of Rosetta models and comparison to
other methods

Our modeling strategy consisted of a two-stage approach (Figure 1):

fold-level modeling with RosettaAbInitio and structure refinement

with RosettaCM. RosettaAbInitio calculations rarely arrived at accu-

rate models; the average GDT-TS score of the 10 best-scoring models

over all targets was 30.5. Enhanced structural resampling via iterative

model hybridization and fragment insertion with the RosettaCM pro-

tocol proved very effective in refining initial RosettaAbInitio models.

Starting from these, the GDT-TS improved for all 12 targets, in some

cases significantly (N0981-D5, ΔGDT-TS = 36.3). The average

increase in GDT-TS over all targets was 16.7. Figure S4 summarizes

the improvement in GDT-TS and shows our submitted models for all

targets.

Model accuracy in CASP13 was assessed on the level of the full-

length protein as well as individual domains yielding 16 evaluation

units for the investigated 12 monomeric targets. From our first sub-

mitted de novo models built with NOEs and RDCs, 6 out of 16 evalua-

tion units had GDT-TS scores >60 and nine had GDT-TS scores >45

(see Figure 2A), at which typically the native fold is correctly predicted

(TM-score > 0.5).42 Using exclusively RDCs as restraints for model

folding and refinement was insufficient to yield accurate models. Only

for 1/16 and 5/16 evaluation units the GDT-TS score was >60 and

>45, respectively (Figure 2A).

F IGURE 2 Overview of model GDT-TS of Meilerlab models obtained with different restraint sets and comparison to other structure
predictions in the NMR-assisted and free modeling category. A, GDT-TS of de novo predicted models created in CASP13 using only RDCs or
NOEs, ECs, and RDCs, respectively. In addition, the GDT-TS obtained when modeling started from server-models and employed an iterative
refinement with NOEs, ECs, and RDCs, which was investigated in our post-CASP13 analysis, is shown. B, Improvement of server-models through
refinement with NMR data. The GDT-TS of the best model among all submissions of five different servers (Robetta,25 I-TASSER,26,27 QUARK,28

RaptorX-Contact,29 RaptorX-TBM30) (x-axis) is compared to the GDT-TS of our best-scoring model after hybridization and NMR-refinement of
the respective server-models (y-axis). C, Comparison of GDT-TS of the Meilerlab submitted model 1 and NMR-refined server-models to model
1 created by the “baseline” group (group 459) in the NMR-assisted category. Gray triangles indicate an improvement of the GDT-TS. Targets for
which the Meilerlab model 1 was significantly less accurate (GDT-TS difference > 10) then model 1 from group 459 are labeled. D, Comparison of
GDT-TS of the Meilerlab submitted model 1 and NMR-refined server-models to the best model 1 in the regular unassisted modeling category.
ECs, evolutionary couplings; NMR, nuclear magnetic resonance; NOE, nuclear Overhauser effect; RDCs, residual dipolar couplings
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Because the accuracy of our RosettaAbInitio starting models was

generally low (only for three targets the GDT-TS was >45), we

explored in our post-CASP13 analysis a meta-approach and tested

whether the use of server-models as templates for structure refine-

ment with RosettaCM would have improved our predictions. To this

end, we chose the five submitted models of the Robetta,25 I-

TASSER,26,27 QUARK,28 RaptorX-Contact,29 and RaptorX-TBM30

server, which are all available for public users, and hybridized and

refined those models through 20 rounds of RosettaCM. The model

with the lowest score after the last refinement step was deemed the

final model. With this procedure, the number of predictions with

GDT-TS >60 and >45 increased to 8 and 12 out of 16 evaluation units

(Figure 2A). Furthermore, the NMR restraints helped to consistently

improve model accuracy, and for 13/16 evaluation units the GDT-TS

score after NMR-restrained Rosetta refinement was higher than the

GDT-TS of the best model among the original 25 server-models

(Figures 2B and S5).

Comparing our approach with other methods, we find that

Rosetta calculations produced more predictions with higher GDT-TS

score than the “baseline” method in the NMR-assisted category

(group 459; a hybrid method of ASDP43 and CYANA44,45) operating

on the same restraint set (NOEs, RDCs, and ECs). In 11/16 and 14/16

cases, our NMR-restrained de novo models and NMR-refined

server-models, respectively, had higher GDT-TS scores

(Figure 2C). Compared to the group with the best score by all met-

rics in the NMR-assisted category (group 431), 3/16 of our de

novo-predicted models 1 had a higher GDT-TS. Incorporating

server-models in Rosetta + NMR refinement is capable of achiev-

ing a comparable number of cases with superior GDT-TS (10/16)

(Figure S6). It is a surprising result that our first submitted models

are often not better than the best models from the nonassisted

free modeling category (Figure 2D). This may reflect the big

advancement in contact prediction methods which have pushed

protein de novo structure prediction forward. In CASP13, the

three contact prediction methods with the overall best perfor-

mance achieved for this particular set of protein targets presented

here (excluding N0981-D1, N0981-D4, and N0981-D5 for which

no predictions had been made), an average precision of 55%, 73%, and

89%, respectively, evaluated on the top L, L/2 and L/5 long- (|i − j| ≥ 24)

and medium-range (12 ≤ |i − j| ≤ 23) contacts. The difference in model

GDT-TS becomes more balanced when the free modeling predictions

are compared to our NMR-refined server-models which shows that

with adjustments to the protocol Rosetta can achieve equal

performance.

F IGURE 3 Examples of successful and difficult modeling cases. High-resolution structure predictions could be made for three targets: A,
N1008 (Cα-RMSD = 2.06 Å); B, N0968s1 (Cα-RMSD = 2.88 Å); and C, N0981-D5 (Cα-RMSD = 3.48 Å), allowing accurate sidechain placement.
The submitted model 1 (red) is displayed as cartoon representation and compared with the experimental reference structure (blue). Sidechains in
the protein core are depicted with sticks. The fraction of correct χ1 and χ2 rotamers in buried protein regions was A, 74%/37%; B, 77%/41%;
and C, 66%/29%, respectively. Difficult modeling cases were proteins with quaternary structure which have interfaces to other protein copies or
domains. D, Left: experimental structure of the homo-trimeric target N0989. Chain A is shown as cartoon and is rainbow-colored. Chains B and C
are shown in surface representation and colored light and dark gray, respectively. Right: The submitted model for the monomeric protein had a
too compact, nonextended conformation. E, Left: experimental structure of domain D4 of the homo-trimeric target N0981. The N-terminal helix
(blue) is linked to another domain in the native assembly and stabilized by interactions with the two neighboring subunits indicated in light and
dark gray, respectively. Right: The submitted model for N0981-D4 shows an incorrect orientation of the N-terminal helix because no NOE
contact information was available to restrain this part of the structure
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Examples of models for which high accuracy was achieved are

shown in Figure 3A-C. The Cα-RMSD from the native structure of the

first submitted model for these three targets was below 3.5 Å

(N1008: 2.06 Å, N0968s1: 2.88 Å, N0981-D5: 3.48 Å) enabling accu-

rate sidechain placement. Furthermore, we submitted the best predic-

tion for target N0957s1 (GDT-TS = 56.0) among all predictors in the

data-assisted and free-modeling categories.

3.3 | What went wrong: Importance of quaternary
modeling and model bias from missing NMR data

Examples of unsuccessful structure predictions are given in Figure 3D,

E. These include proteins with quaternary structure in which the tar-

get represents one subunit. Because of time limitations we did not

pursue quaternary modeling for homo-oligomeric targets which is a

notoriously difficult task when starting from de novo models and

when interdomain contact information is insufficient. However,

modeling of the oligomeric state becomes important when the protein

is stabilized by interactions with neighboring subunits. This is the case

for target N0989 where the N- and C-terminal domains make very lit-

tle contacts with each other but are packed toward chain B and C

(Figure 3D). Consequently, the Rosetta model of the monomer was

predicted with a too compact, nonelongated conformation. The sec-

ond example, N0981-D4, features an extended N-terminal helix that

connects to the next domain and is stabilized by quaternary interac-

tions. In our Rosetta model of the single domain (Figure 3E), the N-

terminal helix is folded onto the central β-sheet to maximize residue

burial and because this helix was not restrained by NOE contact

information.

For hetero-dimeric target N0980 modeling of the oligomeric state

was carried out with RosettaDock starting from our de novo predic-

tions of the two separate domains. This strategy turned out to be sub-

optimal because the small domain (N0980s2, chain B) was incorrectly

modeled as compact globular protein, but adopts an elongated confor-

mation wrapping around the larger domain (N0980s1, chain A) in the

native structure. The ligand RMSD (computed on chain B after super-

imposition of chain A) of our submitted model was 22.7 Å. A more

suitable modeling strategy may involve simultaneous folding and

docking of the smaller protein domain onto the larger domain which

we explored in our post-CASP13 analysis and which improved the

ligand RMSD up to 12.8 Å (Figure S7).

The remaining targets with low model accuracy (N0981-D1,

N0981-D2, and N0981-D3) had poor quality fragments, especially

N0981-D3 which had no 9mer fragment <1 Å to the native structure

for 75% of its residues (compare with Figure S8). This target was diffi-

cult in several aspects. It had little regular secondary structure (≤46%)

and an unusual β-sandwich topology with adjacent strands switching

back and forth between two β-sheets.

Model accuracy of some targets suffered from missing NOE con-

tact information leading to wrong domain orientations or loop confor-

mations (compare with Figures S2 and S3). Examples of those regions

in our submitted models include the long C-terminal loop in N0980s1,

the N-terminal helix in N0981-D4, and the C-terminal β-sheet in

N0968s2 which was flipped upside down. However, we also find

instances in which high accuracy was achieved in regions having no or

very little NOE contacts. For example, target N1008 used the fewest

NOE contacts (0.65 per residue) with the lowest precision (~60%) but

was predicted with 2.06 Å Cα-RMSD to the native structure.

4 | DISCUSSION

NMR data as limited as around two nonlocal TP-NOEs per residue

and less than one RDC and dihedral restraint per residue were suffi-

cient to generate protein models with the correct fold. In some cases,

even high-resolution models were achieved with Cα-RMSD better

than 3.5 Å from the native structure. Model accuracy was clearly

superior in regions with more NOE contacts indicating that Rosetta

can translate the contact information in biasing the model to the

native structure.

Enhanced structural sampling which was accomplished in this

study by iterative model hybridization and fragment insertion with

RosettaCM was crucial to leverage the NMR restraints and improve

model quality. Refinement made use of ambiguous contact informa-

tion leading to significant improvements (~17 GDT-TS units on aver-

age) over RosettaAbInitio models generated with only nonambiguous

contacts. Use of template information in the form of server-models as

input to NMR-guided RosettaCM refinement led to an additional

increase in the average model GDT-TS score from 46.6 to 59.9 as

observed in our post-CASP13 analysis. This amounts to half of the

targets being modeled with higher accuracy than the best free model-

ing predictions. Encouraged by this result, we believe that a combina-

tion of NMR data with orthogonal structural information derived from

for example, template structures and predicted contacts (as outlined

in Figure 1C) will be an important new driving force to make construc-

tive progress in NMR structure prediction. This includes new areas of

applications such as NMR-guided detection of templates11 or the use

of ECs in assisting NMR data assignment/interpretation and NMR

structure calculation.13 In addition, computational models created by

such meta-approaches will have the advantage that they can be

experimentally validated, for example, by comparison against a set of

NOE contacts hold out for cross-validation.

Alternative Rosetta structure prediction approaches tailored to

sparse NMR data have employed the resolution-adapted structural

recombination (RASREC)46 iterative modeling protocol. While concep-

tually similar to our RosettaCM refinement protocol, RASREC imple-

ments more kinds of optimization strategies which proceed in six

stages and are adapted to the model resolution.46 A large set of strat-

egies is dedicated toward sampling nonlocal β-sheet topologies during

the first stages. RASREC also generates new libraries of backbone

fragments from previous model batches and guides new folding simu-

lation trajectories by those of low-scoring models from earlier stages.

The enhanced sampling procedure comes with increased computa-

tional costs. RASREC requires splitting the calculation over multiple

(usually a few hundred) cores which communicate via MPI. It further

entails an Archive framework which stores job status information as
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well as statistics about structural features and maintains the pool of

low-energy models. RASREC and RosettaCM can integrate the same

types of NMR restraints (eg, NOEs, RDCs, and CSs) and use them in a

similar manner, for example, to score Monte Carlo sampling moves

and decide which models should go into the next stage.

Additional bioinformatical or experimental contact restraints to

assist sparse NMR data should be selected ideally from regions with

incomplete or missing NMR assignment. This would help restraining

those parts of the model and could resolve wrong domain orientations

as described above. Next CASP experiments could also introduce

other types of NMR data. For example, 1HN, 13Cα,13Cβ,13C’, and 15NH

CSs can be used directly in the fragment picking process which avoids

errors in the backtranslation to torsion angle restraints and could

improve fragment quality. Paramagnetic NMR data, for example,

pseudocontact shifts, may be used as additional source of long-range

structural restraints.

Subsequent CASP experiments could also explore the possibility

to model multiple conformational states and conformational transi-

tions in proteins—a challenge which has not been examined in the cur-

rent CASP but to which NMR provides very sensitive tools of

detection. For example, information on protein dynamics and a

detailed description of the structure of alternative conformational

states can be inferred from relaxation dispersion and chemical

exchange saturation transfer data. In this scenario, NOE contacts may

be used with greater caution because part of the contacts may be

incompatible with each other.
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