
TOOLS FOR PROTEIN SCIENCE

Web-accessible molecular modeling with
Rosetta: The Rosetta Online Server that
Includes Everyone (ROSIE)

Rocco Moretti,1 Sergey Lyskov,2 Rhiju Das,3,4 Jens Meiler,1 and
Jeffrey J. Gray 2,5*

1Department of Chemistry, Vanderbilt University, Nashville, Tennessee
2Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland
3Department of Biochemistry, Stanford University, Stanford, California
4Department of Physics, Stanford University, Stanford, California
5Program in Molecular Biophysics, The Johns Hopkins University, Baltimore, Maryland

Received 25 July 2017; Accepted 25 September 2017

DOI: 10.1002/pro.3313
Published online 28 September 2017 proteinscience.org

Abstract: The Rosetta molecular modeling software package provides a large number of experi-

mentally validated tools for modeling and designing proteins, nucleic acids, and other biopolymers,
with new protocols being added continually. While freely available to academic users, external

usage is limited by the need for expertise in the Unix command line environment. To make Rosetta

protocols available to a wider audience, we previously created a web server called Rosetta Online
Server that Includes Everyone (ROSIE), which provides a common environment for hosting web-

accessible Rosetta protocols. Here we describe a simplification of the ROSIE protocol specification

format, one that permits easier implementation of Rosetta protocols. Whereas the previous format
required creating multiple separate files in different locations, the new format allows specification

of the protocol in a single file. This new, simplified protocol specification has more than doubled

the number of Rosetta protocols available under ROSIE. These new applications include pKa deter-
mination, lipid accessibility calculation, ribonucleic acid redesign, protein-protein docking, protein-

small molecule docking, symmetric docking, antibody docking, cyclic toxin docking, critical binding

peptide determination, and mapping small molecule binding sites. ROSIE is freely available to
academic users at http://rosie.rosettacommons.org.

Keywords: web server; molecular modeling; design; prediction

Additional Supporting Information may be found in the online version of this article.

Importance/Impact: Rosetta, a comprehensive program for investigating biological macromolecules, can be difficult for nonex-
perts to use. The Rosetta Online Server that Includes Everyone (ROSIE) web server, available at http://rosie.rosettacommons.org,
provides a web interface to a number of Rosetta protocol, allowing more users to leverage Rosetta. The simplified protocol specifica-
tion format described in this paper makes it easy to add even more Rosetta protocols on the web server, allowing wider access to
these techniques.

Grant sponsor: RosettaCommons and the National Institutes of Health; Grant number: R01-GM073151.

*Correspondence to: Jeffrey J. Gray, Johns Hopkins University, 208 Maryland Hall, Baltimore, MD 21218. E-mail: jgray@jhu.edu

Published by Wiley-Blackwell. VC 2017 The Protein Society PROTEIN SCIENCE 2018 VOL 27:259—268 259

http://orcid.org/0000-0001-6380-2324
http://rosie.rosettacommons.org
http://rosie.rosettacommons.org


Introduction

Rosetta is a molecular modeling suite which provides

a wide array of tools for prediction and design of bio-

logical macromolecules. Rosetta has been used in a

number of diverse publications, from prediction of

protein structure,1 ribonucleic acid (RNA) structure,2

protein–protein interactions,3,4 protein–peptide inter-

actions,5,6 and protein–small molecule interactions,7,8

to the use of nuclear magnetic resonance9,10 and elec-

tron density information11,12 in structure prediction

and refinement, to the design of novel protein

folds,13,14 protein–protein interactions,15,16 protein–

small molecule interactions,17,18 enzymes,19,20 macro-

molecular cages,21,22 and protein–interacting

peptides.23

Rosetta is maintained by the RosettaCommons,

a collaborative association of more than 45 principal

investigators and collaborators at 55 institutions.

With over 350 active developers and a modular

architecture,24 new protocols and functionality are

continually being added. While recent efforts have

expanded the usability of Rosetta with interfaces to

Python (PyRosetta25), and XML (RosettaScripts26),

and the publication of introductory tutorials,27–29

most of Rosetta’s functionality still requires familiar-

ity with the Unix command line environment, limit-

ing use by nonexperts.

Web-accessible servers are one way to lower the

barrier for nonspecialist users to access Rosetta pro-

tocols. Indeed, many groups creating Rosetta proto-

cols have independently implemented servers

making their protocols available to anyone with an

internet connection and a web browser.30–34 Unfortu-

nately, setting up a new scientific web server is a

laborious process, one which introduces a significant

“barrier to entry” for exposing new protocols. To

reduce the complexity of setting up a new web

server, we have previously implemented Rosetta

Online Server that Includes Everyone (ROSIE), a

single server framework which can accommodate a

range of Rosetta protocols.35

Here, we describe an improvement to the appli-

cation program interface (API) for the ROSIE frame-

work. This “meta” API simplifies the process of

taking a protocol implemented in the Unix command

line and converting it to a web-accessible server.

This simplified API has permitted Rosetta develop-

ers to more than double the number of protocols

exposed through ROSIE since the previous publica-

tion. It should also facilitate user requests for addi-

tional Rosetta protocols to be exposed through the

ROSIE interface.

Results

Our previous paper35 has already described the gen-

eral ROSIE server architecture, including the struc-

ture of the database and servers. The primary

improvement over the previous approach is a simpli-

fied method for specifying new protocols. This new

meta API acts as a domain-specific mini-language,

where input and output facilities are specified

through object specification (“widgets”) and the exe-

cution is specified through a list of “triggers.” An

example of the meta application specification format

can be found in the Supporting Information.

Overview of simplified protocol definition

In contrast to the previously published method of

implementing a ROSIE protocol, which required

multiple different files in defined locations,35 ROSIE

protocols can now be implemented within a single

Python file located in the rosie.front/rosie/

meta/directory of the ROSIE server. This file con-

tains declarations of all the relevant contents of the

submission, results and documentation pages on the

ROSIE website, as well as the specification of how

to run the protocol. These contents are contained

within a “named tuple” (NT) object in the Python

file.

Submission form definition. The format of the

submission form (Fig. 1) is described by the

“input_” data member of the NT. This member con-

tains a list of the various input elements from which

the form can be constructed. The input elements are

represented as Python objects, with different input

types being a different subclass of the “Input” widget

class (Table I). Each different input widget contains

the html and javascript code needed for proper dis-

play of the input field on the submission page. A

protocol developer need only to specify the widget

type and relevant parameters: for example,

[FloatInput(name=‘pocket_width’,
min=0.0, max=7.0, default=5.0, descrip-
tion=‘Maximum radius to search (in Ang-
stroms) from starting coordinate’,
optional=True)]

From the list of input elements, the submission

form is built automatically, placing the desired input

elements one after each other on the page. Addi-

tional input elements common to all protocols, such

as job descriptions and account information, are

handled by the ROSIE server framework and do not

need to be explicitly included by the protocol writer.

Validation of input. As the input parameters are

entered by potentially untrusted users on the inter-

net, it is critical that any values that are entered

are checked and validated to make sure that they

are in the proper form and do not contain any mali-

cious content. Misplaced punctuation or deliberately

crafted input could compromise the integrity of the

260 PROTEINSCIENCE.ORG ROSIE: Web-Accessible Modeling with Rosetta



server. Additionally, as the aim of the web server is

to provide access to protocols to people with limited

modeling experience, it is important to check the

range of the input parameters, to make sure that

they will not produce anything that is compromised

scientifically.

To that end, all input fields in ROSIE contain a

validation component. While certain fields (such as

numeric entry) can be checked automatically by the

input widget to ensure they are correctly formatted

and are in the appropriate range, other fields (such

as structure file uploads) require special attention to

ensure they are correctly formatted. To allow for

custom validation, each input widget accepts a list

of validators, which are Python functions. These

validators can signal an improper input value by

raising a Python exception.

As combinations of input values may also be inap-

propriate, rather than input values in isolation, the

ROSIE framework also provides an “input_validator”

entry, which is a Python function that will be passed

all of the values in the input form. This validator may

perform any comparisons the protocol author deems

necessary and signal an improper value by returning

an error message string.

Execution of the protocol. Protocol execution is

specified in the “commands” section of the NT. This

is a list of decorated Python functions (triggers)

which are executed by the ROSIE server backend

when the submitted job is run. The Python decora-

tors allow the protocol writer to specify which of the

input fields are passed to the trigger functions.

Table I. Input Widgets

Input widget Description

FileInput Upload an arbitrary input file
StringInput An arbitrary text string
IntInput An integer in a specified range
FloatInput A real number in a specified range
CheckboxInput True/False option input
SelectInput Pick one of several specified

options, in dropdown format
RadioButtonListInput Pick one of several specified

options, in selection list format
HRuleInput No input, but add a separator

to the input page

Figure 1. ROSIE input elements. A: Example of a submission form. B: Example of the FileInput widget, customized for

structure file loading. C: Example of the FileInput widget, after file selection. Icons of the submitted structures are shown. D:

Example of the CheckboxInput and FloatInput widgets.

Moretti et al. PROTEIN SCIENCE VOL 27:259—268 261



These trigger functions are then responsible for

setting up the input files for the runs (typically by

using Python string formatting functions on a tem-

plate string that is included in the one Python file),

and then launching the execution of the appropriate

backend job. These backend jobs can be arbitrary

programs, but most typically are Rosetta command-

line programs, RosettaScripts extensible markup

language (XML) runs, or PyRosetta scripts. As

ROSIE can interface with several cluster backends,

the actual launching of the backend job is done indi-

rectly, through an hpc_driver object. This object is

set up by the ROSIE server prior to trigger function

execution, based on the high-performance computing

(HPC) cluster in use at the time.

The trigger function is also responsible for output

validation, checking to ensure that the backend run

completed successfully and raising a Python exception

if not. As a final step, the trigger function specifies

the filenames for any produced structures and any

output report files, which the ROSIE server architec-

ture will then store in its database.

Presentation of results. The formatting of the

results page (Fig. 2) is specified by the “output” section

of the NT. As with the input section, we have created

different output widgets (Table II), which the ROSIE

framework will assemble into a results page. Standard

widgets are available to display the input parameters

(including a structural rendering of any input protein,

nucleic acid, or small molecule structures), as well as

renderings of output structures, graphs of various scor-

ing parameters, and tables of scoring and structural

evaluation results.

In addition to the customizable rendering of out-

put results, each results page contains links which

allow the download of all produced results. Logging

information is also available under the full output

link, allowing users of failed runs to debug why

their runs may have failed.

Documentation. As the intent of the ROSIE

server is to make Rosetta protocols accessible to peo-

ple with limited experience in computational biology,

extensive documentation is needed to explain the

usage and to describe how the adjustable parame-

ters will affect the results. For this purpose, a

“documentation” slot is provided in the NT protocol

specification, which allows the protocol writer to pro-

vide an html-formatted string which will be included

on the documentation page for the protocol. Addi-

tionally, there are “citations” and “developed by”

slots provided, which are included not only on the

documentation page, but also on other pages of the

ROSIE server. This information allows users to find

the relevant papers describing the underlying proto-

col and the contact information for the protocol

maintainer, respectively.

Figure 2. A ROSIE result page, showing output elements. A:

The JobHeader widget provides details about the protocol

run. B: The TopModels widget shows the selected result

structures. Each structure can be downloaded by clicking on

it. C: The ScorePlot widget displays a plot of two selected

scores. Additional information for each point can be obtained

by hovering over it. D: The ScoreTable widget. The results

can be sorted by each column, and any particular structure

can be downloaded by clicking its name.

262 PROTEINSCIENCE.ORG ROSIE: Web-Accessible Modeling with Rosetta



Protocols available through ROSIE

Brief summaries of the currently available protocols

are given in Table III. For more extensive discus-

sion, as well as details of their operation, we refer

the reader to the documentation on the ROSIE web-

site (http://rosie.rosettacommons.org/documentation)

and the cited papers.

Protocols using the original framework. In

addition to the new simplified framework, ROSIE

still supports the original protocol specification

framework. All eight of these protocols were also

mentioned in the original ROSIE paper.35

Fragment assembly of RNA with full atom refine-

ment—De novo RNA structure prediction. The

Fragment Assembly of RNA with Full Atom Refine-

ment (FARFAR) application models RNA structure

de novo by combining short (1–3 nucleotide) frag-

ments from existing RNA crystal structures.36 These

fragment assembly models are then further refined

with a full-atom relaxation, resulting in predicted

structures for RNA molecules.

Enumerative Real-space Refinement ASsisted

by Electron-density under Rosetta. The Enumera-

tive Real-space Refinement ASsisted by Electron-

density under Rosetta (ERRASER) application is an

RNA structure refinement protocol which uses elec-

tron density information to inform and guide the

refinement.37

Beta peptide design. Beta peptides contain non-

canonical backbones, with each residue containing

an extra backbone carbon. The ROSIE Beta peptide

design application takes such a backbone structure

and predicts which sidechains (from the standard

20) would best support that backbone structure.38

Supercharge. Increasing the net charge on the

surface of a protein can prevent aggregation,39,40

increase expression and protein lifetime, alter cell

entry,41 and affect kidney filtration.42 The ROSIE

Supercharge application takes a protein structure

and attempts either to maximize the surface charge

(positive or negative, as specified), or to obtain a

specific net charge, all while attempting to maintain

the protein stability.43

Antibody. Antibody structure prediction is aided

by the consideration of antibody-specific structural fea-

tures, which can be reliably predicted from their

sequence. The ROSIE Antibody application uses this

domain specific knowledge to model the predicted struc-

ture of an antibody given its primary sequence.44,45 Due

to the increased complexity, modeling the challenging

HCDR3 loop is provided as a separate option.

Noncanonical backbones design. Noncanonical

backbones (NCBB) can be more thermodynamically

stable than standard alpha amino acids, and they are

more resistant to native peptidases. The NCBB Design

application redesigns existing peptide-protein complexes

by replacing the peptide’s backbone residues with

Table II. Output Widgets

Output widget Description

JobHeader An overview of the inputs and running
statistics

TopModels Display and permit downloading the
structures of the best results of the run

ScoreTable Display a Rosetta scorefile in sortable
tabular form

ScorePlot Display a scatter plot of data from a
Rosetta scorefile

Plot Produce a scatter plot of arbitrary data
File Display the text contents of an output file

Table III. Protocols Available Through ROSIE

Application Developer API Introduced Jobsa References

Docking2 Gray at JHU Meta January 2012b 17,054b 50 and 51
Symmetric docking Andr�e at Lund Meta August 2013 1081 52
RNA redesign Das at Stanford Meta October 2013 76c 36
Ligand docking Meiler at Vanderbilt Meta January 2014 3722 53 and 54
pKa Gray at JHU Meta January 2014 1078 55
Peptiderive Furman at HUJ Meta May 2015 2057 56 and 57
Make exemplar Karanicolas at FHCC Meta September 2015 167 58
Snug dock Gray at JHU Meta May 2016 363 51 and 59
Tox dock Bonneau at NYU Meta May 2016 50
Lipid accessibility Bonneau at NYU Meta August 2016 141 60
FARFAR Das at Stanford Original February 2012 1706 36
ERRASER Das at Stanford Original October 2012 232 37
Beta peptide design Das at Stanford Original November 2012 19 38
Supercharge Kuhlman at UNC Original November 2012 1013 43
Antibody Gray at JHU Original December 2012 5133 44 and 45
NCBB design Bonneau at NYU Original December 2012 43 46
Sequence tolerance Kortemme at UCSF Original January 2013 741 47 and 48
VIP Havranek at WUSTL Original March 2013 412 49

a As of September 2017.
b Includes jobs run with the original API.
c RNA Redesign runs on a separate backend, and not all jobs may be adequately counted.

Moretti et al. PROTEIN SCIENCE VOL 27:259—268 263

http://rosie.rosettacommons.org/documentation


oligooxopiperazines, hydrogen bond surrogates and pep-

toids, while maintaining peptide–protein binding.46

Sequence tolerance. The Sequence Tolerance

application examines a defined set of positions in a

given protein–protein interface, predicting which

mutations may be tolerated, and which may destabi-

lize either the monomers or the protein–protein

interaction.47,48

VIP—Core redesign to eliminate voids. Voids

in the hydrophobic core of a protein are correlated

with reduced stability. The ROSIE Void Identifica-

tion and Packing (VIP) application can examine the

structure of a protein, locate voids in the core, and

suggest mutations that could be made to improve

core packing without destabilizing the protein.49

Protocols using the new meta API. The simpli-

fied meta API framework for protocol specification

has allowed a number of additional Rosetta protocols

to be exposed through ROSIE.

Docking2. The ROSIE Docking2 application is a

rewrite of the previous protein-protein docking pro-

tocol to use the new meta API. This application does

a local docking search of a protein–protein interface,

given a close starting conformation.50,51

Symmetric docking. Assembly of a monomer

into a symmetric oligomer is assisted by knowledge of

that symmetry. The Symmetric Docking application

uses knowledge of the desired symmetry to convert a

structure of a monomer into a symmetric oligomer.52

RNA redesign. Given a three dimensional (3D)

structure of a folded RNA, the RNA Redesign appli-

cation will attempt to find an RNA sequence (A/U/C/

G) which best stabilizes that particular backbone

conformation.36

Ligand docking. The ROSIE Ligand Docking

application allows users with a given small molecule

to predict the binding conformation of that small

molecule to a designated pocket on a 3D structure of

a protein.53,54

pKa. The pKa of charged amino acids in a

protein can be substantially perturbed due to their

surrounding environment and the charge state of

surrounding residues. The ROSIE pKa application

predicts the pKa of various residues in the protein

based on their three-dimensional context.55

Peptiderive. While many protein–protein inter-

faces are large, it has been found that much of the

energy of interaction is localized to specific regions

in the interface. The Peptiderive application exam-

ines a protein-protein interface and attempts to

locate the short peptide sequences which contribute

the most to the interaction energy.56,57 These pepti-

des can then potentially be used as inhibitors of the

protein–protein interaction.

Make Exemplar—Map small molecule binding
pockets. Evaluating potential small molecule bind-

ers (such as in high throughput screening) is assisted

by having a map of the “ideal” configuration of a

ligand binding pocket. The Make Exemplar applica-

tion creates such a map from the 3D structure of the

protein, by placing atoms at the appropriate locations

for hydrogen bond donors, hydrogen bond acceptors,

and locations of hydrophobic atoms.58

Snug dock—Antibody/antigen docking. Standard

protein–protein docking techniques do not necessar-

ily sample all the relevant degrees of freedom

needed for antibody/antigen docking. In particular,

the flexibility of the antibody loops and the heavy/

light chain interface are typically neglected in typi-

cal protein-protein docking techniques. The Snug

Dock application is tailored toward antibody-antigen

docking, with explicit additional sampling of the rele-

vant internal degrees of freedom of the antibody.51,59

Tox dock. Disulfide-cyclized peptides are one

major class of ion channel inhibitors. While these pep-

tides are found natively as neurotoxins, their inhibi-

tory effects may have therapeutic uses. The Tox Dock

application docks these cyclized peptides into struc-

tures and homology models of ion channels.

Lipid accessibility. When examining membrane

proteins, it is useful to know where the lipid bilayer

contacts the protein. The mp_lipid_acc application

examines structures of membrane proteins, and enc-

odes the lipid accessibility of each atom in the B-

factor column of a Protein Data Bank (PDB) file.60

This annotated PDB can then be viewed in standard

molecular viewers.

Server usage to date
From March 2013 (when the statistics in the previ-

ous ROSIE paper were gathered) to the time of writ-

ing (September 2017), over 4000 new users have

registered with ROSIE. Along with an unknown

number of anonymous users, they have submitted

over 31,000 different jobs to the server. Through

that time, the growth in the number of registered

users as well as the number of new jobs has been

approximately linear, adding approximately 80 new

registered users per month, and serving approxi-

mately 875 new jobs per month. The computational

demand in the same time period has been over 3.5

million CPU hours, or the equivalent of just under

100 CPUs in continuous use for the past 4 years.

Much of this computational power was supplied on

the Stampede cluster at the Texas Advanced Com-

puting Center, through a grant from the Extreme

Science and Engineering Discovery Environment

(XSEDE).

Discussion
We have improved the method by which ROSIE

server protocols are specified, which has greatly sim-

plified the method by which new protocols are imple-

mented. As such, the number of protocols freely

available through the ROSIE website at http://rosie.

264 PROTEINSCIENCE.ORG ROSIE: Web-Accessible Modeling with Rosetta

http://rosie.rosettacommons.org


rosettacommons.org has more than doubled since

the last paper describing it.

Our long-term goal continues to be to provide

free web versions of all core Rosetta protocols. While

there are 18 protocols currently on the ROSIE web

server, additional protocols are not yet available

through the server. The reduced complexity of the

meta API described in this paper means that com-

patible protocols can be converted to run on the

ROSIE server in a few weeks of work by a knowl-

edgeable Rosetta developer. We plan to continue to

add additional protocols to ROSIE, and encourage

users interested in protocols not yet available on

ROSIE to contact the ROSIE help forum at http://

www.rosettacommons.org/forums/rosie/rosie-general

to help guide which protocols get exposed as a web

server.

Materials and Methods

ROSIE server infrastructure and meta-API

ROSIE is implemented in the TurboGears web

server framework, using a PostgresSQL database.

The server is freely available to the public at http://

rosie.rosettacommons.org.

Protocol for creation of new ROSIE applications
The following is a summary of the steps required for

a developer to create a new ROSIE server with the

new meta protocols specification format. ROSIE

development tools and source code are available to

registered developers through the RosettaCommons.

Install a local ROSIE test server. To facilitate

rapid testing of the protocol, the ROSIE server envi-

ronment is made available within a VirtualBox

(http://www.virtualbox.org) virtual machine (VM).

This VM can be downloaded, with the appropriate

user name and password, from http://graylab.jhu.

edu/ROSIE

All the software needed to run a ROSIE server

locally is provided, including Rosetta (under �/
rosetta/) and the ROSIE server software itself

(under �/rosie/). As these may be out of date, you

may wish to update one or both before continuing

development, by using standard git revision control

commands. (Note that any “push” of changes should

be to a personal GitHub fork of the ROSIE reposi-

tory, rather than the main ROSIE repository.)

Create a python script with your meta proto-

cols. Your new meta protocol will live in a single

Python script file in the rosie.front/rosie/

meta/. (The other applications in this directory can

be used as a guide when formatting and structuring

your protocol.) The main specification of the protocol

is the NT object, which contains entries for name,

display name, input, input validator, commands,

output, developed_by, citations, and documentation.

Name, display name, developed_by, citations, and

documentation entries are strings which provide tex-

tual information about the protocol for various loca-

tions in the server.

The input_ entry contains a Python list of

input widget objects, and controls how the submis-

sion form is constructed. A list of currently available

input widgets is given in Table I. Each widget will

be placed one after the other on the submission page.

As the server is accepting potentially untrusted data

over the internet, each widget accepts input valida-

tion parameters to raise an error if nonsensical or

potentially malicious entries are given. In addition,

the input_validator entry accepts a Python func-

tion which will be passed all the input values at the

time of job submission to identify problematic inter-

dependencies between entries.

The commands entry contains a list of triggers

which will be run in order by the ROSIE backend.

These triggers are specified using specially deco-

rated Python functions which will be passed the

values from the input widgets. These functions can

execute arbitrary Python code to set up input files

for external Rosetta runs, which are launched using

a specialized HPC driver object to potentially run on

a remote machine. To avoid resource starvation for

other users, settings should be limited such that a

single ROSIE job never takes more than 2000 CPU

hours, with the average run preferably staying

below 500 CPU hours. The trigger functions are also

responsible for postprocessing the runs and passing

back the processed results through annotated

parameters. In this way the results of one trigger

command can be used as input for the next.

The output entry controls the display of the

results page for finished (and in progress) runs. This

is a Python list of output widget objects, which will

be placed one after the other on the results page. A

list of currently available output widgets is given in

Table II.

Enable your new protocol in the ROSIE test

environment.

1. To enable your protocols on the website, import

your protocol’s Python module rosie.front/

rosie/meta/__init__.py and add it to the list

of protocols in that file.

2. Add a 1024 3 1024 sized image to rosie.front/

rosie/public/images/<protocolname>_icon.

png

3. To enable running your protocol on the local back-

end, add your protocol to rosie.back/rosie/

rosie-daemon.ini.template (and rosie-daemon.

ini, if present)

4. Go to rosie.front/. Run “source �/prefix/
TurboGears-2.2/bin/activate” then “python

Moretti et al. PROTEIN SCIENCE VOL 27:259—268 265

http://rosie.rosettacommons.org
http://www.rosettacommons.org/forums/rosie/rosie-general
http://www.rosettacommons.org/forums/rosie/rosie-general
http://rosie.rosettacommons.org
http://rosie.rosettacommons.org
http://www.virtualbox.org
http://graylab.jhu.edu/ROSIE
http://graylab.jhu.edu/ROSIE


update_protocol_schema.py” to update the

database

Test your new protocol server locally.

1. In one terminal window, run the ./run-rosie-

server.sh script in �/rosie/ to launch the

webserver

2. In another terminal, run the ./run_rosie-dae-

mon.sh script in �/rosie/rosie.back/ to

launch the ROSIE backend.

3. Open “localhost:8080” in your web browser to

visit the local version of your web server

4. Test your new protocol in your browser to make

sure it runs appropriately, updating your meta

protocol file as needed.

5. When finished, push the results to your personal

fork of the ROSIE GitHub repository, and inform

the ROSIE system administrators for code review

and integration into the central server.

Acknowledgments
We thank the numerous members of the Rosetta com-

munity who have implemented and debugged ROSIE

applications. Computational power for ROSIE has

been provided by XSEDE (“Stampede Power for the

ROSIE Gateway” to J.J.G., S.L., and R.D.).

References

1. Ovchinnikov S, Park H, Varghese N, Huang PS,
Pavlopoulos GA, Kim DE, Kamisetty H, Kyrpides NC,
Baker D (2017) Protein structure determination using
metagenome sequence data. Science 355:294–298.

2. Miao Z, Adamiak RW, Antczak M, Batey RT, Becka AJ,
Biesiada M, Boniecki MJ, Bujnicki JM, Chen SJ,
Cheng CY, Chou F-C, Ferre-D’Amare AR, Das R,
Dawson WK, Ding F, Dokholyan NV, Dunin-Horkawicz
S, Geniesse C, Kappel K, Kladwang W, Krokhotin A,
Lach GE, Major F, Mann TH, Magnus M, Pachulska-
Wieczorek K, Patel DJ, Piccirilli JA, Popenda M,
Purzycka KJ, Ren A, Rice GM, Santalucia J, Jr,
Sarzynska J, Szachniuk M, Tandon A, Trausch JJ,
Tian S, Wang J, Weeks KM, Williams BII, Xiao Y, Xu
X, Zhang D, Zok T, Westhof E (2017) RNA-Puzzles
Round III: 3D RNA structure prediction of five ribos-
witches and one ribozyme. RNA 23:655–672.

3. Weitzner BD, Jeliazkov JR, Lyskov S, Marze N,
Kuroda D, Frick R, Adolf-Bryfogle J, Biswas N,
Dunbrack RL, Jr, Gray JJ (2017) Modeling and docking
of antibody structures with Rosetta. Nat Protoc 12:
401–416.

4. Marze NA, Jeliazkov JR, Roy Burman SS, Boyken SE,
DiMaio F, Gray JJ (2017) Modeling oblong proteins
and water-mediated interfaces with RosettaDock in
CAPRI rounds 28–35. Proteins 85:479–486.

5. Alam N, Schueler-Furman O (2017) Modeling peptide-
protein structure and binding using Monte Carlo sam-
pling approaches: Rosetta FlexPepDock and FlexPepBind.
Methods Mol Biol 1561:139–169.

6. Marcu O, Dodson EJ, Alam N, Sperber M, Kozakov D,
Lensink MF, Schueler-Furman O (2017) FlexPepDock
lessons from CAPRI peptide-protein rounds and sug-
gested new criteria for assessment of model quality
and utility. Proteins 85:445–462.

7. Lemmon G, Kaufmann K, Meiler J (2012) Prediction of
HIV-1 protease/inhibitor affinity using RosettaLigand.
Chem Biol Drug Des 79:888–896.

8. Davis IW, Raha K, Head MS, Baker D (2009) Blind
docking of pharmaceutically relevant compounds using
RosettaLigand. Protein Sci 18:1998–2002.

9. Zhang Z, Porter J, Tripsianes K, Lange OF (2014)
Robust and highly accurate automatic NOESY assign-
ment and structure determination with Rosetta.
J Biomol NMR 59:135–145.

10. Lange OF, Rossi P, Sgourakis NG, Song Y, Lee HW,
Aramini JM, Ertekin A, Xiao R, Acton TB, Montelione
GT, Baker D (2012) Determination of solution struc-
tures of proteins up to 40 kDa using CS-Rosetta with
sparse NMR data from deuterated samples. Proc Natl
Acad Sci USA 109:10873–10878.

11. DiMaio F (2017) Rosetta structure prediction as a tool
for solving difficult molecular replacement problems.
Methods Mol Biol 1607:455–466.

12. Wang RY, Kudryashev M, Li X, Egelman EH, Basler
M, Cheng Y, Baker D, DiMaio F (2015) De novo protein
structure determination from near-atomic-resolution
cryo-EM maps. Nat Methods 12:335–338.

13. Kuhlman B, Dantas G, Ireton GC, Varani G, Stoddard
BL, Baker D (2003) Design of a novel globular protein
fold with atomic-level accuracy. Science 302:1364–1368.

14. Koga N, Tatsumi-Koga R, Liu G, Xiao R, Acton TB,
Montelione GT, Baker D (2012) Principles for designing
ideal protein structures. Nature 491:222–227.

15. Fleishman SJ, Whitehead TA, Ekiert DC, Dreyfus C,
Corn JE, Strauch EM, Wilson IA, Baker D (2011) Com-
putational design of proteins targeting the conserved
stem region of influenza hemagglutinin. Science 332:
816–821.

16. Strauch EM, Bernard SM, La D, Bohn AJ, Lee PS,
Anderson CE, Nieusma T, Holstein CA, Garcia NK,
Hooper KA, Ravichandran R, Nelson JW, Sheffler W,
Bloom JD, Lee KK, Ward AB, Yager P, Fuller DH,
Wilson IA, Baker D (2017) Computational design of tri-
meric influenza-neutralizing proteins targeting the
hemagglutinin receptor binding site. Nat Biotechnol
35:667–671.

17. Tinberg CE, Khare SD, Dou J, Doyle L, Nelson JW,
Schena A, Jankowski W, Kalodimos CG, Johnsson K,
Stoddard BL, Baker D (2013) Computational design of
ligand-binding proteins with high affinity and selectiv-
ity. Nature 501:212–216.

18. Allison B, Combs S, DeLuca S, Lemmon G, Mizoue L,
Meiler J (2014) Computational design of protein-small
molecule interfaces. J Struct Biol 185:193–202.

19. Jiang L, Althoff EA, Clemente FR, Doyle L,
Rothlisberger D, Zanghellini A, Gallaher JL, Betker
JL, Tanaka F, Barbas CF III, Hilvert D, Houk KN,
Stoddard BL, Baker D (2008) De novo computational
design of retro-aldol enzymes. Science 319:1387–1391.

20. Rothlisberger D, Khersonsky O, Wollacott AM, Jiang
L, DeChancie J, Betker J, Gallaher JL, Althoff EA,
Zanghellini A, Dym O, Albeck S, Houk KN, Tawfik DS,
Baker D (2008) Kemp elimination catalysts by compu-
tational enzyme design. Nature 453:190–195.

21. King NP, Bale JB, Sheffler W, McNamara DE, Gonen
S, Gonen T, Yeates TO, Baker D (2014) Accurate
design of co-assembling multi-component protein nano-
materials. Nature 510:103.

22. King NP, Sheffler W, Sawaya MR, Vollmar BS, Sumida
JP, Andre I, Gonen T, Yeates TO, Baker D (2012) Com-
putational design of self-assembling protein nanomate-
rials with atomic level accuracy. Science 336:1171–
1174.

266 PROTEINSCIENCE.ORG ROSIE: Web-Accessible Modeling with Rosetta



23. Bhardwaj G, Mulligan VK, Bahl CD, Gilmore JM,

Harvey PJ, Cheneval O, Buchko GW, Pulavarti SV,

Kaas Q, Eletsky A, Huang P-S, Johnsen WA, Greisen

PJ, Rocklin GJ, Song Y, Linsky TW, Watkins A, Rettie

SA, Xu X, Carter LP, Bonneau R, Olson JM, Coutsias

E, Correnti CE, Szyperski T, Craik DJ, Baker D (2016)

Accurate de novo design of hyperstable constrained

peptides. Nature 538:329–335.
24. Leaver-Fay A, Tyka M, Lewis SM, Lange OF,

Thompson J, Jacak R, Kaufman K, Renfrew PD, Smith

CA, Sheffler W, Davis IW, Cooper S, Treuille A,

Mandell DJ, Richter F, Ban Y-EA, Fleishman SJ, Corn

JE, Kim DE, Lyskov S, Berrondo M, Mentzer S,

Popovic Z, Havranek JJ, Karanicolas J, Das R, Meiler

J, Kortemme T, Gray JJ, Kuhlman B, Baker D,

Bradley P (2011) ROSETTA3: an object-oriented soft-

ware suite for the simulation and design of macromole-

cules. Methods Enzymol 487:545–574.
25. Chaudhury S, Lyskov S, Gray JJ (2010) PyRosetta: a

script-based interface for implementing molecular

modeling algorithms using Rosetta. Bioinformatics 26:

689–691.
26. Fleishman SJ, Leaver-Fay A, Corn JE, Strauch EM,

Khare SD, Koga N, Ashworth J, Murphy P, Richter F,

Lemmon G, Meiler J, Baker D (2011) RosettaScripts: a

scripting language interface to the Rosetta macromo-

lecular modeling suite. PLoS One 6:e20161.
27. Kaufmann KW, Lemmon GH, Deluca SL, Sheehan JH,

Meiler J (2010) Practically useful: what the Rosetta

protein modeling suite can do for you. Biochemistry 49:

2987–2998.
28. Bender BJ, Cisneros A III, Duran AM, Finn JA, Fu D,

Lokits AD, Mueller BK, Sangha AK, Sauer MF, Sevy

AM, Sliwoski G, Sheehan JH, DiMaio F, Meiler J,

Moretti R (2016) Protocols for molecular modeling with

Rosetta3 and RosettaScripts. Biochemistry 55:4748–

4763.
29. Gray JJ (2017) The PyRosetta interactive platform for

protein structure prediction and design: a set of educa-

tional modules. Mountain View, CA: Createspace, p 98.
30. Kim DE, Chivian D, Baker D (2004) Protein structure

prediction and analysis using the Robetta server.

Nucleic Acids Res 32:W526–W531.
31. Liu Y, Kuhlman B (2006) Rosetta Design server for

protein design. Nucleic Acids Res 34:W235–W238.
32. London N, Schueler-Furman O (2008) Funnel hunting

in a rough terrain: learning and discriminating native

energy funnels. Structure 16:269–279.
33. London N, Raveh B, Cohen E, Fathi G, Schueler-

Furman O (2011) Rosetta FlexPepDock web server–high

resolution modeling of peptide-protein interactions.

Nucleic Acids Res 39:W249–W253.
34. Lauck F, Smith CA, Friedland GF, Humphris EL,

Kortemme T (2010) RosettaBackrub–a web server for

flexible backbone protein structure modeling and

design. Nucleic Acids Res 38:W569–W575.
35. Lyskov S, Chou FC, Conchuir SO, Der BS, Drew K,

Kuroda D, Xu J, Weitzner BD, Renfrew PD,

Sripakdeevong P, Borgo B, Havranek JJ, Kuhlman B,

Kortemme T, Bonneau R, Gray JJ, Das R (2013) Server-

ification of molecular modeling applications: the Rosetta

Online Server that Includes Everyone (ROSIE). PLoS

One 8:e63906.
36. Das R, Karanicolas J, Baker D (2010) Atomic accuracy

in predicting and designing noncanonical RNA struc-

ture. Nat Methods 7:291–294.
37. Chou FC, Sripakdeevong P, Dibrov SM, Hermann T,

Das R (2013) Correcting pervasive errors in RNA

crystallography through enumerative structure predic-
tion. Nat Methods 10:74–76.

38. Molski MA, Goodman JL, Chou FC, Baker D, Das R,
Schepartz A (2013) Remodeling a beta-peptide bundle.
Chem Sci 4:319–324.

39. Fields GB, Alonso DOV, Stigter D, Dill KA (1992)
Theory for the aggregation of proteins and copolymers.
J Phys Chem 96:3974–3981.

40. Fink AL (1998) Protein aggregation: folding aggre-
gates, inclusion bodies and amyloid. Fold Des 3:R9–
R23.

41. Cronican JJ, Beier KT, Davis TN, Tseng JC, Li W,
Thompson DB, Shih AF, May EM, Cepko CL, Kung
AL, Zhou Q, Liu DR (2011) A class of human proteins
that deliver functional proteins into mammalian cells
in vitro and in vivo. Chem Biol 18:833–838.

42. Lund U, Rippe A, Venturoli D, Tenstad O, Grubb A,
Rippe B (2003) Glomerular filtration rate dependence
of sieving of albumin and some neutral proteins in rat
kidneys. Am J Physiol Renal Physiol 284:F1226–
F1234.

43. Der BS, Kluwe C, Miklos AE, Jacak R, Lyskov S, Gray
JJ, Georgiou G, Ellington AD, Kuhlman B (2013) Alter-
native computational protocols for supercharging pro-
tein surfaces for reversible unfolding and retention of
stability. PLoS One 8:e64363.

44. Sivasubramanian A, Sircar A, Chaudhury S, Gray JJ
(2009) Toward high-resolution homology modeling of
antibody Fv regions and application to antibody-
antigen docking. Proteins 74:497–514.

45. Marze NA, Lyskov S, Gray JJ (2016) Improved predic-
tion of antibody VL-VH orientation. Protein Eng Des
Sel 29:409–418.

46. Drew K, Renfrew PD, Craven TW, Butterfoss GL,
Chou FC, Lyskov S, Bullock BN, Watkins A, Labonte
JW, Pacella M, Kilambi KP, Leaver-Fay A, Kuhlman B,
Gray JJ, Bradley P, Kirshenbaum K, Arora PS, Das R,
Bonneau R (2013) Adding diverse noncanonical back-
bones to Rosetta: enabling peptidomimetic design.
PLoS One 8:e67051.

47. Smith CA, Kortemme T (2010) Structure-based predic-
tion of the peptide sequence space recognized by natural
and synthetic PDZ domains. J Mol Biol 402:460–474.

48. Smith CA, Kortemme T (2011) Predicting the tolerated
sequences for proteins and protein interfaces using
RosettaBackrub flexible backbone design. PLoS One 6:
e20451.

49. Borgo B, Havranek JJ (2012) Automated selection of
stabilizing mutations in designed and natural proteins.
Proc Natl Acad Sci USA 109:1494–1499.

50. Chaudhury S, Berrondo M, Weitzner BD, Muthu P,
Bergman H, Gray JJ (2011) Benchmarking and analy-
sis of protein docking performance in Rosetta v3.2.
PLoS One 6:e22477.

51. Lyskov S, Gray JJ (2008) The RosettaDock server for
local protein-protein docking. Nucleic Acids Res 36:
W233–W238.

52. Andre I, Bradley P, Wang C, Baker D (2007) Prediction
of the structure of symmetrical protein assemblies.
Proc Natl Acad Sci USA 104:17656–17661.

53. Combs SA, Deluca SL, Deluca SH, Lemmon GH,
Nannemann DP, Nguyen ED, Willis JR, Sheehan JH,
Meiler J (2013) Small-molecule ligand docking into com-
parative models with Rosetta. Nat Protoc 8:1277–1298.

54. DeLuca S, Khar K, Meiler J (2015) Fully flexible docking
of medium sized ligand libraries with RosettaLigand.
PLoS One 10:e0132508.

55. Kilambi KP, Gray JJ (2012) Rapid calculation of pro-
tein pKa values using Rosetta. Biophys J 103:587–595.

Moretti et al. PROTEIN SCIENCE VOL 27:259—268 267



56. London N, Raveh B, Movshovitz-Attias D, Schueler-
Furman O (2010) Can self-inhibitory peptides be
derived from the interfaces of globular protein-protein
interactions?. Proteins 78:3140–3149.

57. Sedan Y, Marcu O, Lyskov S, Schueler-Furman O
(2016) Peptiderive server: derive peptide inhibitors
from protein-protein interactions. Nucleic Acids Res 44:
W536–W541.

58. Johnson DK, Karanicolas J (2016) Ultra-high-through-
put structure-based virtual screening for small-molecule

inhibitors of protein-protein interactions. J Chem Inf
Model 56:399–411.

59. Sircar A, Gray JJ (2010) SnugDock: paratope struc-
tural optimization during antibody-antigen docking
compensates for errors in antibody homology models.
PLoS Comput Biol 6:e1000644.

60. Koehler Leman J, Lyskov S, Bonneau R (2017) Com-
puting structure-based lipid accessibility of membrane
proteins with mp_lipid_acc in RosettaMP. BMC Bioin-
form 18:115.

268 PROTEINSCIENCE.ORG ROSIE: Web-Accessible Modeling with Rosetta


