
Epothilones: Quantitative Structure Activity Relations Studied by
Support Vector Machines and Artificial Neural Networks
Annalen Bleckmann and Jens Meiler*

University of Washington, Department of Biochemistry, BOX 357350, Seattle, WA 98195, USA

Full Paper

In this paper the relation between the structure of
epothilones (a new class of anti-tumour agents) and their
potential to influence the tubulin-microtubule equilibrium
is investigated. Insights into the character of the tubulin-
epothilone interactions are derived as the accuracy and
reliability of support vector machines and artificial neural
networks to model such relations quantitatively is com-
pared. Both methods are well qualified to model relation-
ships between the structure of epothilone derivatives and
their anti-tumour activities. Artificial neural networks
achieve lower residual standard deviations (22%) com-
pared to support vector machines (25%) and better
classification results (89% compared to 75%). However,

the reproducibility of the results is greater for support
vector machines, which suggests a stronger convergence.
The mapping of the influence of individual structural
descriptors on the three-dimensional epothilone structure
suggests one side of the rather flat molecule to be more
important for its activity. The ™LIBSVM∫ software which
is used for simulating the support vector machines is freely
available from www.csie.ntu.edu.tw/~cjlin/libsvm. The Pro-
gram ™Smart∫ which is used for simulating artificial neural
networks is free for academic use and can be obtained
together with the database of epothilones and their
activities from www.jens-meiler.de.

1 Introduction

Epothilones A (Figure 1) and B can be isolated from the
myxobacterium Sorangium cellulosum strain 90 [1, 2]. The
recognition of their cytotoxic action against tumor cells led
to intense research activities in chemistry and biology.
Bollag et al. [3] discovered the induction of the tubulin-
polymerization (TP) similar to agents like Taxol [4]. The
effect of microtubule stabilization even in taxol-resistant
tumor cell lines [5] increased their potential in cancer
chemotherapy further [3, 6, 7].
The complete elucidation of the structure including

stereochemistry was published by Hˆfle [8]. Soon after,
the synthesis of epothilone, analogues and precursors was
described in a large number of reports [9 ± 16]. The bio-
logical activity of these analogues was investigated. These
data served as basis of qualitative structure activity relations

[10, 17 ± 19].Moreover,Wang et al. [20] introduced a unified
and quantitative receptor model for microtubule binding of
paclitaxel and epothilone by docking 26 derivatives into a
™minireceptor∫.
After publishing tubulin structures at 6.5 ä and 3.7 ä

resolution, the structure of ��-tubulin stabilized with taxol
was refined to 3.5 ä resolution utilizing electron crystallog-
raphy [21 ± 23]. The tubulin-bound conformation of epothi-
lone A [24] which was solved by NMR-spectroscopy shows
significant differences in comparison to the x-ray structure
of free epothilone [8]. Themacrocycle undergoes conforma-
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tional changes which become most obvious in the change of
the C13-C14-C15-C16 (Figure 1, Figure 5) torsion angle by
~100�. More importantly, the side chain dihedral angle C16-
C17-C18-C19 (Figure 1, Figure 5) changes from trans to cis
conformation, which results in having the electron pair on
the nitrogen freely accessible for interactions.
In recent years the potential of support vector machines

(SVM) [25, 26] for distinguishing biologically active from
non-active substances has been investigated [27]. SVMs use
distinct mathematical functions to transform a given set of
descriptors into a different hyperspace. The transformation
is optimized to separate a set of data points according to a
given and usually binary property by introducing a hyper-
plane in this new hyperspace. Slightly modified versions are
also able to handle classifications inmore than twogroups or
the fit of analog functions. The latter case is a specialization
of three-layer artificial neural networks (ANN) with a
restricted set of transformations possible.
ANNs are used for several years in chemistry and

biochemistry to describe structure activity relations quanti-
tatively [28]. Their critical advantage is the flexibility of the
model. It can adapt to complex interrelations and is capable
to detect even small signals at a large noise level. Hence
ANNs are applied when no simple mathematical model can
be assumed, many potential parameters interact and the
experimental errors are high.
The major difference between ANNs and SVMs is the

training procedure. ANNs are trained by minimizing the
prediction error for the training set of data. The training stops
in a local minimum. This is not critical, if all local minima are
close to the global minimum as usually for big large sets of
training data. However, if the set of data becomes small as it
frequently happens with biological data, the local minima
tend to represent substantially different models although
their overall accuracy is close. In contrast to ANNs, SVMs
offer awell-defineddecisionwhich of these localminima is to
be chosen ± the one that ensures the greatest separation
between positives and negatives, e.g. active and inactive
drugs. So the somewhat randomdecisionwhichof theminima
is adopted depending on the starting values of the weights
when training an ANN is replaced by a well defined
algorithm. Thus, while for ANNs often dissimilar models
are obtained after retraining the same set of data several
times from different randomized starting points, the SVM
obtained for one and the same set of data will be the same.
In this paper,ANNs and SVMs are applied to the same set

of epothilone structures and biological activities to compare
the two methods in terms of accuracy and reliability.
General conclusions about the epothilone-tubulin-interac-
tions were obtained.

2 Materials and Methods

All biological activities used in the following analysis are
taken from Nicolaou et al. and Altmann et al. [10, 16, 29].

Epothilone derivatives that did not match the template
structure of epothilone A (Figure 1) were excluded (e.g.
open macrocycle, missing side chain at C15). These struc-
tures were exclusively inactive. Hence only 223 structures
out of ~250 initial structures were used for the analysis. The
activity of these substances [10, 16, 29] was assessed by
incubating purified tubulin for 30 min at 37 �C in the
presence of the compound. The mixture is filtered and the
collected polymerized tubulin is stained with amido black
solution. Quantification is yielded bymeasuring the absorb-
ance of the dyed solution. The given%-polymerization (TP)
is calculated relative to the presumed absorbance of 100%
polymerized tubulin. The values lay in a range between 1%
and 98%.
In addition biological activities were assessed for 37

derivatives by measuring the inhibition of carcinoma cell
growth as IC50-values for four cell lines[10]. The cell lines
include a parental ovarian cell line (1A9), two of its mutants
that are taxol resistant (1A9PTX10: Phe270�Val and
1A9PTX22: Ala364�Thr), and a mutated MCF7 breast-
cell line. The cell growth is evaluated by measuring the
increase in cellular protein. The resistant cell lines are
gainedby treating the cells with increasing concentrations of
taxol. However, their taxol resistance does not cause a
resistance to epothilone, which further increases the poten-
tial of epothilones in cancer chemotherapy. Finally one
more biological parameter, an EC50-value obtained from a
quantitative glutamate assay, is defined as the concentration
of the drug that reduces the concentration of the protein in
the solution to 50% [10, 16, 29].
In order to analyze these data with ANNs or SVMs, a

numerical representation for the ligand structure is needed.
25 parameters (compare Figure 2) were derived that code
the 223 structures uniquely. P01 describes the stereochem-
istry on atom C3. P02 distinguishes whether the two carbon
atoms atC4 aremethyl groups or connected by a single bond
to form a three membered ring. The stereochemistry at C6
andC7 is always alternate and can therefore be codedwith a
single parameter P03. P04 codes the four possible substitu-
ent configurations onC8 (Me;H), (H;H), (H;Me), (Me;Me).
The number of CH2-groups betweenC8 andC12 (between 1
and 5) is described by P05. P06 codes the bond type between
C12 and C13 (single or double). The stereochemistry of C12
and C13 is described by P07 and P08. The large variety of
substituents found on C12 is described by P09-P12 giving
their volume, average electronegativity, valence electrons
and �-electrons. The substituent on C13 (H, OH, F) is
described by P13. The stereochemistry at C15 is coded by
P14. The structure of the substituent on C15was varied over
a wide range. To describe this structural space with a small
number of parameters, predicted chemical shift values [30]
have proven to be efficient. They include information about
the covalent as well as the electronical structure in only one
number per atom. Chemical shift values for C16-C18 were
used as P15-P17. The atom types at positions 18×, 19, 19×, 20
are described by P18-P21 (C, N, O, S), while P22-P25
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describe the substituent of C21 in the same manner as
applied for the substituent on C12 (volume, average
electronegativity, valence and �-electrons). Eleven of these
25 parameters (P01, P02, P03, P06, P07, P08, P14, P18, P19,
P20, and P21) are binary, P04, P05, and P13 are multi-state
and the remaining 11 parameters (P09-P12, P15-P17, and
P22-P25) are real numbers. To train ANNs with published
inhibition values for carcinoma cell growth constants the
number of epothilone structures with known values reduces
to 37, which limits the number of necessary parameters to 8.
The SVMs were established with the LIBSVM software

(http://www.csie.ntu.edu.tw/~cjlin/libsvm/). TheSVMswere
trained by setting the type of SVM to epsilon-SVM-
regression. The type of kernel function was chosen to be a
radial basis function. The gamma in the kernel function

(radial basis function) was set to 0.0005. The parameter c of
the epsilon-SVM-regression was set to 10. To get a binary
output, the used type of SVM was C-SVM-classification.
AllANNswere generatedwith the program™Smart∫ [30].

The three-layer networks contain onebias in every layer and
are trained with the back propagation algorithm. The
learning rate � is decreased during the training procedure
from 0.1 to 0.001, the momentum � is constant with 0.5. The
input sensitivity is defined to be the first derivative of the
output with respect to every single input sij� douti

dinpj
. For

obtaining classification results ANNwere trained to predict
a binary output value. Both setups were optimized param-
eter-wise to give the best results for themonitoring data (see
below).

3 Results and Discussion

200 epothilone structures were used to create 10 sets of data
for cross-validation, each consisting of 180 structures for
training und 20 structures for monitoring. The 23 remaining
structures form the independent set of data.
The following three experiments were performed: 1)

Prediction of tubulin polymerization (TP): ANNs and
SVMs were trained for each of the ten sets of data. The
net architecture was 25 inputs, four hidden neurons and one
neuron in the output layer. The number of weights amounts
to 109. The results for all trainedANNs and SVMs are given
in table 1. The residual standard deviations for predicting
TP for the independent set of data are 25.1% � 0.7%when
using the ten SVMs and 22.2% � 2.2% for the ten ANNs.
While the correlation is only slightly better for the ANNs
when looking at the independent set of data, the remarkable
convergence of the SVMs becomes clear from the low
standard deviation. In Figure 3 a) and b) the standard
deviations are marked for the ten predictions of the 23 data
points in the independent set of data. It is striking that SVMs
suggest in all ten cases rather similar good models while
ANNs suggest in average slightly better but always different
models. 2) Classification: In a second experiment all
epothilone structures with a TP constant that exceeds 50%
were counted as active the remaining as inactive. The
training of ANNs and SVMs was repeated under those
binary conditions. The relation between active and non
active structureswas 61 :162.While the SVMshave a success
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Figure 2. Scheme of data processing. A chemical structure is
translated by 25 parameters into a numerical code. This code is
applied to ANNs and to SVMs. Both are trained to predict a
certain biological activity.

Table 1. Standard deviations and classification results of predicted TP activities

Training data Monitoring data Independent data

SVM std. dev. 18.0% � 3.9% 22.6% � 2.6% 25.1% � 0.7%
classification 86.1% � 1.2% 79.5% � 8.5% 74.8% � 4.0%

ANN std. dev. 14.6% � 1.5% 17.3% � 2.7% 22.2% � 2.2%
classification 91.7% � 1.8% 87.5% � 5.4% 89.1% � 3.1%

NN6 TP 12.7% 11.3% 13.9%
ln(IC50/EC50) 7.1% 6.2% 6.5%
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rate of 74.8% � 4.0%, ANNs achieve values of 89.1 �
3.1% (table 1). While for both models around 10% of only
the active substances are classified as inactive, the rate of
false positive is much higher for SVMs (close to 50%)
compared to ANN×s (around 12%). 3) Prediction of
carcinoma cell growth inhibition: For the last experiment
four values for carcinoma cell growth inhibition and two
values for induction of the TP are predicted by a single
ANN. Because of the small available set of data (only 37
structures having at least two of these values determined)
only one training, one monitoring, and one independent set
of data were defined. The training set of data consists of 28,
themonitoring set of data of four and the independent set of
data of five epothilone structures. However, since several
experimental data points per structure are available, the
overall number of data points amounts to 137 for the
training set of data, 20 for the monitoring set of data and 32
for the independent set of data. The number of weights in
the ANN is 66 having 8 inputs, 4 hidden neurons and 6
output neurons to predict the TP, EC50 (TP) and four IC50

values for carcinoma cell growth inhibition. ANNs have the
advantage, that they are able to predict several output
values in parallel. The result profits from this parallel
prediction, especially if dependent output values for small
data sets are available. The usual drawback in applying
ANNs on small set of data (a hidden layer too small to
describe a complex non-linear dependence because of the
limited number of degrees of freedoms allowed) can be
avoided: in our case, the number of training data points is
multiplied by six, which allows a sufficient broad hidden
layer to train the network. While the number of available
data points was too small to establish ANNs predicting
individual IC50, a combinedANN that predicts six values for
every structure enhances the model immediately. The
standard deviation values for the TP are 13.9% for the
independent dataset, whereas the EC50- and the IC50-values
achieve standard deviations of 6.5%.
To assess the importance of individual input parameters

for predicting the activity of a structure, the so-called input
sensitivity was computed. The input-sensitivities of each
parameter as obtained from the tenANNs from experiment
I are shown in Figure 4. Aside from the stereochemistry at
C12, the ANN seems to utilize all provided parameters for
computing the activity. The high influence of the ring size
between C9 and C11 likely results from a change in the
conformation of the macrocycle rather than a direct
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� Figure 3. Results of experiments I, II and III. The correlation
diagrams for SVMs (a) and ANNs (b) with the experimental
induction of tubulin-polymerization data on the x-axis and the
predicted value on the y-axis for all training, monitoring and
independent sets of data. Diagram (c) shows the experimental LN
of IC50-values and EC50-values on the y-axis and the predicted LN
of IC50-values and EC50-values the x-axis. The line of same
experimental data results from substances, whose activities are all
greater than 100.
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interaction with the protein. The presence of the two hetero
atoms in the correct position in the side chain is critical for
the activity of epothilone. The strong interaction of this part
of the molecule with the protein is also shown by the high
sensitivity values obtained for the chemical shift values and
the substituent at C21. As already seen by the increased
activity of epothiloneBcompared to epothiloneAamethyl-
group at C12 increases the activity. This observation agrees
with the high sensitivity of the relevant parameters. Also
critical are theOH-group at C3 and themethyl-group on C8
that have to point into the plane of Figure 1 in order to
increase activity.
These sensitivities can now be mapped onto the volume

contour of epothilone in its tubulin-bound conformation to
visualize the potential binding site. In Figure 5 a high
sensitivity is indicated by red regions and a low sensitivity by
blue regions. Comparing the two sides of the molecule it is
striking that descriptors with high influence on the activity
of epothilone tend to cluster on the b-side of the molecule.

The substituents at C21 and C12 as well as the nitrogen in
position 22, the methyl groups at C4, the OH at C7 point in
this direction. The 180� turn obtained in the side chain when
going from the unbound to bound conformation of epothi-
lone does rotate the nitrogen atom as well as the substituent
at C21 on this side of the molecule. Since the absence of the
nitrogen causes epothilone to loose its activity, it can be
suggested that an interaction between this nitrogen and the
protein (e.g. via a hydrogen bond) exists. Hence, the b-side
of the molecule is suggested to play the major role in the
epothilone-tubulin interaction.

4 Conclusions

SVMs as well as ANNs are well qualified to establish
quantitative relations between the chemical structure of
epothilone derivatives and their potential to induce the
tubulin polymerization and in turn their ability to inhibit the
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Table 2. Detailed classification results including the fraction of false and true positives and negatives

Training data Monitoring data Independent data

exp. active exp. inactive exp. active exp. inactive exp. active exp. inactive

SVM pred. active 23.2% 10.8% 20.5% 14.5% 30.9% 21.3%
pred. inactive 3.1% 62.8% 6.0% 59.0% 3.9% 43.9%

ANN pred. active 20.9% 2.9% 18.5% 4.5% 30.9% 7.0%
pred. inactive 5.4% 70.8% 8.0% 69.0% 3.9% 58.2%

Figure 4. Diagram of input-sensitivity for all parameters. The input sensitivity is given on the x-axis. The parameters as introduced in
figure 2 are given on the y-axis. The error bars indicate the obtained standard deviation over the ten cross validation set of data.
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growth of cancer cells. In predicting the induction of tubulin
polymerization for an independent set of data SVMs
achieve standard deviations of 25%, while in using ANNs
values of 22% are obtained. For classification, SVMs
achieve a success rate of 75%, whereasANNs are successful
in 89% of the cases. Hence ANNs get lower standard
deviations and significantly better classification results. In
contrast to ANNs, a much higher convergence is observed

for SVMs. Their high reproducibility is a clear advantage. In
predicting the induction of tubulin polymerization, EC50-
values for the tubulin polymerization and four IC50-values
for carcinoma cell growth inhibition parallel, ANNs achieve
standard deviations of 14% for the induction of tubulin
polymerization, whereas the EC50-value and the four IC50-
values yield standard deviations of 7%. An analysis of the
input sensitivity of the trained ANNs allows mapping the
influence of every structural feature of epothilone on its
three-dimensional structure. The network finds the sub-
stituents at C12 and C21, stereochemistry at C3, C6, C7 and
C8, methyl groups at C4 and most importantly the presence
of a nitrogen atom in the aromatic ring to be critical for the
activity of epothilone derivatives. Interestingly, those fea-
tures cluster on one side of the three dimensional epothilone
structure which suggests this side to be in contact with
tubulin.

Acknowledgement

The authors would like to thank Christian Griesinger for
useful discussion. We thank Bill Wedemeyer and Phil
Bradley for careful reading the manuscript. J.M. is support-
ed by a Human Frontier Science Program fellowship.

References

[1] G. Hˆfle, N. Bedorf, K. Gerth, Epothilone derivatives,
Chemical Abstracts 1994, 120, 836.

[2] K. Gerth, N. Bedorf, G. Hˆfle, H. Irschik, H. Reichenbach,
Epothilons A and B: Antifungal and Cytotoxic Compounds
from Sorangium cellulosum (Myxobacteria) ± Production,
Physico-chemical and Biological Properties, J. Antibiot. 1997,
49, 560 ± 563.

[3] D. M. Bollag, P. A. McQueney, J. Zhu, O. Hensens, L. Koupal,
J. Liesch, M. Goetz, E. Lazarides, C. M. Woods, Epothilones,
a New Class of Microtubulue-stabilizing Agents with a Taxol-
like Mechanism of Action, Cancer Res. 1995, 55, 2325 ± 2333.

[4] P. B. Schiff, J. Fant, S. B. Horwitz, Promotion of microtubule
assembly in vitro by taxol, Nature 1979, 277, 665 ± 668.

[5] R. J. Kowalski, P. Giannakakous, E. Hamel, Activities of the
Microtubule-stabilizing Agents Epothilone A and B with
Purified and in Cells Resistant to Paclitaxel (Taxol), J. Biol.
Chem. 1997, 272, 2534 ± 2541.

[6] P. Giannakakou, R. Gussio, E. Nogales, K. H. Downing, D.
Zaharevitz, B. Bollbuck, G. Poy, D. Sackett, K. C. Nicolaou,
T. Fojo, A common pharmacophore for epothilone and
taxanes: molecular basis for drug resistance conferred by
tubulin mutations in human cancer cells, Proc. Natl. Acad.
Sci. U.S.A. 2000, 97, 2904 ± 2909.

[7] L. A. Martello, H. M. McDaid, D. L. Regl, C.-P. H. Yang, D.
Meng, T. R. R. Pettus, M. D. Kaufman, H. Arimoto, S. J.
Danishefsky, A. B. Smith, III, S. B. Horwitz, Taxol and
discodermolide represent a synergistic drug combination in
human carcinoma cell lines, Clin. Cancer Res. 2000, 6, 1978 ±
1987.

[8] G. Hˆfle, N. Bedorf, H. Steinmetz, H. Reichenbach, K. Gerth,
Epthilon A und B ± neuartige, 16gliedrige Makrolide mit

QSAR Comb. Sci. 22 (2003) ¹ 2003 WILEY-VCH Verlag GmbH&Co. KGaA, Weinheim 727

Figure 5. Plot of input-sensitivities on a three dimensional
structure of epothilone. The surface colours are related to the
sensitivity of this region. Most important regions for activity are
shown in red and the least important in blue. The most active
regions cluster on one side of the molecule (b). Interaction with
tubulin will most likely occur on this side while the second side (a)
seems to be less involved in interactions.

Epothilones: Quantitative Structure Activity Relations Studied by Support Vector Machines ...

� �������	�
��� �����



cytotoxischer Wirkung: Isolierung, Struktur im Kristall und
Konformation in Lˆsung, Angew. Chem. 1996, 108, 1671 ±
1673.

[9] D. Schinzer, A. Limberg, O. M. Bˆhm, Studies Towards the
Total Synthesis of Epothilones: Asymmetric Synthesis of the
Key Fragments, Chem. Eur. J. 1996, 2, 1477 ± 1482.

[10] K. C. Nicolaou, F. Roschangar, D. Vourloumis, Chemie und
Biologie der Epothilone, Angew. Chem. 1998, 110, 2120 ±
2153.

[11] E. Von Angerer, Tubulin as a target for anticancer drugs,
Curr. Opin. Drug Discovery Dev. 2000, 3, 575 ± 584.

[12] K. C. Nicolaou, R. Scarpelli, B. Bollbuck, B. Werschkun,
M. M. A. Pereira, M. Wartmann, K. H. Altmann, D. Zahar-
evitz, R. Gussio, P. Giannakakou, Chemical synthesis and
biological properties of pyridine epothilones, Chem. Biol.
2000, 7, 593 ± 599.

[13] J. Mulzer, Epothilone B and its derivatives as novel antitumor
drugs: total and partial synthesis and biological evaluation,
Monatsh. Chem. 2000, 131, 205 ± 238.

[14] C. B. Lee, T.-C. Chou, X.-G. Zhang, Z.-G. Wang, S. D. Kuduk,
M. D. Chappell, S. J. Stachel, S. J. Danishefsky, Total Syn-
thesis and Antitumor Activity of 12,13-Desoxyepothilone F:
An Unexpected Solvolysis Problem at C15, Mediated by
Remote Substitution at C21, J. Org. Chem. 2000, 65, 6525 ±
6533.

[15] J. Johnson, S.-H. Kim, M. Bifano, J. DiMarco, C. Fairchild, J.
Gougoutas, F. Lee, B. Long, J. Tokarski, G. Vite, Synthesis,
Structure Proof, and Biological Activity of Epothilone
Cyclopropanes, Org. Lett. 2000, 2, 1537 ± 1540.

[16] K.-H. Altmann, G. Bold, G. Caravatti, N. End, A. Florsheim-
er, V. Guagnano, T. O×Reilly, M. Wartmann, Epothilones and
their analogs ± potential new weapons in the fight against
cancer, Chimia 2000, 54, 612 ± 621.

[17] J. D. Winkler, P. H. Axelsen, A Model for the Taxol
(Paclitaxel)/Epothilone Pharmacophore, Bioorg. Med.
Chem. Lett. 1996, 6, 2963 ± 2966.

[18] D.-S. Su, A. Balog, D. Meng, P. Bertinato, S. J. Danishefsky,
Y.-H. Zheng, T.-C. Chou, L. He, S. B. Horwitz, Structure-
activity relationships of the epothilones and the first in vivo
comparison with paclitaxel, Angew. Chem., Int. Ed. 1997, 36,
2093 ± 2096.

[19] L. He, P. G. Jagtap, D. G. I. Kingston, H.-J. Shen, G. A. Orr,
S. B. Horwitz, A Common Pharmacophore for Taxol and the
Epothilones Based on the Biological Activity of a Taxane
Molecule Lacking a C-13 Side Chain, Biochemistry 2000, 39,
3972 ± 3978.

[20] M. Wang, X. Xia, Y. Kim, D. Hwang, J. M. Jansen, M. Botta,
D. C. Liotta, J. P. Snyder, A Unified and Quantitative
Receptor Model for the Microtubule Binding of Paclitaxel
and Epothilone, Org. Lett. 1999, 1, 43 ± 46.

[21] E. Nogales, S. G. Wolf, I. A. Khan, R. F. Luduena, K. H.
Downing, Structure of tubulin at 6.5A ad location of the
taxol-binding site, Nature 1995, 375, 424 ± 427.

[22] E. Nogales, S. G. Wolf, K. H. Downing, Structure of the �,�
tubulin dimer by electron crystallography, Nature 1998, 39,
199 ± 203.

[23] J. Lowe, H. Li, K. H. Downing, E. Nogales, Refined structure
of alpha-beta-tubulin at 3.5 A resolution, J. Mol. Biol. 2001,
313, 1045.

[24] T. Carlomagno, M. J. J. Blommers, J. Meiler, W. Jahnke, T.
Schupp, F. Petersen, D. Schinzer, K.-H. Altmann, C. Grie-
singer, The High-Resolution Solution Structure of Epothilone
A Bound to Tubulin: An Understanding of the Structure-
Activity Relationships for a Powerful Class of Antitumor
Agents, Angew. Chem. 2003, 42, 2511 ± 2515.

[25] V. Vapnik, Statistical Learning Theory, Wiley, New York,
1998.

[26] B. Schoelkopf, A. J. Smola, Learning with Kernels, The MIT
Press, Cambridge, Massachusetts, 2002.

[27] J. Weston, F. Perez-Cruz, O. Bousquet, O. Chapelle, A.
Elisseeff, B. Schoelkopf, Feature selection and transduction
for prediction of molecular bioactivity for drug design,
Bioinformatics 2003, 19, 764 ± 771.

[28] J. Zupan, J. Gasteiger, Neural Networks for Chemists, VCH
Verlagsgesellschaft mbH, Weinheim, 1993.

[29] K. H. Altmann, Epothilone B and its analogs ± a new family
of anticancer agents, Mini Rev. Med. Chem. 2003, 3, 149 ± 158.

[30] J. Meiler, M. Will, R. Meusinger, Fast Determination of 13C-
NMR Chemical Shifts Using Artificial Neural Networks, J.
Chem. Inf. Comput. Sci. 2000, 40, 1169 ± 1176.

Received on June 11, 2003; Accepted on July 16, 2003

728 ¹ 2003 WILEY-VCH Verlag GmbH&Co. KGaA, Weinheim QSAR Comb. Sci. 22 (2003)

Annalen Bleckmann and Jens Meiler

� �������	�
��� �����


