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Abstract

Availability of high-throughput screening (HTS) data in the public domain offers great potential to 

foster development of ligand-based computer-aided drug discovery (LB-CADD) methods crucial 

for drug discovery efforts in academia and industry. LB-CADD method development depends on 

high-quality HTS assay data, i.e., datasets that contain both active and inactive compounds. These 

active compounds are hits from primary screens that have been tested in concentration-response 

experiments and where the target-specificity of the hits has been validated through suitable 

secondary screening experiments. Publicly available HTS repositories such as PubChem often 

provide such data in a convoluted way: compounds that are classified as inactive need to be 

extracted from the primary screening record. However, compounds classified as active in the 

primary screening record are not suitable as a set of active compounds for LB-CADD experiments 

due to high false-positive rate. A suitable set of actives can be derived by carefully analysing 

results in often up to five or more assays that are used to confirm and classify the activity of 

compounds. These assays, in part, build on each other. However, often not all hit compounds from 

the previous screen have been tested. Sometimes a compound can be classified as ‘active’, though 

its meaning is ‘inactive’ on the target of interest as it is ‘active’ on a different target protein. Here, 

a curation process of hierarchically related confirmatory screens is illustrated based on two 

specifically chosen protein use-cases. The subsequent re-upload procedure into PubChem is 

described for the findings of those two scenarios. Further, we provide nine publicly accessible high 

quality datasets for future LB-CADD method development that provide a common baseline for 

comparison of future methods to the scientific community. We also provide a protocol researchers 

can follow to upload additional datasets for benchmarking.
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Introduction

The development of ligand-based computer-aided drug discovery (LB-CADD) methods for 

in silico (virtual) high-throughput screening (HTS) shows promising results for identifying 

potential hit compounds, i.e., compounds that share a biological activity of interest [1]. With 

the popularity gain of HTS in academia, the need for LB-CADD method development 

continues to increase [2,3]. The cost of an HTS screen correlates nearly linearly with the 

number of physically screened compounds. LB-CADD has the potential to reduce these 

costs in a resource-limited academic environment by helping to prioritize which compounds 

to include in a screening campaign. However, LB-CADD method development depends on 

the availability of reliable HTS assay datasets to study the relationship of ligand structure 

and biological activity. It is a challenge to identify suitable refined datasets for LB-CADD 

benchmarking that are available to the research community. Frequently in both industry and 

academia, proprietary datasets are not disclosed to the research community for use in LB-

CADD benchmarking and methods development. Therefore, novel methods cannot be 

directly compared to existing algorithm implementations and scientific progress is difficult 

to gauge. In other research fields, e.g., machine learning, standardized datasets are available 

and serve as foundation for evaluation and benchmarking of novel algorithms. Examples are 

the MNIST database for hand-written digits and UCI Machine Learning Repository [4,5]. 

These datasets provide a common ground for testing new methods and allowing for easy 

comparison of novel and previously established approaches.

Compound data repositories host libraries of molecular compounds and associated 
biological activities

PubChem is a public repository providing HTS experiment results containing biological 

activities for several hundred thousand of compounds tested against different biological 

targets [6–8]. It provides a platform to host target-related HTS datasets. PubChem is 

maintained by the National Center for Biotechnology Information (NCBI), a division of the 

National Library of Medicine, which is part of the National Institutes of Health (NIH). Over 

1,000,000 bioassays for more than 9,000 protein targets can be accessed online contributed 

by more than 70 small molecule and RNAi screening centers and research laboratories. It is 

also supported by over 300 small molecule vendors contributing to the growing compound 

database of PubChem worldwide. Vendors include US government-funded institutions, 

research laboratories pharmaceutical companies, and collaborators hosting chemical biology 

databases. Other HTS repositories, such as ChEMBL or BindingDB, are alternatives to 

PubChem with different philosophies of annotation and evaluation of chemical biology 

datasets with their respective databases. A review of these HTS repositories can be found 

here [9–13].
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False positive rate in primary HTS experiments is high

Typically, primary HTS experiments categorize small molecules as hit, inactive, or 

unspecified about the desired biological activity. However, depending on the design of the 

HTS experiment, there are many other reasons why a compound might be designated as hit 

ranging from activity of the compound an undeclared target in the cell to optical 

interference. Therefore, primary screens are only a first iteration that reduces the available 

compound library to a smaller set that can be interrogated in more detail. As compounds are 

tested without replication (singleton?) and the cut off for activity is typically loose to 

minimize the number of false negatives, the false positive rate can be high. Although outliers 

are common in HTS experiments, statistically robust methods not sensitive to outliers are 

necessary for hit selection, e.g., z*-score, SSMD*, B-score, and quantile-based methods 

[14]. Confirmatory screens act as a validation filter by testing hit compounds with multiple 

replications of the experiment, recording concentration response curves, test hit compounds 

with an identical assay setup but in the absence of the putative target protein, and sometimes 

exclude even compounds that act on the target protein but not selectively.

Hierarchical confirmatory screening experiments validate primary hit compounds

The biological assay database of PubChem allows for the deposition of primary as well as 

confirmatory HTS experiments. Due to the requirement from funding agency on data 

sharing, primary screening results from NIH funded HTS projects were often deposited to 

PubChem prior the deposition of confirmatory assays and counter screens. Confirmatory 

assays seek to establish the relationship between chemical structure and a defined biological 

outcome (SAR). Confirmatory assays applications range from validating active compounds 

identified in the primary screen, over the target confirmation through orthogonal assays, and 

determination of specificity through testing against other subtypes of the target protein or 

related proteins. For molecular probe development, confirmatory assays are used to 

investigate a smaller subset of often similar compounds to investigate the SAR around the 

given scaffold further. A hierarchy of confirmatory assays is established when results of 

dependent confirmatory screens are analysed. In progressed stages of the hierarchy, 

concentration response experiments provide values for half maximal effective concentration 

(EC50) or inhibition (IC50) in addition to the determined binary active/inactive outcome. 

Despite of multiple update mechanisms provided by the PubChem system, datasets 

regarding the same HTS assay project but deposited under different time lines are sometimes 

not sufficiently summarized. Upon completion of the HTS project, a curation process is 

necessary to incorporate all experimental data from different stages of the assay project and 

provide a dataset with the ultimate bioactivity outcomes.

Previous studies underline importance of chemical data curation for LB-CADD modelling

In a previous study, we assembled nine datasets from HTS campaigns representing major 

families of drug target proteins for benchmarking LB-CADD methods see (Table 1). 

Emphasis was placed on biological target diversity and the high quality HTS activity 

obtained through confirmatory screen validation. These collated datasets provided the 

foundation for an extensive LB-CADD benchmarking study using the cheminformatics 
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framework BCL: ChemInfo [15]. For the present manuscript, we collaborate with PubChem 

to make these datasets easily accessible for all researchers.

These datasets were selected with the goal to cover a wide-range of protein target classes. 

Each target class is represented by a sampled chemical space, spanned by the screened 

molecules evaluated within related HTS assay experiments. Primary and confirmatory 

screens were curated from PubChem and this curation process represent a tool for more 

systematic benchmarking of novel LB-CADD algorithms. For this manuscript, each curated 

dataset was re-assembled and aligned by CIDs before being uploaded into PubChem. 

Datasets marked with an asterisk in Table 1 have been modified with respect to our previous 

study due to compound alignment by common substructure overlap rather than PubChem 

identifier (CID).

Significance

LB-CADD is particularly attractive in the resource-limited environment of academia as it 

reduces the cost and increases quality of drug discovery and/or probe development. 

Quantitative structure-activity-relationship (QSAR) models developed in LB-CADD are 

only as good as the data quality used for training such models. Thus, there is a pressing need 

to develop and systematically employ HTS assay record curation protocols helpful in the 

pre-processing of any chemical dataset. This manuscript highlights difficulties when 

working with HTS experimental data in the public domain and illustrates the curation 

process on two chosen examples targets as well as the re-upload of the new datasets into 

PubChem.

Establishing a dataset “gold standard” for benchmarking novel LB-CADD methods is 

important for testing performance of new algorithms in respect to the complexity of the 

chemical space and for different biological targets. It also counters a trend that newly 

developed methods are tested on proprietary datasets which creates difficulties when 

reproducing results and reduces transparency when comparing methodological advances in 

LB-CADD method development. As chemical space differs in complexity for each protein 

target, it is imperative for new LB-CADD methods to be benchmarked on representative 

high quality datasets. The here described curation process has the potential to provide a wide 

range of higher quality datasets freely accessible to the research field.

Materials and Methods

Curation process based on hierarchy of confirmatory high-throughput screens validates 
active compounds

The following curation process evaluates the description of PubChem assays, identifies the 

PubChem assay ID (AID) of the primary screen and discusses the validation and 

classification of active compounds from confirmatory screens. Confirmatory screens can be 

subdivided into the categories “confirming” and “descriptive”. “Confirming” assays 

validated a compound as active at a declared molecular target (e.g., testing the compounds in 

the presence and absence of the declared target). The application of “confirming” assays 

results in identification of a set of validated hits.
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The second sub-category is “descriptive”. Typically, “descriptive” assays occupy a position 

in the hierarchy downstream from the confirmatory assays. An example of a descriptive 

assay is a “counter screen” against another molecular target. Since the compound activity 

has been validated, it is viewed as a validated hit. Additional data add to our understanding 

of the compound’s activity. e.g., a compound could be demoted from “active” to “inactive” 

based on a descriptive assay. However, this would be in the context of a previously declared 

intent (e.g., antagonists of the NPY Y1 receptor) and a gating criterion (e.g., 50-fold 

selective against Y1). Such criteria are commonly used but need to be highlighted in the 

context of curating a data set. Here, validated hits are active at the declared target but can be 

declared “inactive” within the context of the curated dataset when additional “descriptive” 

data is taken into consideration. To construct a final dataset, the inactive compounds are 

taken from the corresponding primary assay. However, the authors would like to emphasize 

that this manuscript does not endorse or vouch for the applied HTS methods, given assay 

results or interpretations of the mentioned assays below. The here described curation process 

merely utilizes the assay outcomes given by the assay providers and the screening facilities.

Results

High-throughput screens validate active compounds associated with NPY – Y1 and Y2 HTS 
screens

PubChem provides publicly available biological assay results for a diverse set of protein 

targets. For the scope of this manuscript, we chose neuropeptide Y (NPY) receptor type 1 

and 2, (Y1 and Y2). These receptors are members of a larger family of NPY receptors (Y1, 

Y2, Y4, Y5) which are part of the family of G-protein-coupled receptors (GPCR) [16,17]. 

As their name suggests, the receptors are effectors of the neuropeptide neurotransmitter 

NPY, studies have implicated these receptors in diverse biological events, including feeding, 

alcoholism, anxiety and depression, pain perception, immunity and inflammation, vascular 

remodeling hypothermia, and bone and energy metabolism [18–25]. Due to the varied role 

of these receptors in human disease and physiology, the identification of high-affinity 

selective probes that target each receptor subtype may provide novel tools for the study of 

NPY-related pathologies.

Case study: curating primary cell-based high-throughput screening assay for 
antagonists of the Y1 receptor—In this case study, the PubChem assay AID1040 tests 

compounds for their ability to act as antagonists of the NPY receptor Y1. A cell line 

transfected with Y1 and a cyclic-nucleotide gated channel (CNGC) was used to measure Y1 

antagonism by the test compound. The cells were treated with the β-adrenergic receptor 

agonist, isoproterenol, to activate adenylate cyclase, thus increasing cytosolic cyclic 

adenosine monophosphate (cAMP) concentrations, and therefore increasing CNGC activity. 

Elevated CNGC activity decreases the cell membrane potential, which is measured using a 

membrane potential-sensitive fluorescent probe. Because the Y1 receptor is Gi-coupled, 

addition of the NPY counteracts isoproterenol action resulting in a decrease in CNGC 

activity. A tested compound that is an Y1 antagonist will counteract NPY action, thus the 

isoproterenol-evoked high level of cAMP will be maintained and high CNGC activity will 

be preserved. This primary assay AID1040 tested 196,255 compounds and identified 1,990 
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actives. A subset of 1,195 hit compounds from the set of 1,990 active compounds was 

investigated further by the following two confirmatory screens. AID1254 repeated the 

primary screen experiment to validate activity for the hit compounds. AID1255 tested 

selectivity of hit compounds by removing antagonists of the Y2 receptor. This assay used a 

cell line transfected with the Y2 receptor and a cyclic-nucleotide gated channel (CNG) was 

used to measure receptor antagonism through CNGC opening. This assay serves as an 

elimination of “false positives” in this context that could result from modulation of other 

biological protein targets. The findings of AID1255 resulted in 332 compounds active 

against Y2. 252 compounds were ultimately confirmed through AID1254 as active and 

selective. The following two HTS screens (AID1277 and AID1278) represent a second level 

of validation and further investigated a smaller fraction of just 63 compounds. AID1277 

determines concentration response curves for a subset of compounds identified as active in 

the previous experiments. Multiple criteria for testing the compounds had to be fulfilled. The 

compounds were active against the primary screen (AID1040). Compounds confirmed 

inactive by the confirmatory screen AID1254 were excluded. Additionally, these compounds 

had to be inactive when assessing Y2 antagonism through AID1255. The final set of active 

compounds is comprised of 801 active molecules, taken from the actives of AID1040, 

subtracting inactive compounds from AID1254, subtracting actives from AID1255, 

subtracting inactive from AID1277, and actives from AID1278 as shown in Figure 1. 

‘Active’ compounds within this context are defined as a combination of active and selective 

compounds for Y1.

Case study: curating primary cell-based high-throughput screening assay for 
agonists of the Y2 receptor—This study investigated small molecules for antagonism of 

NPY receptor Y2. A cell line transfected with Y2 and CNGC using a primary screening 

assay similar to the assay described for Y1 receptor, above. This primary screen AID793) 

tested 140,092 molecules for activity and identified 1,384 hit compounds. The confirmatory 

screen AID1257 evaluated a subset of 707 from the 1,384 molecules in more detail. It 

confirmed activity of compounds that were identified as actives in the primary screen 

AID793 with the same experimental assay setup. 707 compounds were tested in more detail 

and 479 molecules were confirmed inactive, and thus subtracted from the initial set of active 

compounds. On the other hand, AID1256 was designed to identify non-selective antagonists 

among the actives of the primary screen because of inhibition of the Y1 receptor. The same 

set of 707 compounds was screened and 135 compounds were removed as non-selective. 

The next stage of confirmatory screens evaluated a more specific subset of 119 compounds. 

Assay AID1279 determined whether compounds are active against the primary screen 

(AID793), activity for antagonism towards Y2 had to be confirmed in AID1257, and 

whether the compound showed activity in the cell-based HTS assay measuring Y1 

antagonism (AID 1256). Out of the 119 actives molecules 74 compounds were confirmed 

and thus excluded from the pool of overall actives. The second assay (AID1272) screened 

the same 119 compounds as AID1279 but evaluated each molecule by different criteria: The 

compounds had to be active in the primary screen AID793. This activity had to be confirmed 

in AID1257. And lastly, these compounds had to be inactive with respect to measuring Y1 

antagonism (AID 1256). A total of 119 compounds were screened and 47 inactive 

compounds were confirmed and removed. Next, a layer of counter screens AID2210, 

Butkiewicz et al. Page 6

Chem Inform. Author manuscript; available in PMC 2018 May 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



AID2212, AID2224, involved in this series evaluated 89 compounds for cross-findings 

among actives for agonism of Y1 and antagonism for Y2 and inhibition of cyclic nucleotide 

gated ion channel (CNGC) activity. Active compounds found through those assays were 

excluded from the set of final actives. Finally, as assays for late stage results from probe 

development efforts to identify antagonists of NPY-Y2, AID2211 and AID2220 were set up 

with the same conditions as AIDs 793, 1256, 1257, 1272, and 1279. Non-selective Y2 

agonists and compounds acting as Y1 agonists were excluded. Figure 2 shows a detailed 

flow chart depicting the individual compound subtractions.

In summary, the assembly of the final actives dataset, an ensemble of 699 active compounds 

was determined by selecting the actives from the primary screen and excluding inactive 

compounds of AID1257 and AID1272, as well as subtracting actives from AID1256, 

AID1279, AID2210, AID2211, AID2212, AID2220, and AID222.

Discussion

Uploading of curated datasets into PubChem

PubChem provides access to biological assay data e.g., through its Power User Gateway 

(PUG) [26]. Data queries can be sent via XML to request AID data for molecule in a 

specific format (e.g., SDF, SMILES) as well as the associated biological assay data 

containing metadata, and activity related data. Every compound is uniquely identified by its 

compound identifier (CID) or substance identifier (SID). Sets of molecules can be 

downloaded in respect to a given AID. These identifier in conjunction with the activity 

categorization of a compound allows for the curation of sets of molecules of confirmatory 

screens as discussed, the two case studies (see above).

Through the hierarchical relationship of primary and confirmatory assay experiments, 

compounds can be aligned by their respective CID. Dependent on the outcome on each 

hierarchy level, compounds can be classified as active or inactive depending on the result of 

the last involved confirmatory screen. The ensemble of molecules that satisfies all levels of 

the HTS hierarchy represents the final curated dataset.

The PubChem Upload system (pubchem.ncbi.nlm.nih.gov/upload) offers a mechanism to 

submit the newly curated set of compounds into PubChem. After specifying which 

compounds are involved by specified by SID identifiers the aligned hierarchy of compound 

activities through all involved HTS results can be uploaded. Once the submission was 

successful and approved by a PubChem curator the newly curated dataset is accessible to the 

public and can be shared with the research community.

Conclusions

High-quality HTS datasets are important for LB-CADD method development. However, 

results of various validation experiments for an assay project are often reported separately in 

PubChem and final set of inactive, inconclusive, and conformed active compounds is mostly 

lacked in the database. The goal of this work is to provide an overview of a curation process, 

starting from primary screens and their associated confirmatory screens, building a 
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hierarchical structure through multiple related assay experiments. It needs to be emphasized 

that the applied HTS methodologies, the given assay results, and interpretations are taken ‘as 

is’. Thus, curation process relies on a high-quality standard for experimental data given by 

assay providers and the screening facilities. The assembly and upload of the curated dataset 

to the PubChem database is discussed based on two specifically chosen protein target use-

cases. The upload of curated datasets into PubChem is described and thus supports the 

development of a publicly available database for benchmarking LB-CADD methods. 

Ultimately, availability of such datasets will eliminate the need to test LB-CADD methods 

on proprietary datasets allowing ready reproduction and comparison of results. Furthermore, 

such curation projects help to enhance the utility of HTS data in the PubChem database by 

summarizing and excluding false positives and experimental artifacts at various assay stages, 

and thus to highlight confirmed biological compounds.
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Figure 1. 
Curation process of AID1040. The center green arrow represents the initial set of active 

compounds while red arrows symbolize a specific subtraction of compounds.
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Figure 2. 
Curation process of AID793. The center green arrow leads to the final set of active 

compounds while red arrows and numbers and type of compounds in red mark compound 

subtractions.

Butkiewicz et al. Page 11

Chem Inform. Author manuscript; available in PMC 2018 May 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Butkiewicz et al. Page 12

Table 1

Listing of datasets containing curated compounds uploaded to PubChem.

Protein Target Target Class Internal ID Number of Actives PubChem AID

Orexin1 Receptor GPCR SAID_435008 234* 743306

M1 Muscarinic Receptor agonists GPCR SAID_1798 188 652178

M1 Muscarinic Receptor antagonists GPCR SAID_435034 447* 1053187

Potassium Ion Channel Kir2.1 Ion Channel SAID_1843 172 743120

KCNQ2 potassium channel Ion Channel SAID_2258 287* 1159610

Cav3 T-type Calcium Channels Ion Channel SAID_463087 703 1053190

Choline Transporter Transporter SAID_488997 256* 1053196

Serine/Threonine Kinase 33 Kinase Inhibitor SAID_2689 172 743321

Tyrosyl-DNA Phosphodiesterase Enzyme SAID_485290 292 489007

NPY-Y1 Receptor GPCR SAID_1040 801 1159609

NPY-Y2 Receptor GPCR SAID_793 699 1159608
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