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Abstract 

Background: In ligand-based virtual screening experiments, a known active ligand is used in similarity searches to 
find putative active compounds for the same protein target. When there are several known active molecules, screen-
ing using all of them is more powerful than screening using a single ligand. A consensus query can be created by 
either screening serially with different ligands before merging the obtained similarity scores, or by combining the 
molecular descriptors (i.e. chemical fingerprints) of those ligands.

Results: We report on the discriminative power and speed of several consensus methods, on two datasets only 
made of experimentally verified molecules. The two datasets contain a total of 19 protein targets, 3776 known active 
and ~ 2 × 106 inactive molecules. Three chemical fingerprints are investigated: MACCS 166 bits, ECFP4 2048 bits and 
an unfolded version of MOLPRINT2D. Four different consensus policies and five consensus sizes were benchmarked.

Conclusions: The best consensus method is to rank candidate molecules using the maximum score obtained by 
each candidate molecule versus all known actives. When the number of actives used is small, the same screening per-
formance can be approached by a consensus fingerprint. However, if the computational exploration of the chemical 
space is limited by speed (i.e. throughput), a consensus fingerprint allows to outperform this consensus of scores.

Keywords: Similarity search, Several bioactives, Consensus query, Ligand-based virtual screening (LBVS), Chemical 
fingerprint, Potency scaling, MACCS, ECFP4, MOLPRINT2D, Tanimoto score
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Background
Similarity searches help expand the collection of known 
actives in the early stages of a drug discovery project. 
Interestingly, similarity searches do not require a diverse 
collection of active and inactive molecules prior to be 
used. Sometimes, in a ligand-based virtual screening 
(LBVS) campaign, only a limited number of active com-
pounds is known. Such compounds could be found from 
the scientific literature, patent searches or a moderately 
successful structure-based virtual screen followed by 
wet-lab testing. This data scarcity might render standard 
machine learning algorithms inapplicable. Indeed, most 
Quantitative Structure Activity Relationship (QSAR) 
methods are data hungry. While expert machine learning 
users may benefit from recent developments [1, 2], most 

users will be left in front of several questions: (a) how 
many actives are needed to create a powerful classifier, 
(b) which chemical fingerprint should be used to encode 
those actives, and (c) what is the best way to combine 
those fingerprints.

Similarity searches that exploit the chemical simi-
larity principle [3] are some of the earliest techniques 
developed in chemoinformatics [4, 5]. When several 
ligands are known for a given protein target, they can be 
used simultaneously to better find novel, putative active 
molecules.

This study measures the performance and speed of 
several ways to combine the knowledge about known 
actives. We investigate the effect of the fingerprint 
choice, the number of actives and the method used to 
combine fingerprints. Compared to most previous stud-
ies, our datasets are only made of experimentally verified 
molecules. We also evaluate the effect of scoring speed 
in CPU-bounded experiments, to show a potential use 
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when screening immense virtual chemical libraries. We 
finally discuss which combination of fingerprint, con-
sensus size and consensus method gives the best perfor-
mance or should be avoided.

Using multiple bioactive reference structures has been 
studied by several authors [6–14]. Shemetulskis et  al.  
[6] have created modal fingerprints, where a bit is set in 
the consensus query if it is set in a given percentage (the 
mode) of known active molecules. Xue et  al.   [8] have 
used all bits consistently set in compounds of a same 
activity class (called consensus bit patterns) and scale 
factors for those bits to modify the Tanimoto score. This 
approach is called fingerprint scaling. It increases the 
probability of finding active molecules by virtual screen-
ing. Wang and Bajorath  [13] have used bit silencing in 
MACCS fingerprints to create a bit-position-dependent 
weight vector. This weight vector modifies the Tanimoto 
coefficient in order to derive compound-class-directed 
similarity metrics that improve virtual screening perfor-
mance compared to conventional Tanimoto searches. 
Hert et  al.  [9] have compared merging several finger-
prints into a single combined fingerprint, applying data 
fusion (merging of scores) to the similarity rankings of 
single queries and approximated substructure searches. 
Hert et  al. found that merging similarity scores and 
using binary kernel discrimination are the most power-
ful techniques. Later, Whittle [11] confirmed that fus-
ing similarity scores using the maximum score rule (or 
the minimum rank if scores are not available) is one of 
the most powerful strategies. For a recent study of data 
fusion methods with fragment-like molecules, see Schul-
tes 2015 [14].

Ligand-based virtual screening methods have also been 
extended to take into account the different potency levels 
of known actives [10, 12]. This potency scaling technique 
allows to bias the search space towards the detection of 
increasingly potent hits [10]. To bias the search, a loga-
rithmic weighting scheme based on IC50 1values was 
introduced. Let qi be a known active molecule. qi is 
assigned a weight wi given it’s IC50 value  (IC50qi) and the 
IC50 value of the least active molecule  (IC50min):

This logarithmic weighting scheme ensures linear scaling 
over the entire potency range and attributes a weight of 
one to the least active molecule [10]. In Vogt and Bajo-
rath [12], the same weighting scheme is used to bias two 
distinct virtual screening algorithms and applied to a 
high-throughput screening (HTS) data set of cathepsin B 

1 IC50: 50% Inhibitory Concentration. An IC50 value represents the con-
centration of a drug that is required to inhibit a given biological process by 
50% invitro.

(1)wi = log(IC50min)− log(IC50qi)+ 1.0

inhibitors. The authors observed that using multiple ref-
erence compounds and potency scaling allows to direct 
the search towards detection of more potent database 
hits.

The pharmacologically relevant chemical space is 
immense. A study [15] estimates its size in the order of 
1033 molecules, with up to 36 heavy atoms each. While 
the database of commercially-available compounds 
ZINC15 [16] totals 335× 106 compounds as of May 
2017, there are virtual chemical libraries with more than 
166× 109 molecules [17, 18]. Hence, one can imag-
ine scenarios where the speed of a virtual screen has its 
importance.

Methods
In this study, only fully automatic methods are investi-
gated on 2D fingerprints. None of these methods requires 
fitting to a training set. The investigated methods are all 
parameter-free. Implicit parameters, if any, are detailed.

Datasets
Several protein targets coming from two distinct datasets 
were used. None of those datasets contain any decoy (i.e. 
molecules that have not been experimentally verified as 
either active or inactive). A decoy is a supposedly inac-
tive, computationally engineered [19] or randomly cho-
sen [8] molecule. Hence, in this study there is no risk that 
a decoy creation protocol can be reverse engineered by 
any of the evaluated methods. Also, some of the datasets 
used are real world examples since they come from HTS 
campaigns.

Our first dataset is the manually curated nuclear recep-
tors ligands and structures benchmarking database [20] 
(NRLiSt BDB2). The NRLiSt is an exhaustive, NR-
focused, benchmarking database. The original NRLiSt 
contains 9905 ligands and 339 protein targets. However, 
for the specific needs of this study, the NRLiSt was fur-
ther filtered in order to contain only protein targets for 
which there are at least 40 known actives and at least the 
same amount (or more) of tested inactives. Furthermore, 
only active molecules with an IC50 value are accounted 
for. A summary of this dataset is given in Table 1.

The second dataset, MLQSAR,3 is a compilation of vali-
dated PubChem High Throughput Screens [21]. 
PubChem provides libraries of small molecules that have 
been tested in HTS experiments. This dataset focuses on 
experiments with a single well-defined and pharmaceuti-
cally relevant protein target. A target is only retained if it 
has at least 150 confirmed active compounds. A sum-
mary of MLQSAR is given in Table 2. For several targets, 

2 http://nrlist.drugdesign.fr.
3 http://www.meilerlab.org/qsar_pubchem_benchmark_2012.

http://nrlist.drugdesign.fr
http://www.meilerlab.org/qsar_pubchem_benchmark_2012.
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active molecules just have a flag and no IC50 data. There 
are only two targets (PubChem SAID 485290 and 
435,008) for which activity values span several orders of 
magnitude, while this is the case for all NRLIST targets.

Fingerprints
In this study, three different fingerprints were used. The 
MACCS 166 bits fingerprint as provided by Open Babel 
[22]. The ECFP4 2048 bits fingerprint as provided by 
Rdkit [23, 24] and an unfolded MOLPRINT2D [25, 26] 
implementation, referred to as UMOP2D in the text. 
MOLPRINT2D descriptors encode atom environment 
based on SYBYL atom types (i.e. atom type and hybridi-
zation state) derived from the molecular graph. Only 
heavy atoms and their connected neighbors up to a dis-
tance of two bonds are considered by this fingerprint. 
MOLPRINT2D will be available in the upcoming version 
of the Bio Chemical Library [27]. The goal of this study is 
not to compare the power of individual fingerprints; see 
Sastry [28] for an extensive comparison.

Chemical similarity
To fairly compare methods during experiments, the Tani-
moto score is used consistently. Given two binary finger-
prints A and B of equal length:

Given two fingerprints X and Y encoded as vectors of 
floats of length N:

Performance metrics and curves
To assess overall classifier performance, the Area Under 
the receiver operating characteristic Curve (AUC) is 
used. To measure early retrieval performance, the Power 
Metric at 10% (PM10%) is used [29]. The power metric is a 
function of the True Positive Rate (TPR) and False Posi-
tive Rate (FPR) at a given threshold. The power metric is 
statistically robust to variations in the threshold and ratio 
of active compounds over total number of compounds in 
a dataset. At the same time, the power metric is also sen-
sitive to variations in model quality.

In some experiments, the accumulated number of actives 
is drawn. This curve is obtained by walking down a rank-
ordered list of compounds (the X axis lists ranks of data-
base molecules) and plotting on the Y axis the number of 
active molecules encountered so far.

Consensus policies
In all methods described hereafter, there is no parame-
ter fitting to any of the datasets. Also, no training using 
known actives and inactives is required prior to applying 
any of the methods.

A consensus query is formed by the combination of a 
set of query molecules (also called known actives) while 
following a consensus policy. The policy specifies how 
fingerprints are combined (Fig. 1).

Let P be the set of all protein targets. Let p be a given 
protein target (p ∈ P).

Let M be the set of all tested molecules for p.
Let fp(m) be the fingerprint of molecule m ∈ M.

Let A be the set of active molecules on p (A ⊂ M).
Let I be the set of inactive molecules on p (I = M\A).
Let Q be a randomly selected set of actives that 

will be used to build a consensus query of size N 
(Q ⊂ A ∧ |Q| = N). In this study, only two to 20 actives 
are used to create a consensus query (2 ≤ N ≤ 20).

(2)Tani(A,B) =
|A ∩ B|

|A ∪ B|

(3)Tani(X,Y) =

∑N
i=1 xiyi

∑N
i=1 x

2
i + y2i − xiyi

(4)PMx% =
TPRx%

TPRx% + FPRx%

Table 1 The NRLiSt subset with IC50 data for all actives

 ‘+’ after a target name means actives (resp. inactives) have an agonist (resp. 
antagonist) effect. ‘−’ after a target name means the opposite

Protein target # Actives # Inactives

AR− 179 179

ERα- 74 434

ERα+ 102 132

ERβ+ 70 70

GR− 204 295

GR+ 74 369

PR− 269 269

PR+ 74 531

RARα− 41 133

RXRα− 114 210

Table 2 The nine HTS datasets with their PubChem Sum-
mary Assay ID (SAID)

Protein target class SAID # Actives # Inactives

GPCR 435008 233 217,925

1798 187 61,646

435034 362 61,394

Ion channel 1843 172 301,321

2258 213 302,192

463087 703 100,172

Transporter 488997 252 302,054

Kinase inhibitor 2689 172 319,620

Enzyme 485290 281 341,084
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Let C = M \Q be the set of candidate molecules for p; 
sometimes referred to as the “database” of molecules to 
screen.

During a retrospective ligand-based virtual screening 
experiment, the active or inactive status of a molecule 
ci ∈ C is ignored, until the final computation of a perfor-
mance metric or curve is triggered.

We call query qi a molecule randomly drawn from Q. 
Let score(qi, cj) | qi ∈ Q ∧ cj ∈ C be the Tanimoto score 
of the fingerprint of the query molecule at index i with 
the fingerprint of the candidate molecule at index j. If x is 
a consensus query of fingerprint type, writing score(x, cj) 
is also valid.

The list of policies described hereafter are: single, pes-
simist, optimist, realist and knowledgeable. Policies are 
sometimes abbreviated using their first four letter.

Let O be the set of all consensus policies:
O = {Sing ,Oppo,Pess,Opti,Real,Know}.
Let cscore(o,Q, ci) be the consensus query score using 

policy o ∈ O and set of known actives Q with candidate 
molecule ci.

Single query In the single policy, each active is used in 
turn as the query molecule. This policy reproduces the 
average performance of using a single bioactive molecule 
as query instead of several.

Opportunist consensus of scores The score assigned to a 
candidate molecule is the maximum score it gets over all 
query molecules. This consensus query is a set of finger-
prints. In the literature [9, 11], this method is classified as 
a data fusion method and called max of scores or mini-
mum of ranks.

(5)cscore(Sing , qi, ci) = score(fp(qi), fp(ci))

(6)
cons(Oppo,Q) = Q

cscore(Oppo,Q, ci) =

max{score(fp(qi), fp(ci))∀qi ∈ Q}

Pessimist The consensus query is the fingerprint result-
ing from doing a bitwise AND of all query fingerprints. 
This consensus is a single fingerprint. This is the “consen-
sus bit pattern” from Xue et al. [8]. 

Optimist consensus of fingerprints he consensus query 
is the fingerprint resulting from doing a bit-wise OR of all 
query fingerprints. This consensus is a single fingerprint.

Realist  The consensus query is the float vector where 
each index i of the vector contains the probability for bit 
i of being set over all queries. This consensus is a single 
fingerprint.

Knowledgeable  This consensus is almost like the real-
ist consensus, except that query molecule fingerprints are 
potency-scaled (cf. formula 1) prior to being taken into 
account. This consensus is a single fingerprint.

Software
Our software, called Consent, is written in OCaml. 
OCaml is a statically-typed functional programming 
language allowing fast prototyping of scientific software 
[30].

We release all our software, scripts and datasets as 
open source. MACCS 166 bits (resp. ECFP4 2048 bits) 
fingerprints were computed using a small C++ program 
linked to Open Babel v2.4.1 (resp. RDkit v2015.03.1). 
MOLPRINT2D unfolded fingerprints are computed by 
Consent.

Consent can exploit multicore computers thanks to 
the Parmap [31] library. Some of the dataset preparation, 
running of experiments and post processing of results 
were accelerated by PAR [32].

(7)
x = cons(Pess,Q) = ∩{fp(qi)∀qi ∈ Q}

cscore(Pess,Q, ci) = score(x, fp(ci))

(8)
x = cons(Opti,Q) = ∪{fp(qi)∀qi ∈ Q}

cscore(Opti,Q, ci) = score(x, fp(ci))

(9)
x = cons(Real,Q) =

[p(bitj = 1)∀j ∈ bits(fp(qi))∀qi ∈ Q]

cscore(Real,Q, ci) = score(x, ci)

(10)

Qw = potency_scale(Q)

x = cons(Know,Qw) =

[p(bitj = 1)∀j ∈ bits(fp(qi))∀qi ∈ Qw]

cscore(Know,Qw , ci) = score(x, ci)

q_0

q_1

q_n
......

consensus policy

known active fingerprints consensus fingerprint

c_0..n

Fig. 1 A consensus fingerprint is created by combining the fin-
gerprints of several known active molecules. The way to combine 
fingerprints is controlled by the consensus policy
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Experiments
Consensus query experiments
The size of the consensus is varied from 2 to 20 actives. 
Experiments don’t go over 20 actives, because it is imagi-
nable that if more than twenty actives are known for a given 
target, one might also have many known inactives and 
could be training a QSAR model. Also, some protein tar-
gets of our datasets only have 40 actives, so it is not allowed 
to use more than half of them to build a consensus query. 
Active molecules used to build a consensus query are ran-
domly drawn from the actives of the given protein target. 
Actives used to build a consensus query are also removed 
from the database to screen. Hence, benchmarks don’t 
become artificially easier as the consensus size is grown.

On the NRLIST dataset, experiments are repeated at 
least a hundred times since this dataset is small. On the 
MLQSAR dataset, experiments are repeated up to 20 
times. MLQSAR is quite large and calculating statistics 
on it is costly. When a performance curve is reported, 
this curve is the median curve obtained during experi-
ments using the same (protein target, consensus size, 
consensus policy) experiment configuration triplet. Cal-
culating this median curve is memory intensive, espe-
cially for MLQSAR.

Speed experiments
Speed experiments were performed on PubChem SAID 
485290, which contains 341,365 active and inactive mol-
ecules (largest dataset). The virtual screen was run once, 
then the median throughput (in molecule/s) of the five 
subsequent runs was computed.

Experiments were performed using a single core of an 
Intel Xeon CPU at 3.50  GHz on a Linux CentOS v6.8 
workstation equipped with 64 GB or RAM.

Potency‑scaling experiments
In potency scaling experiments, two consensus policies 
are compared. The database of compounds for a given 
target is rank ordered several times and the median rank 
for each active molecule with each consensus policy is 
recorded.

To compare two consensus policies, active molecules 
are first ordered by decreasing IC50, then the differ-
ence of ranks between the two policies is measured. This 
allows to compute a delta rank plot. A negative delta rank 
is a positive outcome: the given active molecule went 
higher in the rank-ordered list of compounds (i.e. it is 
found earlier by the virtual screen). A positive delta rank 
is the opposite negative outcome.

CPU‑bounded experiments
In CPU-bounded experiments, two consensus policies 
are compared and the faster policy is allowed to score 

more molecules. For example, if policy p1 is two times 
faster than policy p2. Then, p2 will only screen a random 
half partition of the database while p1 will screen the 
whole database.

This experiment simulates an in silico combinatorial 
chemistry library enumeration [18, 33–36], where mol-
ecules are generated, fingerprinted and scored on the 
fly. The virtual screen is stopped after some amount of 
time, not because the immense library enumeration has 
finished.

Results
Effect of the consensus size
Discriminative power
As the consensus size is growing, the power to discrimi-
nate between active and inactive molecules increases.

When looking at the global performance of the classi-
fier (monitored by its AUC) as well as its early recovery 
capability (monitored by its PM1% [29]), there is a clear 
improvement correlated with the growth in consensus 
size (Fig.  2). On this target, there is no more improve-
ment in early recovery capability once a consensus of size 
twelve is reached. A bigger consensus only improves the 
AUC.

Speed
While a consensus fingerprint query screens at a con-
stant speed of ~  130,000 molecule/s (Fig.  3), this is not 
the case for a consensus based on scores.

Figure  3 shows a comparison of speed between the 
optimist and the opportunist consensus. As the number 
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of known actives used to build the consensus is growing, 
the opportunist consensus becomes slower.

Effect of the consensus policy and fingerprint type
NRLIST dataset
On this dataset, results across consensus policies and fin-
gerprints can be seen in Fig. 4.

For MACCS fingerprints, the most efficient policy is 
the opportunist, followed by the realist consensus. The 
optimist consensus performs less well than a single query 
when the AUC reached is greater than 0.85.

For ECFP4 fingerprints, the most efficient policy is also 
the opportunist one. Then, the realist consensus or the 
optimist consensus (for AUC ≥ 0.75) are the most pow-
erful. With this fingerprint, all consensus policies have a 
better performance than a single query, as can be seen in 
the gap between the black curve and all other curves.

For the UMOP2D fingerprint, the trend is similar than 
ECFP4. However, the optimist consensus is always better 
than the realist one and can even outperform the oppor-
tunist consensus for PM values ≥ 0.8 (Fig. 5).

The realist consensus is not shown on these AUC plots. 
Its performance is very similar to the realist consensus 
but its effect is different and shown later in “Effect of 
potency-scaling” section.

Across fingerprints, the least random and best per-
forming method is always the opportunist consensus. 
However, as the consensus size gets smaller, the spread 
between curves (and hence the performance difference 
between methods) becomes smaller.

It is interesting to observe that the trend is different for 
each fingerprint. If something is observed for one finger-
print, it might not hold for other fingerprints.

MLQSAR dataset
Results on this dataset differ from results on the NRLIST. 
As a general trend, the spread between curves for differ-
ent consensus policies is smaller. The biggest difference 
is that even by looking only at AUC values, the optimist 
consensus on MACCS fingerprints and the realist con-
sensus on UMOP2D fingerprints are clearly disqualified. 
They perform worse than a single query. While on the 
NRLIST, this observation can only be made by looking at 
CDF curves of PM values.

Experiments on this dataset show that combining the 
realist policy with the MACCS or ECFP4 fingerprints 
can outperform the performance of the opportunist con-
sensus (left and middle columns of Figs. 6 and 7, yellow 
curve under all other curves).

Table  3 provides a bird’s-eye view of results shown 
in Figs.  4, 5, 6 and 7 (same protocol but different 
experiment).

Effect of potency‑scaling
The effect of potency scaling is that it brings highly active 
molecules closer to the query but pushes further away 
less potent molecules (Fig. 8).

In our experiments (Table 4) and in terms of bringing 
the most active molecules closer to the query, there is a 
clear advantage of the knowledgeable policy (which is 
potency scaled) versus the realist one. On the NRLIST, 
the knowledgeable policy is also better than the oppor-
tunist one. However, on the two MLQSAR targets with 
a wide distribution of potency values, this behavior is 
observed only once.

CPU‑bounded experiments
Consensus queries using a single fingerprint can be 
several times faster than a consensus based on scores 
(Table 5). For example, a consensus query using only five 
actives is 1.46 times faster than a consensus of five scores. 
With 20 actives, it becomes 3.19 times faster.

In theory, a consensus made of N scores could be up 
to N times slower than a fingerprint consensus. However, 
our software being optimized, the slowdown is not so 
high.

In the case where the computational exploration of the 
chemical space is limited by the speed at which molecules 
can be scored, there is an advantage at using a consensus 
query which is faster than a consensus of scores (Fig.  9 
and Table 5). In at least six out of nine targets from the 
MLQSAR dataset, the optimist consensus outperforms 
the opportunist one in CPU-bounded experiments. On 
the NRLIST dataset, the same trend is observed in at 
least eight out of ten targets.
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Discussion
We say a consensus fingerprint degenerates when its 
performance become worse than that of a single query, 
either in terms of global classification (AUC) or early 
retrieval (PMx%). Based on Figs. 4, 5, 6, 7 and Table 3, we 
give some warnings and recommendations.

It is safe to use the opportunist policy (consensus of 
scores) for all the fingerprints we tested. Also, five actives 
are enough to build a consensus query that will perform 

significantly differently compared to the single policy 
(Table 3).

In our setting, all consensus policies are safe to use 
with the ECFP4 fingerprint. We note that the realistic 
consensus sometimes outperform the opportunist one in 
terms of early retrieval (middle column in Fig. 7; PM val-
ues ≥ 0.7).

The MACCS fingerprint combined with the optimist 
policy must be avoided. A diverse set of actives sets too 
many bits in the consensus fingerprint, rendering it non 
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selective (left column in Figs.  5, 6, 7). MACCS finger-
prints combined via the realist policy can be used. Their 
performance approaches the consensus of scores in the 
HTS datasets (left column in Figs. 6, 7).

The UMOP2D fingerprint combined with the realist 
policy must also be avoided (right column in Figs.  5, 6, 
7). However, UMOP2D fingerprints combined via the 
optimist policy allow to approach the performance of the 

opportunist consensus in terms of AUC and PM (right 
column in Figs. 4, 5, 6, 7).

The pessimist consensus is not used in our study 
because when molecules are diverse, the number of set 
bits in the consensus fingerprint becomes too small, so 
the resulting fingerprint is non selective. This consensus 
has been used in the past [6, 8], but for series of conge-
neric molecules while our experiments use diverse and 
randomly selected actives.
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While we don’t completely disregard the knowledge-
able policy, it must be used with caution. If the potency 
values spread several order of magnitudes and the 
potency measures are of high quality, using this policy 
might be useful.

Conclusions
 In this study, the effect of consensus size, consensus pol-
icy and chemical fingerprint choice was benchmarked on 
decoy-free datasets. It is hoped that these results will be 
predictive of performance in real world applications.

The consensus policies that were extensively bench-
marked are: opportunist (a consensus of scores), optimist 
(a union of fingerprints), realist (an average of finger-
prints) and knowledgeable (an average of potency-scaled 
fingerprints).

Our results confirm the reliability and performance of 
the consensus of scores (max score/min rank).

A consensus fingerprint allows to rank-order molecules 
as fast as a regular fingerprint-based similarity search. If 
the exploration of the chemical space is limited by the 
speed at which molecules can be scored, an optimist 
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Fig. 6 Cumulative distribution functions of AUC values on the MLQSAR dataset. Cf. Fig. 4 for legend details
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consensus of ECFP4 or UMOP2D fingerprints can out-
perform a consensus of scores in terms of finding more 
active molecules.

As a final remark, consensus queries have a few advan-
tages that are worth remembering:

1. They can be used even when the number of active 
molecules is scarce. This is interesting in the case of 
compounds found from literature, patent searches or 
as a followup to a structure-based virtual screening 
campaign which found only a handful of actives.

2. They can be used even when there is no information 
available about inactive molecules.

3. They don’t require a training step prior to be used as 
classifiers.

4. They are so simple that they can be created and used 
by non machine learning experts.

5. Last but not least, consensus queries can be used as 
an additional method, perpendicular to other in silico 
approaches, to confirm which molecules to purchase 
for wet-lab testing.
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Fig. 7 Cumulative distribution functions of PM10% values on the MLQSAR dataset. Cf. Fig. 5 for legend details
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Table 3 Median AUC and PM values with their median absolute deviations

‘csize’ stands for consensus size. A ‘✠’ indicates that a distribution of peformance metric values is not significantly different from the one of the single policy 
(Kolmogorov–Smirnov test with p-value ≥ 0.05). A ‘◊’ indicates that a distribution of peformance metric values is not significantly different from the one of the 
opportunist policy. A ‘▼’ indicates performance worse than the single policy

Metric Csize Policy MLQSAR dataset NRLIST dataset

MACCS ECFP4 UMOP2D MACCS ECFP4 UMOP2D

AUC 2 Oppo 0.542±0.059✠▼ 0.548±0.052✠ 0.571±0.055 0.643±0.119 0.699±0.124 0.696±0.131

Opti 0.514±0.061▼ 0.542±0.046✠◊ 0.564±0.057◊ 0.624±0.115 0.698±0.129◊ 0.700± 0.142◊ 

Real 0.549±0.061◊ 0.052±0.053✠◊ 0.518±0.060▼ 0.632±0.106 0.696±0.119◊ 0.646±0.105

Sing 0.544±0.064◊ 0.530±0.053◊ 0.540±0.051 0.581±0.100 0.603±0.104 0.598±0.122

5 Oppo 0.543±0.055 0.530±0.053 0.577±0.057 0.577±0.057 0.814±0.088 0.799±0.992

Opti 0.460±0.073▼ 0.536±0.040 0.569±0.051◊ 0.625±0.092 0.802±0.111 0.802±0.098

Real 0.569±0.058◊ 0.562±0.052◊ 0.496±0.057▼ 0.675±0.086 0.774±0.087 0.709±0.092

Sing 0.536±0.065 0.521±0.051 0.536±0.053 0.574±0.100 0.600±0.106 0.598±0.123

10 Oppo 0.569±0.047 0.586±0.047 0.607±0.051 0.847±0.061 0.873±0.055 0.856±0.060

Opti 0.435±0.090▼ 0.554±0.045 0.591±0.043◊ 0.601±0.078 0.853±0.081 0.841±0.084

Real 0.571±0.065◊ 0.578±0.044 0.495±0.053▼ 0.705±0.078 0.803±0.083 0.738±0.081

Sing 0.532±0.067 0.525±0.054 0.537±0.049 0.573±0.099 0.597±0.107 0.595±0.125

PM10% 2 Oppo 0.588±0.059✠ 0.615±0.058 0.615±0.074 0.912±0.088 0.933±0.067 0.933±0.067

Opti 0.542±0.071▼ 0.609±0.053◊ 0.621±0.073✠◊ 0.875±0.116 0.941±0.059◊ 0.930±0.070◊

Real 0.588±0.066✠◊ 0.593±0.074✠◊ 0.536±0.074▼ 0.896±0.104◊ 0.933±0.067◊ 0.758±0.140 

Sing 0.575±0.077◊ 0.585±0.075 0.585±0.084 0.826±0.155 0.870±0.130 0.832±0.163

5 Oppo 0.600±0.058 0.635±0.065 0.651±0.060 0.950±0.050 0.968±0.032 0.959±0.041

Opti 0.452±0.075▼ 0.613±0.059◊ 0.654±0.055◊ 0.804±0.137▼ 0.979±0.021 0.969±0.031

Real 0.612±0.073◊ 0.623±0.068◊ 0.523±0.068▼ 0.899±0.101 0.955±0.045 0.763±0.160▼

Sing 0.569±0.086 0.568±0.079 0.579±0.084 0.817±0.152 0.866±0.130 0.830±0.161

10 Oppo 0.637±0.047 0.690±0.045 0.688±0.043 0.964±0.036 0.968±0.032 0.956±0.040

Opti 0.405±0.099▼ 0.660±0.051 0.674±0.041◊ 0.726±0.170▼ 0.973±0.027 0.969±0.031

Real 0.617±0.063◊ 0.635±0.074 0.528±0.063▼ 0.896±0.090 0.951±0.049 0.724±0.146▼

Sing 0.571±0.082 0.576±0.078 0.576±0.079 0.809±0.158 0.862±0.134 0.830±0.155
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Fig. 8 Effect of applying potency scaling (knowledgeable policy) or 
not (realist policy) to build the consensus. The median change in rank 
is shown over 1000 experiments for all actives of the NRLIST PR-target 
(NRLIST target with the most active ligands) and MACCS fingerprints. 
Active molecules are ranked ordered from most to least potent (left 
to right)

Table 4 Cases where the knowledgeable consensus policy 
brings the most active molecules closer to the query com-
pared to another policy

Experiment: all NRLIST targets, median change in rank over 500 experiments and 
ECFP4 fingerprint

Size Know verus real Know versus oppo

10 10/10 8/10

15 10/10 7/10

20 10/10 7/10

Table 5 Cases where the optimist query outperforms the 
opportunist one in CPU-bounded experiments

Size: consensus size; speedup: how many times the optimist consensus is 
faster at scoring than the opportunist consensus. Experiment: compute the 
accumulated curve of actives on MLQSAR (median curve over 10 experiments) 
and NRLIST (median curve over 50 experiments). The number of times where the 
optimist curve dominates the opportunist one is reported

Size Speedup MLQSAR NRLIST

5 1.46 6/9 9/10

10 2.05 7/9 8/10

20 3.19 7/9 8/10
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