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Abstract: Computational membrane protein design is challenging due to the small number of

high-resolution structures available to elucidate the physical basis of membrane protein structure,
multiple functionally important conformational states, and a limited number of high-throughput

biophysical assays to monitor function. However, structural determination of membrane proteins

has made tremendous progress in the past years. Concurrently the field of soluble computational
design has made impressive inroads. These developments allow us to tackle the formidable

challenge of designing functional membrane proteins. Herein, Rosetta is benchmarked for

membrane protein design. We evaluate strategies to cope with the often reduced quality of
experimental membrane protein structures. Further, we test the usage of symmetry in design

protocols, which is particularly important as many membrane proteins exist as homo-oligomers.

We compare a soluble scoring function with a scoring function optimized for membrane proteins,
RosettaMembrane. Both scoring functions recovered around half of the native sequence when

completely redesigning membrane proteins. However, RosettaMembrane recovered the most

native-like amino acid property composition. While leucine was overrepresented in the inner and
outer-hydrophobic regions of RosettaMembrane designs, it resulted in a native-like surface hydropho-

bicity indicating that it is currently the best option for designing membrane proteins with Rosetta.

Keywords: Rosetta; RosettaMembrane; computational design; membrane proteins; membrane

protein design; membrane protein engineering

Introduction

Membrane proteins comprise approximately 30% of

all open reading frames of known genomes.1 How-

ever, in the Protein Data Bank (PDB)2 membrane

proteins continue to be underrepresented. Mem-

brane proteins, many of which are alpha-helical,

include classes of proteins that are responsible for

functions such as channel and transporter proteins,

or signal transduction in receptors. Additionally,

more than 60% of drugs target membrane proteins,3

therefore insight to the structure and function of

membrane proteins is valuable for the development
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of treatment strategies for diseases such as cancer,4,5

cardiac arrhythmia,6,7 schizophrenia,8,9 and many

more.

Membrane proteins are difficult to structurally

characterize because over-expression of the protein

is typically toxic to bacterial cells,3,10 resulting in

low protein yields. Additionally, membrane proteins

must be reconstituted into micelles, bicelles, nano-

disks, or liposomes to provide a native-like environ-

ment. Often an extensive screening for the optimal

detergents and lipids is needed for maximal solubil-

ity and stability.3 However, membrane mimetics can

have a destabilizing effect on the structure of the

membrane protein. Finally, membrane proteins have

inherent conformational dynamics,11 which often

requires engineering of a thermodynamically stabi-

lized mutant for structural studies.

Challenges in membrane protein structure

determination has resulted in limited available

structural information for membrane proteins. In

the PDB less than 3% of structures are membrane

proteins. Approximately 700 unique membrane pro-

teins structures have been deposited in the PDB2,12

to date, which is a vast improvement to the struc-

tural information that was available nearly a decade

ago, but far away from complete coverage of mem-

brane protein folds. Computational modeling by de

novo and comparative modeling can provide struc-

tural insights to membrane proteins without experi-

mentally determined structures. However, in order

to obtain more accurate models of membrane pro-

teins, more high-resolution structures are needed to

understand the physical basis of membrane protein

folding and derive more accurate scoring functions.

The PDB is a depository of structure files which

provides the knowledge-base for proteins of known

structure to drive the development of accurate scor-

ing functions and for rigorous testing of newly devel-

oped computational methods. As a result, methods

for computational membrane protein structure pre-

diction lag behind considerably, and computational

design of function—an area of great success for

soluble proteins in the past ten years—is largely

absent for membrane proteins. However, the struc-

tures of many important membrane proteins have

been determined at a stunning rate over the past 10

years13–17 increasing the knowledge-base for scoring

function development, providing higher-resolution

structures for benchmarking, and yielding templates

of important membrane protein classes to begin

engineering.

Computational protein design is a difficult prob-

lem due to the large number of possible sequences

for a particular protein backbone. Computational

design tools aim to rapidly evaluate possible

interactions between side-chains to determine likely

sequences of low-energy. Some methods have an

emphasis on calculations that evaluate electrostatics

and solvation of a side-chain in its environment.18–20

However the environment for membrane proteins is

complicated and consideration for differences in

membrane protein folding should be taken into

account.21 Additionally, these methods fail to

consider features that many membrane proteins

have that are important for function and membrane

solubility.22 Tools have been developed empirically to

overcome the shortcomings of these calculations for

membrane proteins. Walters and Degrado23 devel-

oped idealized geometries and position-specific

sequence propensities for helix-packing motifs most

commonly seen in membrane proteins. Senes et al.24

developed a potential based on the membrane depth

dependent propensities of amino acids to predict if

sequences would insert in the membrane.

The Rosetta software suite for biomolecular

modeling and design has an impressive track record

in the design of soluble proteins including the design

of a de novo protein fold,25 enzymes,26–29 protein–pro-

tein interactions,30–33 protein–small molecule interfa-

ces,34 and self-assembling materials.35–38 The Monte

Carlo search strategy that allows changes to amino

acid identities during sampling combined with a mul-

tiscale knowledge-based scoring function that is opti-

mized to capture structural features at the protein

fold level as well as at atomic detail create a unique

ability to engineer proteins that set Rosetta apart

from other computational strategies. The scoring

function and sampling methods used by Rosetta, how-

ever, are tailored for the needs of soluble-protein mod-

elers; despite some progress in adapting it for

membrane proteins, modeling abilities in membrane

proteins lag behind those of soluble proteins.

Rosetta’s knowledge-base has been derived in

large part using statistical analysis of geometric

arrangements within structures reported in the

PDB. For protocols involving minimization, back-

bone torsion angles are randomly perturbed and

rotational side-chain conformations are optimized

for interactions including van der Waals, electrostat-

ics, and hydrogen-bonding.39,40 Interactions with the

solvent are modeled implicitly by determining the

likelihood of a certain amino acid type being in a

particular burial state. Monte Carlo sampling com-

bined with knowledge-based scoring functions are

parameterized so that resulting models exhibit prop-

erties of proteins of known structure.41 The mem-

brane protein scoring function, RosettaMembrane,

additionally considers the likelihood of an amino

acid being in a particular membrane environment

and burial state.42,43

Previously, Rosetta was used to completely rede-

sign 108 soluble proteins. Designs recovered 51% of

the native sequence in the protein core. The terms

involving the Lennard–Jones potential and Lazaridis

solvation drove the scoring function to design sequen-

ces that were native-like.44 In the current study,
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complete redesign of membrane proteins was bench-

marked using RosettaMembrane,42,43 and for compar-

ison, the Rosetta scoring function for soluble proteins

“Talaris.”45,46 Many membrane proteins like channels

and transporters are functional homo-oligomers. In

order to model membrane proteins in their native

states and obtain correct representation of the surfa-

ces and interfaces, one must consider how such a pro-

tein might symmetrically assemble. Therefore, homo-

oligomeric membrane proteins were modeled with

RosettaSymmetry47 which is able to sample and rap-

idly score these larger assemblies while considering

interface interactions between subunits.

One important application of membrane protein

design is thermostabilization to facilitate structural

characterization. Membrane proteins often require

flexibility in order to perform their function.11,48 By

stabilizing a single conformation, one can reduce the

flexibility, thus yielding a more ideal protein for

experimental structure determination. Computa-

tional methods like RosettaDesign can propose an

optimal sequence for a particular conformation by

using information from known membrane protein

structures. The proposed mutations in the optimized

sequence could presumably lead to a thermostabi-

lized membrane protein.

This study evaluates how well Rosetta recovers

native sequences for membrane proteins when fully

redesigned. We find that the methods for minimizing

the structure prior to design play a role in native

sequence recovery. Additionally, total sequence

recovery was similar among different scoring func-

tions; however, unsurprisingly, RosettaMembrane

performed best in designing membrane proteins

with native-like properties.

Results and Discussion

Initial energy minimization improves

membrane protein design for low-resolution

experimental structures
When benchmarking protein design algorithms, the

question arises whether or not to minimize the start-

ing experimental structure with the respective scor-

ing function. The argument against minimization is

that adjustment of backbone and side-chain coordi-

nates to minimize energy will imprint a “memory”

for the correct amino acid into the backbone coordi-

nates. The native amino acid will score better as the

backbone is positioned in such a way that the native

amino acid can be placed in an energy minimum for

the scoring function used. As a result, artificially

inflated sequence recovery values might be reported.

The counter argument is that energetic frustrations

such as clashes in the starting structures that could

be relieved with energy minimization might cause

the design algorithm to prefer smaller, non-native

amino acids in these locations. This is a particular

concern for membrane proteins where many struc-

tures of reduced resolution are deposited in the

PDB. For soluble proteins the latter problem can be

easily circumvented by benchmarking only on

highest-quality protein structures with resolutions

better than 2 Å.44 However, the sparseness of

membrane proteins in the PDB requires usage of

lower-quality structures. Accordingly, we developed

a protocol that applies an initial moderate energy

minimization to resolve frustrations but avoids an

aggressive optimization that might result in inflated

sequence recovery values.

Without initial energy minimization, the

sequence recovery of fully redesigned membrane pro-

teins correlates with the resolution of the input struc-

ture such that low-resolution structures tend to have

reduced sequence recovery (Fig. 1). For monomeric

membrane proteins, the Pearson’s correlation coeffi-

cient is strongly negative at 20.75 (R2 5 0.56). For

homo-oligomeric membrane proteins, the Pearson’s

correlation coefficient is 20.47 (R2 5 0.22). When

extrapolated, sequence recovery for a structure with 0

Å resolution is approximately 57 and 45% for mono-

meric and homo-oligomeric membrane proteins,

respectively. Upon energy minimization, the correla-

tion is absent independent of the Rosetta minimiza-

tion protocol employed (Fig. 1). At the same time, we

observe that average sequence recovery for mono-

meric membrane proteins improves from 31% without

backbone energy minimization to 38, 49, 48, and 54%

with the four Rosetta minimization protocols minimi-

zation with constraints (MWC), constrained to the

start coordinate (CSC) relax, FastRelax, and Dual-

space, respectively. For homo-oligomeric membrane

proteins, average sequence recovery starts at 36%

and results in 35, 48, 48, and 55%, respectively.

Our analysis indicates that both initial concerns

have merit. A clear correlation between model

resolution and sequence recovery is observed. Upon

energy minimization this correlation vanishes.

However, aggressive minimization protocols such as

Dualspace, may inflate sequence recovery beyond

what would be expected from the extrapolation to a

membrane protein model with 0 Å resolution. To mea-

sure movement of the minimized protein from the

original structure, the root-mean-square deviation

(RMSD) was calculated. FastRelax and Dualspace

move the protein beyond 1 Å RMSD100,49 whereas

CSC attains similar average sequence recovery rates

despite movement of less than 1 Å RMSD100 during

minimization [Fig. 1(E,F)]. We conclude that CSC, the

limited energy minimization with a constraint to

starting coordinates, is a good compromise to avoid

over- and under-reporting algorithm accuracy.

Interestingly, for the highest resolution monomer,

PDBID, the pack-only preparation resulted in an aver-

age sequence recovery of 42%, while MWC was 46%.

Using the recommended CSC protocol, the average
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sequence recovery is 47% [Fig. S1(A), Supporting Infor-

mation]. This indicates that any major clashes that typ-

ically lessen sequence recovery were resolved prior to

minimization. Additionally, for the lowest resolution

monomer, PDBID, the pack-only and MWC prepara-

tions resulted in sequence recoveries of 23 and 31%.

However, after more flexible minimization strategies,

CSC, FastRelax, and Dualspace, sequence recoveries

increased to 53, 52, and 60%, respectively, indicating

that perhaps major clashes were resolved once more

flexibility was introduced.

For homo-oligomers, this analysis had a different

finding. While most of the homo-oligomeric structures

were of high-resolution more stringent minimiza-

tion—CSC, FastRelax, or Dualspace—was required in

order to achieve higher sequence recovery percen-

tages [Fig. S1(B)]. This is likely due to an option used

during symmetric relax which enables rigid body

movement (see protocol capture in Supporting Infor-

mation). Whereas the pack-only preparation would

only move side-chains while MWC might constrain

Figure 1. Sequence recovery for monomeric (A,C,E) and homo-oligomeric (B,D,F) sets. Various minimization methods were

used to prepare crystal structures as input for Rosetta. When considering sequence recovery by resolution (A,B), pack-only and

less stringent minimization (MWC) result in a correlation. CSC, FastRelax, and Dualspace minimization resulted in a consistently

high sequence recovery independent of the initial structure resolution. The normalized, average movement of minimized struc-

tures for each minimization protocol (C,D) showed that FastRelax and Dualspace tend to move the protein further away from

the starting structure. When examining sequence recovery by average movement (E,F), we find that pack-only and MWC had a

larger range over low sequence recovery whereas protocols that allowed more movement during minimization, CSC, FastRelax,

and Dualspace, yielded more consistently high sequence recovery rates. FastRelax and Dualspace in some cases moved the

backbone further than 1 Å.
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the minimization without considering the placement

of the rigid bodies with respect to each other.

Sequence recovery is highest in the

core of the protein

To evaluate the performance of RosettaMem-

brane42,43 redesigning membrane proteins, we com-

pared the performance of the soluble scoring

function Talaris.45,46 The largest differences in score

terms between RosettaMembrane and Talaris are

the membrane-related terms that describe the

membrane-specific environment (including burial

state) and differences in solubility. We used Talaris

to test how well Rosetta can design native-like

membrane proteins in the absence of these mem-

brane protein specific terms.

For both monomeric and homo-oligomeric sets,

average core sequence recovery was higher with the

Talaris scoring function when compared to Rosetta-

Membrane [Fig. 2(B)]. Talaris had an average core

sequence recovery of 63 and 65% for monomeric and

homo-oligomeric datasets, respectively, compared to

RosettaMembrane with 52 and 55%. A Wilcoxon

signed rank test determined that the difference in

percent core sequence recovery between Rosetta-

Membrane and Talaris was significant for both

monomers and homo-oligomers (z 5 2.49, P 5 0.013;

z 5 3.04, P 5 0.002). Residues in the core are less

influenced by the membrane environment than sur-

face residues that are likely interacting with the

lipid bilayer. Therefore, sampling and scoring in the

core is driven by van der Waals packing interactions

that are similar for membrane and soluble proteins.

RosettaMembrane was derived from score 12, the

scoring function that preceded Talaris. Membrane

specific scoring terms were added. Meanwhile, score

12 evolved to Talaris through improvement of the

electrostatic term, hydrogen bond terms, and refer-

ence energies.45,46 These changes give rise to the

improved core sequence recovery observed with the

Talaris energy function (Fig. 2) as amino acid inter-

actions are modeled more precisely.

Surface sequence recovery for monomers

improved in designs using RosettaMembrane (40%)

when compared with Talaris [34%, Fig. 2(A)]. How-

ever for homo-oligomers, the average surface

sequence recovery was 35% for both RosettaMem-

brane and Talaris. A Wilcoxon signed rank test

determined that the difference in percent surface

sequence recovery between RosettaMembrane and

Talaris was significant for monomers (z 5 2,

P 5 0.046), and not significant for homo-oligomers

(z 5 0.69, P 5 0.492). RosettaMembrane models a

membrane of fixed thickness implicitly. The higher

surface sequence recovery observed with Rosetta-

Membrane is attributed to the membrane-specific

score terms that adjust the polarity of the environ-

ment (Fig. 2). However, the improvement in

sequence recovery on the surface within Rosetta-

Membrane when compared to Talaris is only moder-

ate. We attribute this to the absence of specific

interactions on the surface of the proteins that allow

for the presence of only one specific amino acid. A

more pronounced improvement is observed when

comparing amino acid property composition between

RosettaMembrane and Talaris (Fig. 3).

Finally, when evaluating the total sequence

recovery in monomers, RosettaMembrane had an

average of 46% while Talaris had an average of 48%.

In homo-oligomers, the average total sequence recov-

ery was calculated to be 48% for RosettaMembrane

and 53% for Talaris. A Wilcoxon signed rank test

revealed that the difference in percent total sequence

recovery between RosettaMembrane and Talaris was

not significant for monomers (z 5 0.81, P 5 0.421)

while it was significant for homo-oligomers (z 5 2.1,

P 5 0.036). When homo-oligomers were designed as

monomers, the average percent native sequence

recovery for surface [Fig. 2(A)] and core [Fig. 2(B)]

were similar to that of homo-oligomers designed in a

Figure 2. Percent of native sequence recovery for design of membrane proteins using various scoring functions. Boxplots

show recovery of native sequence on the surface (A) and core (B) of the protein. RosettaMembrane (Membrane) designed

monomeric proteins have a higher average surface recovery than Talaris. The total sequence recovery (C) shows that both scor-

ing functions evaluated appear to have similar native sequence recovery percentages; however, core recovery is higher in Tala-

ris which likely contributes to the total sequence recovery. When homo-oligomers were modeled as monomers, the total

average sequence recovery rate was approximately 5% lower than the sequence recovery rate for design considering homo-

oligomeric interfaces.
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homo-oligomeric state. A Wilcoxon signed rank test

confirmed there was no significant difference

(z 5 1.24, P 5 0.217; z 5 0.33, P 5 0.739). However, the

difference in percent total sequence recovery was

found to be significant (z 5 2.77, P 5 0.006). This is

likely due to a subset of residues not classified as

either surface (less than or equal to 16 neighbors

within a c-beta (C-b) distance of 10 Å) or core residues

(more than 24 neighbors within a C-b distance of

10 Å) contributing to the difference in percent total

sequence recovery differences.

We selected top models as representatives to

better understand which residues were designed by

mapping those residues on the structure. For both

scoring functions, designed residues tended to be on

the surface where residues would be lipid-exposed

(Fig. S3), in monomers (Fig. S4), and homo-

oligomers (Fig. S5). Residues at the interface of sub-

units [Figs. S3(C,E) and S5(C,F)] appear to be

designed less frequently and result in core-like

recovery indicating that design considers neighbor-

ing residues from different chains when using

RosettaSymmetry.

Amino acid properties are most native-like in
proteins designed using RosettaMembrane

Sequence recovery is a limited metric for design in

that it only reports how much of the sequence

changes from the native sequence. The percent dif-

ference in sequence composition (design percent

composition—native percent composition) was calcu-

lated to further detail how design sequences differed

Figure 3. Heatmaps for composition of sequence (A–C) and amino acid properties (D–F) by percent difference of wild-type

from design. Datasets evaluated were monomers (A,D), homo-oligomers (B,E), and homo-oligomers as monomers (C,F). Both

RosettaMembrane (Membrane) and Talaris scoring functions have strong and weak amino acid recovery for different amino

acids in the monomeric set (A,D). The homo-oligomeric set (B,E) performs similarly to the monomeric set for each respective

scoring function. Finally, when homo-oligomers are designed as monomers using RosettaMembrane (C,F), the design is less

native-like, but has a similar sequence composition as the homo-oligomeric design.
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from native (Fig. 3). A negative percent difference

(red) indicates that Rosetta introduces that particular

amino acid less frequently than is observed in the

native proteins in our dataset, while a positive percent

difference (blue) indicates Rosetta introduces it more

frequently. The average absolute deviation from

native sequence composition for monomers was

63.4% for RosettaMembrane, and 62.8% for Talaris.

For homo-oligomers, a similar trend was seen with

62.5% for RosettaMembrane, 61.6% for and Talaris.

Arginine was found more frequently in designs

than in native membrane proteins. To visualize where

arginines are found in native proteins compared

to designs, we have plotted the fraction recovered

(Fig. 4) and number of occurrences (Fig. 5) of argi-

nines in all native, best-scoring RosettaMembrane

designs, and best-scoring Talaris designs with respect

to their position in the membrane layer. This repre-

sentation can also be seen broken down by monomeric

(Figs. S6 and S8) and homo-oligomeric datasets (Figs.

S7 and S9). In Figure 4, the fraction recovered drops

in the inner hydrophobic layer for RosettaMembrane

designs. In Figure 5, it is clear that Talaris is solubiliz-

ing the designs as an increase in occurrence of argi-

nine is seen in the inner and outer hydrophobic

regions.

However, for RosettaMembrane, only the outer

hydrophobic and interface regions have an increase

Figure 4. Fraction of sequence recovery for each amino acid with respect to distance from the membrane center. Bars indicate

the raw number of residues observed at a particular distance bin (see Table I) from the membrane center. Dots indicate the

fraction recovered at that particular distance bin and lines are not to infer a continuous dataset. The distance bins are discrete

and the lines are only to aid the eye in following the trend between layers. The yellow box overlays bins of distance that would

contain the inner and outer hydrophobic layers of the protein.
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of occurrence. Additionally, this is more pronounced

in the monomeric dataset (Fig. S8), perhaps indicat-

ing that there is an additional cost of designing in a

bulky residue at a protein-protein interface region

(Fig. S9). Talaris adds charged residues such as argi-

nine, aspartate, glutamate, and lysine on the surface

and in the inner and outer hydrophobic regions, as

expected, to solubilize the protein.

The most striking difference for RosettaMem-

brane designs when compared with native mem-

brane protein sequences was that the amino acid

composition is shifted toward leucine residues (Fig.

4) while other hydrophobic amino acids such as phe-

nylalanine, valine, and alanine, have a lower than

native probability. This indicates that RosettaMem-

brane has a bias toward leucine at the cost of other

hydrophobic amino acids. The fraction recovered for

leucine in the inner and outer hydrophobic regions

ranged from 58 to 82% while valine and alanine had

recoveries in the ranges of 20–24 and 23–37%,

respectively (Fig. 4). When the number of occur-

rences of leucine in native proteins and designed

proteins was plotted with respect to their position in

the membrane layer, leucine was found to be over-

represented by 1.9-fold in the inner and outer

hydrophobic regions for RosettaMembrane designs

(Fig. 5). An increase is also seen in both datasets

with a 2.2-fold increase for monomers (Fig. S8), and

Figure 5. Frequency of occurrence for each amino acid by membrane layer. Bins are a range of distances from the membrane

center (see Table I). Dots indicate the frequency of occurrence of an amino acid seen at a particular distance from the mem-

brane center, and lines are not to infer a continuous dataset. The distance bins are discrete and the lines are only to aid the

eye in following the trend between layers. The yellow box overlays bins of distance that would contain the inner and outer

hydrophobic layers of the protein.
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a 1.6-fold increase for homo-oligomers (Fig. S9).

Additionally, RosettaMembrane designs valine and

alanine less frequently than what is seen in native

proteins in the inner and outer hydrophobic regions

by 3.4- and 1.6-fold, respectively. This further sup-

ports that in the hydrophobic regions, valine and

alanine are replaced by leucine in RosettaMembrane

designs.

Sequence recovery may be too crude of an analy-

sis to determine the extent of which designed proteins

have changed. In addition to calculating recovery of

native amino acid identities, we calculated the percent

difference in the composition of amino acids grouped

by properties such as polarity and charge (design per-

cent composition—native percent composition). Here,

the average absolute deviation from native amino acid

property composition in monomers was 3.9% for

RosettaMembrane, and 7.4% for Talaris, while in

homo-oligomers, it was 3.4% for RosettaMembrane,

and 7.3% for Talaris. When considering the composi-

tion of all amino acid properties, RosettaMembrane

resulted in proteins with more native-like properties

in both monomeric and homo-oligomeric sets [Fig.

3(D,E)]. The differences in sequence composition

between native and designed proteins are primarily

caused by mutations on the protein surface as core

sequence recovery is high for both, Talaris and Roset-

taMembrane. Recall that surface sequence recovery

rates of monomers averaged at 40% for RosettaMem-

brane designs, whereas Talaris had lower averages of

34 and 38%, respectively [Fig. 2(A)]. However, when

comparing the difference in amino acids that are

aliphatic [Fig. 3(D,E)], RosettaMembrane is near

native with a percent difference of nearly 23% in

monomers and 21% in homo-oligomers whereas

Talaris had a percent difference near 210% for both

monomers and homo-oligomers.

To further investigate which amino acid mutations

would be tolerated by evolution, position specific scor-

ing matrix (PSSM) recovery50 was calculated using the

uniref50membrane database. Because PSSM recovery

is considering all tolerated amino acids that have been

seen in known sequences, PSSM recovery will be

higher than sequence recovery alone.51 In monomers,

RosettaMembrane had an average PSSM recovery of

73% while Talaris had a recovery of 72% [Fig. 6(A)]. In

homo-oligomers, RosettaMembrane had an average

PSSM recovery of 69% while Talaris was at 70% [Fig.

6(B)]. Despite using a membrane specific database, the

PSSM recovery did not favor RosettaMembrane

designs.

RosettaMembrane designs a native-like

hydrophobicity gradient and predicted DGtransfer

The HotPatch server52 was used to visualize the

relative hydrophobicity on the surface of proteins

(Fig. S10). For Talaris, despite having a similar

sequence composition as native structures [Fig.

3(A,B)], the resulting designs had a noticeably differ-

ent surface composition. This is supported by the

sequence recovery analysis where core sequence

recovery is typically much higher than the surface

sequence recovery [Fig. 2(A,B)]. Representative

design models selected for monomers show that both

scoring functions resulted in a large amount of sur-

face residues being redesigned [Fig. S1(A,B)]. Design

models of assembled homo-oligomers highlight a

similar feature; however, design at the interface of

subunits is typically more restricted and thus more

core-like [Fig. S1(C–F)]. For Talaris, the surfaces of

the majority of the protein designs were covered in

hydrophilic residues (Fig. S10) as the scoring func-

tion attempted to solubilize the surface of the pro-

tein. However, RosettaMembrane resulted in a

designed protein with a native-like hydrophobicity

gradient on the surface. These models had more

strongly hydrophobic and hydrophilic areas whereas

native surfaces had moderate hydrophobic and

hydrophilic regions.

The positioning of proteins in membrane (PPM)

server53,54 was used to predict the DGtransfer for both

monomeric and homo-oligomeric sets (Fig. 7). The

server tends to predict that integral membrane pro-

teins and peptides have a DGtransfer between 2400

Figure 6. Heatmaps for PSSM recovery for the monomeric set (A) and homo-oligomeric set (B). The PSSM recovery for each

scoring function is similar when comparing the monomeric set to the homo-oligomeric set. RosettaMembrane (Membrane) has

limitations for recovering histidine and proline, but shows improved recovery for isoleucine, leucine, valine, and phenylalanine.
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and 210 kcal/mol.54 For our datasets, the native pro-

teins were in the range of 244 to 2164. Designs by

the RosettaMembrane scoring function were near and

above native in a range of 271 to 2275 whereas

designs by Talaris were near zero indicating that the

designed protein would not be membrane soluble.

RosettaMembrane replaces other

hydrophobics with leucine
RosettaMembrane chooses leucine over other hydro-

phobic amino acids. Although leucine may be ideal

for the particular membrane environment modeled

in Rosetta, this may not be ideal biologically as it

does not account for asymmetry and heterogeneity

of the membrane. A previous study showed leucine

to be the most frequent amino acid in the inner

hydrophobic and outer hydrophobic layers of the

membrane.42 Because leucine has such a high fre-

quency compared to other amino acids, it scores

quite favorably in RosettaMembrane and is overrep-

resented in designs often replacing native, hydro-

phobic amino acids [Figs. 3(A) and 5].

To further investigate how leucine might replace

hydrophobic amino acids such as alanine, valine,

and phenylalanine, we mapped their occurrences

onto the structures to understand where each scor-

ing function would typically place them compared to

where they are found on the native membrane pro-

tein. For both monomers and homo-oligomers, native

membrane proteins have alanine in the core as well

as on the surface (Fig. S11). Both scoring functions

typically placed alanine in the core of the protein

and RosettaMembrane had a lower alanine sequence

composition than native membrane proteins. In

homo-oligomers, very few alanine occur on the sur-

face of the protein that would be lipid-exposed, and

very few are seen in the interface between subunits,

likely due to alanine’s small size.

Designs from both scoring functions resulted in

fewer valine and phenylalanine. Both residues are

hydrophobic and, in the case of RosettaMembrane,

were likely replaced by leucine. Valine was typically

designed in the core of the protein regardless of scor-

ing function; however, in homo-oligomers, Talaris

does place valine in the core-like interface between

subunits more frequently than RosettaMembrane

(Fig. S12). Despite phenylalanine typically occurring

in the interface and inner and outer hydrophobic

layers, fewer phenylalanines are seen on the surface

of designs from both scoring functions (Fig. S13). This

suggests that leucine’s abundance in these layers

overshadows the presence of phenylalanine in native

membrane proteins. As a comparison, arginine, was

also highlighted onto structures (Fig. S14). Although

the percent difference in composition was like that of

leucine, the number of occurrences (Fig. 4) was much

lower, so the effect was pronounced.

A closer look at trends seen in designs

Core residues have a better chance of recovering the

native amino acid. For example, the core of PDBID

has several residues surrounding asparagine 64 that

remain the same for both scoring functions [Fig.

8(A–C)]. The native core is likely well-packed with

favorable hydrophobicity. The largest differences

among designs are expected at the surface of the

protein. While RosettaMembrane is designing

toward an optimal hydrophobicity gradient so that

the protein can partition in the membrane, Talaris

is designing toward a soluble protein [Fig. 8(D–F)].

For this reason, many of the surface residues that

were designed by Talaris are charged when the

native protein would likely not tolerate multiple

charged residues embedded in the membrane. As

previously noted, an interesting finding was the

abundance of leucine on the surface of proteins

designed using RosettaMembrane. In many cases,

Figure 7. Predicted DGtransfer for designs from RosettaMembrane (membrane) and Talaris. For both monomeric (A) and homo-

oligomeric (B) sets, the membrane scoring function resulted in more native-like DGtransfer values in comparison to Talaris. For

the soluble scoring function Talaris, the value was nearly zero indicating it would likely not partition into the membrane. Finally,

the homo-oligomeric design took into account surfaces when assembled as an homo-oligomer, resulting in more native-like

values.
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native hydrophobic residues, such as phenylalanine

at position 45 and methionine 49 [Fig. 8(D–F)], were

replaced by leucine.

In homo-oligomers, the surface and core are simi-

lar to that in monomers; however, the homo-oligomers

have interface regions between the subunits. The

interface regions should be designed similarly to the

core in that they are surrounded by neighboring resi-

dues, provided that distance is close enough to be con-

sidered buried, despite those residues residing on a

different chain. As expected, these regions, when well

packed, will remain the native amino acid for both

scoring functions [Fig. 8(G–I)].

RosettaMembrane designs membrane proteins that

capture native-like properties. We have reported in sil-

ico sequence redesign experiments using two different

Rosetta scoring functions. Despite having similar

sequence recoveries (Fig. 2), Talaris did not, as expected,

appropriately design the surface. RosettaMembrane

was developed to implicitly model an appropriate hydro-

phobic gradient that is often seen in native membrane

proteins.43 RosettaMembrane designed a hydrophobic

gradient that was native-like (Fig. S10). However, an

artifact of designing in RosettaMembrane was the over-

use of leucine because of their high frequency at various

layers in the membrane (Figs. 5 and 9).

Also indicative of a native-like surface, the

DGtransfer was above or near native for RosettaMem-

brane designs, whereas Talaris designs were near

zero (Figs. 6 and 7). Interestingly, although both

scoring functions resulted in a similar amino acid

composition [Fig. 3(A,B)], the difference in composi-

tion of amino acid properties made it evident that

RosettaMembrane designed in amino acids that

Figure 8. Atomic detail of designs compared to wild-type. A closer look at typical interactions at the core (A–C), surface (D–F),

and homo-oligomeric interface (G–I). Representative cases were selected from PDBID (A–C), PDBID (D–F), and PDBID (G–I).

Green represents respective minimized native, aquamarine is RosettaMembrane, and light orange is Talaris.
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Figure 9. Visualization of leucine on models. Top models were selected to visualize where leucines occur in monomers PDBID

(A), PDBID (B) and in homo-oligomers PDBID (C, top; D, down) and PDBID (E, top; F, down). Native structures (left) were com-

pared to representative models of proteins designed using RosettaMembrane and Talaris. RosettaMembrane designs proteins

with an abundance of leucine at multiple layers of the membrane and surface residues. In homo-oligomers, leucine is also seen

in regions that are buried at the interface between subunits and in the core of the protein.
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were aliphatic, charged, or long and flexible more

realistically [Fig. 3(D–F)]. Additionally, when evalu-

ating PSSM recovery, RosettaMembrane’s strength

was recovering hydrophobic residues such as isoleu-

cine, leucine, valine, and phenylalanine (Fig. 6).

Despite both of the scoring functions resulting in

similar amino acid composition, design using Roset-

taMembrane results in membrane protein designs

with more native-like properties.

RosettaMembrane and symmetry can be used

in conjunction to model obligate homo-

oligomeric membrane proteins

Because many membrane proteins are functional as

homo-oligomers, it is important the RosettaDesign

algorithm works well with RosettaSymmetry so that

both the internal energy of all subunits and interface

interactions are taken into account during the design

process. RosettaSymmetry is ideal for larger, symmet-

ric systems because the subunits in homo-oligomers

are moved in the same way, which enables the sam-

pling process to rapidly occur. The homo-oligomeric set

performed similarly to the monomeric set in amino

acid composition and slightly better in recovering

native-like properties. To ensure this comparison was

not an artifact of the sets of proteins, the homo-

oligomeric set was modeled as monomers in a separate

design experiment. This revealed that although the

patterns for amino acid composition were similar, the

monomeric representation deviated further from the

native [Fig. 3(B,C)] indicating that homo-oligomeric

modeling result in more native-like designs.

Conclusion

This study illustrates that with minimized struc-

tures, membrane proteins have core sequence recov-

ery rates of 52–63% for monomeric membrane

proteins and 53–65% for homo-oligomeric membrane

proteins. These rates are similar to the 51% core

sequence recovery rates calculated from a large solu-

ble protein set.44 The chance of designing a position

with the correct amino acid identity is roughly 5%

(selecting the correct amino acid out of 20), so a

recovery of approximately 50% indicates the algo-

rithm is working well. Increasing sequence recovery

even further would involve extensive backbone mini-

mization and/or an improved scoring function. We

find that PSSM recovery (here averaging around

70%) is a more reliable metric because the recovery

tolerates mutations that have been seen in evolu-

tion. Additionally, to avoid minimizing structures

that imprint the native sequence, we recommend

using CSC to prepare structures for design as this

reduces backbone RMSD from native during minimi-

zation and still achieves moderately high sequence

recovery for a range of starting resolutions.

While RosettaMembrane designs native-like sur-

face hydrophobicity, it is important to note that Rosetta-

Membrane has a tendency to favor leucine over other

hydrophobic residues at these positions. This may be

due to high occurrence of leucine for proteins in the orig-

inal training set. An updated RosettaMembrane scoring

function with a larger, more diverse, and higher resolu-

tion membrane protein knowledge-base may help

dampen this bias. Finally, as membrane protein struc-

tures have varying membrane thicknesses, an accurate

depiction of the hydrophobicity gradient during model-

ing and design of membrane proteins in Rosetta could

improve the quality of native-like designs even further.

Methods

A set of 20 membrane proteins with resolutions ranging

from 0.88 to 3.4 Å was compiled. Twelve of these mem-

brane proteins are modeled as homo-oligomers (Table

S1). All of the coordinates were obtained from the PDB.

Solvent and ions were excluded for the duration of this

study. Span files that specify the trans-membrane span-

ning region were created using information obtained

from the protein data bank of transmembrane proteins

(PDBTM).55 The symmetry definition files were created

using the noncrystallographic symmetry mode in the

make_symmdef_file.pl script provided in Rosetta. This

mode calculates the point symmetries using the homo-

oligomers present in the PDB file, or from symmetry

mates generated in Pymol from the original PDB file.

The RosettaScripts eXtensible markup language (XML)

scripting language framework33 from the Rosetta week

52 build was used for all of the protocols tested. The

Rosetta software suite is publically accessible and free

for noncommercial use.

Preminimization trials

Five minimization protocols were tested on this

benchmark set: pack-only where the backbone is not

perturbed and only the side-chains conformations

are optimized; minimize with constraints (MWC)

where harmonic constraints are used to minimize

both the backbone and side-chains to within 0.5 Å of

the starting position56 (used to prepare structures for

Table I. Layers of the Membrane Represented by Bins.
Calculated Distances from the Membrane Center have
been Binned to Aid in Visualization of Data. Bins have
been Defined by the Layers Described by Yarov Yarovoy
et al.42

Bin number
Distance (Å) from
membrane center Membrane layer

1 240 to 230 Water
2 230 to 224 Polar
3 224 to 218 Interface
4 218 to 212 Outer hydrophobic
5 212 to 0 Inner hydrophobic
6 0 to 12 Inner hydrophobic
7 12 to 18 Outer hydrophobic
8 18 to 24 Interface
9 24 to 30 Polar
10 30 to 40 Water
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thermostability calculations57); FastRelax with an

added CSC which is similar to MWC, but ramps the

weight of the repulsive term to allow for more flexibility.

FastRelax, the standard minimization protocol; and

DualSpace relax58 which uses a combination of internal

and Cartesian minimization. Three of these protocols,

CSC, FastRelax, and Dualspace, were set up using the

FastRelax mover in Rosetta Scripts and can also be set

up using the relax application by including command-

line options appropriate for each protocol. For pack-only

and MWC, the appropriate applications and options

were used (please see a complete, detailed protocol cap-

ture in Supporting Information, parts 1a, 1b).

Full redesign to assess preminimized structures

Full redesign, where all canonical amino acids iden-

tities are allowed to be sampled at each position,

was performed on the preminimized membrane pro-

tein sets. For each minimization protocol, two to

three top models by score and RMSD for each mem-

brane protein were chosen as the input models for

full redesign to introduce backbone diversity. Full

redesign was set up using PackRotamersMover and

the SymPackRotamersMover, where appropriate, to

generate design models of each minimized model.

The top ten percent models by score were chosen

for sequence recovery analysis (protocol capture,

Supporting Information, parts 1a, 1b).

Full redesign using various scoring functions
Full redesign was performed on the top three models

by score and RMSD from the CSC protocol. The

scoring functions tested were the RosettaMembrane

full atom smoothed potential (membrane_highres_-

Menv_smooth.wts) and Talaris (talaris2013.wts).

Full redesign was set up using PackRotamersMover

and SymPackRotamersMover, where appropriate, to

generate design models from each selected mini-

mized model. The top scoring ten percent models

were used to calculate sequence recovery of the

native protein sequence (protocol capture, Support-

ing Information, parts 2a, 2b).

Sequence analysis of redesigned proteins
The top 10% of designs by score were analyzed.

Native sequence recovery was calculated for the full

protein, core residues (a residue with at least 24

contacts within a C-b distance of 10 Å), and surface

residues (a residue with at most 16 contacts within

a C-b distance of 10 Å) using the Sequence Recovery

application in Rosetta. Additionally, we determined

whether the scoring functions reproduced native-like

amino acid composition.
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