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ABSTRACT: There is a compelling and growing need to accurately predict
the impact of amino acid mutations on protein stability for problems in
personalized medicine and other applications. Here the ability of 10
computational tools to accurately predict mutation-induced perturbation of
folding stability (ΔΔG) for membrane proteins of known structure was
assessed. All methods for predicting ΔΔG values performed significantly worse
when applied to membrane proteins than when applied to soluble proteins,
yielding estimated concordance, Pearson, and Spearman correlation
coefficients of <0.4 for membrane proteins. Rosetta and PROVEAN showed
a modest ability to classify mutations as destabilizing (ΔΔG < −0.5 kcal/mol),
with a 7 in 10 chance of correctly discriminating a randomly chosen
destabilizing variant from a randomly chosen stabilizing variant. However, even
this performance is significantly worse than for soluble proteins. This study
highlights the need for further development of reliable and reproducible methods for predicting thermodynamic folding stability
in membrane proteins.

Each individual’s genome has, on average, 10000−20000
nonsynonymous single-nucleotide polymorphisms

(nsSNPs).1 Deleterious, loss-of-function nsSNPs constitute
the most common cause of monogenic disorders.2−4

Substantial evidence suggests a majority of disease-promoting
nsSNPs act, at least in part, by destabilizing the folded
conformation of the encoded protein.3−7 The resulting loss of
thermodynamic stability leads to a reduced population of
functional protein available to cells, which in some cases is
compounded by the toxicity of the misfolded protein.8−10 The
more accurately mutation-induced changes in protein stability
can be determined, the more accurately and specifically we can
predict loss-of-function phenotypes for previously uncharac-
terized point mutations, a growing concern as more genomes
are sequenced to unveil variants of unknown significance.1

There are many algorithms that predict changes in folded
protein stability caused by single- or multiple-amino acid
mutations. Some approaches rely on known protein structures
using functions that predict the energetic perturbation
introduced by the mutation.11 Other methods train machine
learning methods on large data sets to combine selected
physical, statistical, and empirical features for stability
predictions.12,13 For water-soluble proteins, several algorithms
are able to predict mutation-induced change in stability with a
Pearson correlation coefficient near or above 0.7 (Figure 1);
however, the performance of these methods on membrane
proteins is an open question. Membrane proteins fold and
reside in a heterogeneous environmenta lipid bilayer

bounded on both sides by waterwith distinct forces driving
folding and unfolding compared to soluble proteins, and
therefore may require treatment separate from that of soluble
proteins.14−17

Membrane protein structures comprise only ∼1% of the
protein structure database (http://www.rcsb.org/pdb/home/
and http://blanco.biomol.uci.edu/mpstruc/), and thermody-
namic stability measurements of membrane proteins are grossly
underrepresented. This paucity of data dictates that all currently
available ΔΔG calculators have been trained and refined from
data sets strongly biased toward soluble proteins. Here we
evaluate the ability of current methods to predict amino acid
mutation-induced free energy changes in membrane protein
stability in cases both for which an atomic-resolution structure
is available and for which stabilities of wild-type and mutant
forms have been measured.

■ METHODS
Compilation of Experimental ΔΔG Values. We used all

available (as of January 2016) experimental ΔΔG data sets for
mutant forms of membrane proteins of known structure. The
relevant Protein Data Bank (PDB) codes are as follows: 1PY6
for bacteriorhodopsin,18 1AFO for glycophorin A,19 2XOV for
the Escherichia coli rhomboid protease (GlpG),20 2K73 for
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disulfide formation protein B (DsbB),21 1QD6 for outer
membrane phospholipase A1 (OmpLA),22 1QJP for outer
membrane protein A (OmpA),23 and 3GP6 for the lipid A
palmitoyltransferase (PagP).24 The 223 rigorously determined
ΔΔG measurements originated from the following studies:
bacteriorhodopsin,18,25−29 glycophorin A,30,31 GlpG,32,33

DsbB,34 OmpLA,35 OmpA,16 and PagP.36

Protein Stability Programs. We tested available methods
for which servers or software were available online and
functional as of January 2014 or for which the authors of
published algorithms were responsive to our request for
software (Table 1). The following programs were used to
predict ΔΔG values for each membrane protein mutation in
the experimental database mentioned above: Rosetta (revision
58019) with both low-resolution (Rosetta-low) and high-
resolution (Rosetta-high) protocols,37 I Mutant (3.0; http://
gpcr2.biocomp.unibo.it/cgi/predictors/I-Mutant3.0/I-Mutant3.
0.cgi),38 FoldX (3.0, beta 6.1),11 mCSM,39 SDM,40 DUET
(http://bleoberis.bioc.cam.ac.uk/duet/stability),41 PPSC (Pre-
diction of Protein Stability, version 1.0) with the 8 (M8) and 47
(M47) feature sets,12 PROVEAN (http://provean.jcvi.org/
seq_submit.php),42 ELASPIC (http://elaspic.kimlab.org/),13

and EASE-MM.43 We also tested the standard Rosetta
ddg_monomer application replacing the minimization score
function score12 with membrane_highres_Menv_smooth
(RosettaMembrane). In addition we tested the RosettaMP
ΔΔG calculating framework, RosettaMPddG. Both attempts
failed to improve performance (Figure S1). The membrane
protein scoring function adds nothing in accuracy and
discrimination for calculating ΔΔG values in Rosetta.
To compare the performance of each ΔΔG calculation

method with what could be obtained from sequence
information alone, we calculated two parameters. First, the

likelihood of a specified amino acid mutation being observed
among the wild-type (WT) sequences comprising a particular
protein family was assessed according to the position-specific
iterative basic local alignment search tool-derived position-
specific scoring matrix (PSI-BLAST PSSM). PSI-BLAST PSSM
values were calculated, as follows. The PSI-BLAST position-
specific scoring matrix value for a given mutant residue amino
acid type was subtracted from the value for the native residue
(PSI-BLAST employed the UniRef50, nonredundant sequence
database, 5-iterations, e-value cutoff of 0.01). This metric gives
an estimation of the evolutionary penalty for substituting the
WT residue with the specified mutant amino acid. Second, the
Shannon (or “sequence entropy”) entropy was determined
from PSI-BLAST results. Sequence entropy is a description of
how often the identity of a particular residue in a protein
changes from family member to family member. Shannon/
sequence entropy is the PSSM value for amino acids located at
a particular position. This parameter is agnostic with regard to
the amino acid type of both the mutated-in and native residue.
Instead, the Shannon/sequence entropy reports the likelihood
that a change in residue identity is evolutionarily tolerated. All
numbers were formatted so that negative values indicate
destabilization.

Statistical Analysis of Experimental versus Predicted
ΔΔG Values. For each method, the experimental versus
predicted ΔΔG data were processed using an in-house R script
to calculate correlation coefficients and area-under-the-curve
(AUC) values. To analyze the collected data set on the basis of
several features, we parsed out and evaluated separately point
mutations according to the following classifications: those
impacting α-helical versus β-barrel proteins, those with a point
mutation site in the aqueous phase, in the aliphatic phase, or at
the water−membrane interface, and mutations at positions that

Figure 1. Boxplot of experimental (reference) and predicted value distributions. The middle line in the box is the median, and upper and lower
bounds to the boxes are the upper and lower quartiles, respectively. Nonoutlier extrema are bracketed with dashed lines above and below the upper
and lower quartiles, respectively. Dots are outliers beyond 1.5 times the upper or lower quartile.
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were either buried within the protein or exposed to solvent or
lipid (Figures S2−S10). We analyzed the set of predictions for
each protein separately and also parsed out point mutations
involving proline or glycine (Figures S11−S17). Concordance,
Pearson, and Spearman correlations were computed, along with

ROC curves (and their AUC values) for predicting a negative
ΔΔG of less than −0.5 (see Table 2). The concordance
correlation is the proper statistic for assessing agreement
among continuous measurements, though the Pearson
correlation is more common in the literature. The Spearman

Table 2. Summary of Statistical Methods Used To Evaluate Predictive Methods

quantification
method description

concordance
CCa

The concordance correlation coefficient measures the degree to which the predicted ΔΔG value equals the actual experimental value (0 indicates no
agreement and 1 perfect agreement).

Pearson CCa The Pearson correlation coefficient measures the degree to which a uniform linear transformation of the predicted ΔΔG values (i.e., a shift and scale
change) would yield the actual experimental values (0 indicates no agreement after transformation, 1 perfect agreement, and −1 perfect inverse
agreement).

Spearman rank
CCa

The Spearman rank correlation coefficient measures the degree to which the rank ordering of the predicted ΔΔG values matches the rank ordering
of the actual experimental values (0 indicates no agreement after transformation, 1 perfect agreement, and −1 perfect inverse agreement).

ROC and AUC The area-under-the-receiver operating characteristic (ROC) curve tests several cutoff values for binning mutations as neutral or destabilizing
between the most negative calculated ΔΔG value and the most positive calculated ΔΔG value, with true positive rates (sensitivity) calculated at
each point. As the true positive rate is calculated, the classifier is moved to less extreme values; this yields the ROC curve. The AUC curve is a
summary statistic that approximates how well the predictor actually discriminates between the two classifications.

aCC indicates correlation coefficient.

Figure 2. Reference (experimental) ΔΔG values vs calculated ddG values (x-axis) from each method tested (see also Table S1). Red lines are simple
linear regressions from which Pearson correlations are derived; blue lines are flexible nonparametric trend lines. For the Rosetta and FoldX plots, a
few predicted points were outliers that fall outside of the plotted window. The dashed line is the y = x line measuring perfect agreement between the
predicted ΔΔG and the experimental values and is plotted for methods constructed to make direct predictions.
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correlation is a rank-based correlation analogue of Pearson that
is less reliant on linear assumptions. We used a nonparametric
bootstrap (500 replications) to obtain estimates of standard
errors and bias-corrected 95% confidence intervals (CIs) for
estimates. We used scatter plots with nonparametric trend lines
to examine the data. Bland−Altman plots were used to visually
examine the agreement between predictions and actual values.
As a control for our processing, we also computed correlation
coefficients using previous Rosetta ΔΔG prediction results
from a large data set containing almost exclusively soluble
proteins.37

■ RESULTS AND DISCUSSION
We collected all available experimental ΔΔG data sets for
structurally diverse membrane proteins of known structure
(which constitutes the vast majority of all ΔΔG measurements
made to date for membrane proteins). We acknowledge
differences in the cellular folding landscapes of α-helical and β-
barrel proteins; however, given the limited number of
membrane proteins with known structure and thermodynamic
stability measurements, we combined all proteins for analysis
and subsequently parsed potentially relevant subsets to evaluate
the effect of each. As of early 2016, there were 223 single-amino
acid ΔΔG destabilization measurements available for these
proteins, with mutated side chains in the following categories:
water-exposed, 6% (14); lipid hydrocarbon-exposed, 25% (55);
exposed interfacial, 18% (41); or protein-buried, 52% (117).
The distribution of experimental ΔΔG values is consistent

with a random sampling of residue point mutation stabilities
(Figure 1): 65% of point mutations resulted in ΔΔG values of
less than −0.5 kcal/mol, considered destabilizing; 24% between
−0.5 and 0.5 kcal/mol, considered neutral; and 11% greater
than 0.5 kcal/mol, considered stabilizing, as suggested
previously.44 All programs except Rosetta, PROVEAN, SDM,
and FoldX have a narrow, slightly negative distribution of
predicted ΔΔG values (Figures 1 and 2). The PSI-BLAST
PSSM scores were also more dispersed than results for the
majority of the programs tested. Interestingly, SDM tended to
classify nearly as many mutations as stabilizing as destabilizing,
which perhaps is a consequence of restricting mutant
classification to neutral or destabilizing only if |ΔΔG| > 2
kcal/mol. Most methods tended to underestimate ΔΔG for
destabilizing mutations and overestimate ΔΔG for neutral to
stabilizing mutations.
To evaluate the predictive ability of each method tested, we

compared concordance, Pearson, and Spearman rank correla-
tion coefficients (Figure 2A; a glossary for statistical parameters
is provided in Table 2). Note that we distinguish methods that
were calibrated to predict ΔΔG values from methods that
compute metrics that are expected to linearly correlate with
ΔΔG values, such as ROSETTA. This distinction is important,
as for optimal performance in the former group we expect a
regression line that passes through the coordinate origin and
has a slope of 1. In such a case, concordance, Pearson, and
Spearman correlation coefficients would be equal to 1. In the
latter group, for optimal performance, Pearson and Spearman
correlation coefficients, but not the concordance, would be
equal to 1.
None of the programs tested performed well in calculating

ΔΔG values for membrane proteins compared to their
performance in previous studies of soluble protein data sets
(Figure 3A). The concordance correlation coefficients for the
various methods are all relatively low, the highest being ∼0.2

[EASE-MM, FoldX, and PPSC (M8)]. This is compared to a
concordance correlation coefficient in the range of 0.6 for the
Rosetta-based method applied to an almost exclusively water-
soluble protein data set. The performance of the different
methods at predicting the rank order is improved compared to

Figure 3. (A) Performance of each evaluated method in predicting
true ΔΔG values (concordance correlation coefficient), linearly
correlated ddG values (Pearson correlation coefficient), and rank
order (Spearman rank order correlation coefficient). The hash marks
in the upper portions of this plot indicate the published results for
each method. We also evaluated the concordance, Pearson, and
Spearman correlation coefficients using the calculated and exper-
imental data previously reported37 for a mostly water-soluble protein
data set to control for processing differences, shown as triangles. (B)
Receiver operating characteristic curves of the classification of variants
that are more destabilized or less destabilized than 0.5 kcal/mol. We
generated the black bold trace using data from a previous ΔΔG
calculation effort37 involving mostly soluble proteins.
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their ability to predict absolute ΔΔG values (Figure 3A), but all
Spearman correlation coefficients are below 0.4, compared to
0.7 for the Rosetta-based method applied to a largely water-
soluble protein data set. This means the majority of predicted
rankings are still incorrect. Rosetta (high and low) and
PROVEAN have the highest Spearman rank order correlation
coefficients overall (0.37, 0.32, and 0.29, respectively) but still
significantly underperform compared to results for soluble
proteins. The general failure of these methods to reliably rank
order the impact of membrane protein point mutations on
stability is disappointing, as one of the anticipated applications
for these methods is to aid researchers in identifying the most
or least destabilizing mutations out of a hypothetical set, which
then would be experimentally tested for the purpose of protein
engineering.
Another application that can be envisioned is predicting the

stability class for a given variant. For example, one might seek
to identify mutants that have a ΔΔG value above or below −0.5
kcal (−0.5 is the typical uncertainty in experimentally
determined stabilities45). To compare the discriminating
power of these methods, we plotted receiver operating
characteristic curves [ROC (Figure 3B)], which show the
ability to correctly classify point mutations as destabilizing
(ΔΔG < −0.5) or neutral/stabilizing (ΔΔG > −0.5). ROC
curves that are skewed toward a higher true positive rate
(sensitivity) classify mutations more accurately, as quantified by
AUC (ranging between 1.0 and 0.5 for perfect and chance
classification, respectively). Rosetta and PROVEAN had the
largest areas under the curve (95% CIs of 0.65−0.79 and 0.61−
0.76, respectively). This is surprising because neither method
was constructed or calibrated to predict ΔΔG values but is
consistent with their better Spearman correlation performance.
PROVEAN is designed to estimate the probability that a variant
will be functionally compromised without accounting for
structure, while Rosetta is optimized to incorporate protein
structural features. The AUC of ∼0.8 for the soluble protein set
calculated here, similar to previously reported values for these
methods, further emphasizes the conclusion that the unique
properties of membrane proteins require separate treatments in
constructing stability prediction methods.
A priori, there are several potential explanations for the

observed disparity in calculating ΔΔG values for soluble versus
membrane proteins. One confounding factor could be the
persistence of α-helical structure in the unfolded states of
helical membrane proteins, which is typically not the case for
unfolded states of soluble proteins. In an effort to test this
hypothesis, we separately evaluated β-barrels, expected to have
no persistent secondary structure in the unfolded state, and α-
helical membrane proteins. The correlation coefficients for the
β-barrel protein set have considerably larger 95% confidence
intervals but suggest that several programs perform somewhat
better for β-barrel proteins (Spearman correlation coefficient of
0.29) than for α-helical membrane proteins (average Spearman
correlation coefficient of 0.22) (Figures S2 and S3), although
the poor performance for both groups of proteins proves no
method is reliable at this task. Interestingly, differences in
correlation and ranking ability were not uniform between the
methods evaluated: FoldX performed better on α-helical
proteins (second-highest Spearman correlation coefficient)
than on β-barrels (lowest Spearman correlation coefficient),
with estimated Spearman correlations of 0.35 and 0.01,
respectively. We also evaluated the effect of parsing out the
secondary structure-disrupting residues, glycine and proline.

Surprisingly, even removing proline and glycine residues did
not improve Spearman correlation coefficients appreciably;
95% confidence intervals narrowed, and estimated values
increased from 0.23 to 0.29 (Figure 3A and Figure S4).
Another potential cause of the disparity between soluble and

membrane proteins may be the unique solvent environment of
the membrane. We parsed ΔΔG values based on residue
position: water-exposed (Figure S6), at the membrane interface
(Figure S7), membrane-exposed (Figure S8), solvent-facing
(Figure S9), or buried in the protein (Figure S10). Given the
small number of water-exposed variants assessed, the 95%
confidence interval is extremely wide, precluding any real
assessment. In any case, no parsing of residue position yielded
significant improvements in Spearman correlations. Indeed, to
our surprise, all methods tended toward worse predictive
ranking for protein-buried residues (average Spearman
correlation coefficient of 0.19) than for solvent-exposed
residues (Spearman correlation coefficient of 0.25).
Finally, it should be acknowledged that the methods used for

experimentally measuring membrane protein ddG values are
not yet highly standardized, reflecting use of denaturants as
different as sodium dodecyl sulfate and urea, as well as model
membranes as different as micelles and bilayer vesicles. The
degree to which the stability of a single membrane protein is
similar when measured using different methods has yet to be
extensively tested.
An open question is whether more computationally intensive

strategies, such as molecular dynamics-based approaches, will
improve predictive power for membrane proteins. We did not
investigate this kind of approach here because of the limiting
throughput that can be achieved at present.
In this study, a series of diverse statistical criteria are in

uniform agreement that current methods for predicting ΔΔG
values of point mutations in membrane proteins will need to be
improved or superseded to be reliable and useful. According to
our evaluation, the predictive ability of the 10 methods assessed
was not greatly improved from that of the PSI-BLAST PSSM
and sequence entropy scores, i.e., what one could infer on the
basis of mutated site evolutionary sequence conservation. We
did not find any method to be robust at predicting either the
rank order of mutations or absolute ΔΔG values. This study
highlights the need to separately evaluate the performance of
ΔΔG calculators on membrane proteins in the future, as well as
the need for a much larger training database of experimentally
measured stabilities for wild-type and mutant membrane
proteins.

■ ASSOCIATED CONTENT
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The Supporting Information is available free of charge on the
ACS Publications website at DOI: 10.1021/acs.bio-
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Figures S1−S17 contain a comparison of concordance,
Pearson, and Spearman correlation coefficients from
different parsings of the ΔΔG data. Figure S1 compares
membrane protein-specific scoring in Rosetta to the
standard scoring used for membrane proteins. Figures S2
and S3 compare β-barrel proteins and α-helical proteins,
respectively. Figures S4 and S5 compare only mutations
that involve a proline or glycine and point mutations that
do not involve a proline or glycine. Figures S6−S8
compare results for residues in the aqueous phase,
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residues at the interface between membrane and aqueous
phases, and residues in the aliphatic phase of the
membrane. Figures S9 and 10 compare solvent-exposed
residues and buried residues. Figures S11−17 compare
bacteriorhodopsin, glycophorin A, GlpG, DsbB, OmpLA,
OmpA, and PagP (PDF)
Excel file containing all compiled experimental ΔΔG and
calculated ΔΔG values (ZIP)
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