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ABSTRACT: Previously, we published an article providing an overview of the Rosetta suite of
biomacromolecular modeling software and a series of step-by-step tutorials [Kaufmann, K. W.,
et al. (2010) Biochemistry 49, 2987−2998]. The overwhelming positive response to this
publication we received motivates us to here share the next iteration of these tutorials that
feature de novo folding, comparative modeling, loop construction, protein docking, small
molecule docking, and protein design. This updated and expanded set of tutorials is needed, as
since 2010 Rosetta has been fully redesigned into an object-oriented protein modeling program
Rosetta3. Notable improvements include a substantially improved energy function, an XML-like
language termed “RosettaScripts” for flexibly specifying modeling task, new analysis tools, the
addition of the TopologyBroker to control conformational sampling, and support for multiple
templates in comparative modeling. Rosetta’s ability to model systems with symmetric proteins,
membrane proteins, noncanonical amino acids, and RNA has also been greatly expanded and
improved.

Obtaining atomic-detail accurate models for all proteins,
natural and engineered, in all relevant functional states,

alone and in complex with all relevant interaction partners by
crystallography or nuclear magnetic resonance (NMR) is
impaired by the vast number of possible protein sequences
and interactions. In some cases, it is complicated by
experimental obstacles and is often time and cost intensive.
Additional difficulties arise when the dynamic properties of
proteins and their interactions with other molecules are to be
studied from crystallographic snapshots. Here, computational
modeling of the structure and dynamics of proteins and
interactions can complement experimental techniques. Such
computational models add atomic detail not present in low-
resolution or limited experimental data, model states that are
not tractable for experimental structure determination, simulate
conformational flexibility and plasticity of states, and prioritize
states for crystallization or study with other experimental
techniques.
At the same time, prediction and design of protein structure

in silico is a formidable task: the need to model thousands of
atoms instantiates the sampling challenge of testing a large
number of possible arrangements or conformations. The need
to complete these calculations in a finite time creates the

scoring challenge of developing an energy function that is rapid
but still accurately identifies biologically relevant, low-free
energy states.
The Rosetta software suite represents a compilation of

computational tools aimed at obtaining physically relevant
structural models of proteins and their interactions with other
proteins, small molecules, RNA, and DNA. Rosetta has
contributed to the advancement of structural biology by
tackling challenges in de novo protein design,1−3 comparative
modeling,4,5 protein design,6−11 protein−protein docking,12−15

and protein−small molecule docking.16−18 Additionally,
Rosetta can be applied to RNA/DNA structure prediction,19,20

the incorporation of noncanonical amino acids,21,22 and other
difficult structural challenges such as membrane protein
structure prediction23 and modeling of symmetric proteins.24,25

Rosetta developers follow the hypothesis that a single, unified
energy function should be able to accomplish all of these
complex tasks; furthermore, the continuous optimization of this
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energy function to improve one structural problem will
ultimately improve performance for other modeling tasks.
Important components of the energy function are statistically
derived, i.e., using protein models derived from high-resolution
crystallographic data in the Protein Data Bank (PDB) as a
knowledge base.1,6,16,23,26−35 For speed, the energy function is
pairwise decomposable and employs a distance cutoff. For
many sampling tasks, Rosetta employs a Monte Carlo search
steered by the Metropolis criterion (MCM).27 Rosetta is
continually developed and rigorously tested by a consortium of
international academic laboratories known as the RosettaCom-
mons (www.rosettacommons.org). Herein, we present a global
review of generalized Rosetta protocols and applications, as well
as descriptions of novel functionalities recently intro-
duced.26,36,37

Detailed tutorials and examples are included as Supporting
Information. The tutorials herein supersede our previous
tutorials put forward in “Practically Useful: What the Rosetta
Protein Modeling Suite Can Do for You”.38

■ MAKING ROSETTA ACCESSIBLE
Rosetta is extremely powerful for many applications in
structural biology, but for many years, it was limited by the
fact that users needed an extensive background in C++ and the
Unix environment to be able to construct new protocols. An
ongoing effort by many groups has been taken to eliminate
these boundaries, allowing greater flexibility and ease of use for
the novice and intermediate user. These updates include
customizable protocols using XML or Python. The updates
using XML (RosettaScripts)36 or Python (PyRosetta)39 allow
users to customize protocols without learning C++, by
combining prewritten Rosetta objects and defining their
behavior without having to write and recompile new C++
code. In addition, the Rosetta community now offers multiple
web interfaces for application-specific tasks.
Other tools have been added, not to run Rosetta but to

improve users’ experience, such as graphical user interfaces
(GUIs) to visualize Rosetta operations and to generate input
files,40 and PyMOL integration for real-time molecular
visualization.41 These tools offer users intuitive control over
structural modeling without sacrificing flexibility and power.
RosettaScripts. RosettaScripts is an XML-like language for

specifying modeling protocols through the Rosetta frame-
work.36 It allows users to define a set of Rosetta objects and
execute them in a defined order to develop full protocols.
Rosetta objects in RosettaScripts fall under four main
categories: Movers, which are objects that modify a structure
in some way; Filters, which evaluate properties of a structure;
TaskOperations, which control the degrees of freedom of
Rosetta’s side-chain placement routines; and ScoreFunctions,

which evaluate the energy of a structure. By combining these
four elements, users are able to leverage many different
sampling and scoring algorithms, with fine control over
sampling degrees of freedom and protocol flow. All objects
defined under these categories are customizable, which is a
distinct advantage of RosettaScripts over conventional
command line applications. For example, a user can define
multiple score functions to be used in different sections of a
protocol and then combine several protocols into a single XML
protocol (i.e., protein−protein docking and design). This
flexibility has made a number of scientific advances possible,
such as de novo design of an influenza binder,10 protein−protein
docking based on hybrid structural methods,42 and HIV vaccine
design.43

PyRosetta. Because of the popularity of Python as a
programming language in the computational biology commun-
ity, a Python-based implementation of Rosetta was developed,
termed PyRosetta.39 PyRosetta consists of Python bindings for
the major functions and objects of Rosetta, allowing all of these
objects to be run from a Python environment. One advantage is
the ability to combine Rosetta protocols with other popular
structural biology software, such as PyMOL44 and BioPython.45

PyRosetta includes access to the same set of Rosetta objects for
sampling and scoring that are described above for Rosetta-
Scripts, as well as many others. Unlike RosettaScripts,
PyRosetta can be run in either script mode or interactive
mode. Interactive mode allows the user to inspect their objects
in real time while prototyping a new protocol.39 Notably,
PyRosetta is available for Windows in addition to Linux and
Mac OSX, expanding the availability of Rosetta to researchers
who use a Windows environment.

Web Interfaces. We are aware of eight Web servers that
have been created to allow nonexperts to make use of Rosetta’s
functionality (Table 1). These Web servers allow Rosetta to be
used with almost no learning curve, making the boundary to
entry even lower than that of the scripting protocols mentioned
above. In particular, ROSIE [the Rosetta Online Server that
Includes Everyone (http://rosie.rosettacommons.org)]46 has
been set up to easily provide a web interface for new Rosetta
protocols.

Other Tools. Since the publication of RosettaScripts and
PyRosetta, new tools have been developed to make running a
Rosetta protocol even more intuitive. An interface to PyMOL
was developed by Baugh et al., which allows users to visualize
their molecules being manipulated by Rosetta as the protocol is
being run.41 While the viewer was originally developed for use
with PyRosetta, it has since been extended for RosettaScripts.
This visualization tool is especially useful for new users with
experience in structural biology but new to computation.

Table 1. Publically Accessible Web Servers Running Rosettaa

server address protocols offered

ROSIE rosie.rosettacommons.org many, including small molecule docking, protein design, RNA design, etc.46

Robetta robetta.bakerlab.org structure prediction51

Rosetta.design rosettadesign.med.unc.edu protein design104

FlexPepDock flexpepdock.furmanlab.cs.huji.ac.il flexible peptide docking105

RosettaBackrub kortemmelab.ucsf.edu/backrub backbone remodeling and design106

FunHunt funhunt.furmanlab.cs.huji.ac.il classification of protein−protein complex interactions107

CS-Rosetta csrosetta.bmrb.wisc.edu structure prediction based on chemical shift data
RosettaDiagrams rosettadiagrams.org setup protocols through visual diagrams

aAll web servers listed are free for noncommercial use.

Biochemistry Current Topic

DOI: 10.1021/acs.biochem.6b00444
Biochemistry XXXX, XXX, XXX−XXX

B

www.rosettacommons.org
http://pubs.acs.org/doi/suppl/10.1021/acs.biochem.6b00444/suppl_file/bi6b00444_si_001.zip
http://pubs.acs.org/doi/suppl/10.1021/acs.biochem.6b00444/suppl_file/bi6b00444_si_001.zip
http://rosie.rosettacommons.org
rosie.rosettacommons.org
robetta.bakerlab.org
rosettadesign.med.unc.edu
flexpepdock.furmanlab.cs.huji.ac.il
kortemmelab.ucsf.edu/backrub
funhunt.furmanlab.cs.huji.ac.il
csrosetta.bmrb.wisc.edu
rosettadiagrams.org
http://dx.doi.org/10.1021/acs.biochem.6b00444


In addition, several GUIs for Rosetta have been developed to
eliminate the need to run Rosetta exclusively through the Unix
command line.40 The PyRosetta Toolkit was developed to serve
as a GUI for running PyRosetta, with menus to guide the user
through the relevant Rosetta options that are needed for a
protocol.47 InteractiveRosetta is a GUI for running Rosetta
protocols with an integrated molecular visualization window
and user-friendly controls for implementing common Rosetta
protocols.40 Through these GUIs, users can generate input files
for Rosetta protocols using a “point and click” interface while
also running protocols seamlessly in the same window.

■ SAMPLING AND SCORING IN ROSETTA

Rosetta Sampling. While the approaches used by different
protocols vary, in general Rosetta utilizes a Monte Carlo
Metropolis sampling algorithm to quickly and efficiently
determine the quality of structural trajectories. Rosetta further
differentiates between sampling backbone and side-chain
conformations within two separate refinement tasks. In
addition, backbone sampling can be performed on a global or
local scale. Large-scale backbone sampling utilizes 3-mer and 9-
mer fragments derived from the Protein Data Bank (PDB),
while local refinements of the backbone optimize ϕ and ψ
angles without disturbing the global fold. Side-chain sampling
also utilizes information derived from the PDB to create a
“rotamer” library of observed conformations to reduce the
conformational search space. For a more detailed discussion of
Rosetta sampling, see ref 27.
Rosetta Scoring. The Rosetta score, or energy function, is

a linear, weighted sum of terms combining knowledge- and
physics-based potentials gathered from protein structural
features within the PDB. The score function is used during
Rosetta modeling to evaluate Monte Carlo sampling and for
scoring the final output pose. With the implementation of
Rosetta3, the score function is treated as a separate entity such
that it can be repeatedly called and rapidly processed in a
manner independent of the protocol at hand.26 Additionally,
score terms are grouped into a hierarchy based on potentials
related to one entity (i.e., χ-angle probability), two interacting

entities (i.e., hydrogen bonding potential), and terms that
require the analysis of the entire model (i.e., radius of gyration).

Low- versus High-Resolution Scoring. In low-resolution
scoring, or “centoid” mode, the side chain of each residue is
removed and represented instead as a super atom (“centroid”),
at a position that roughly approximates the center of mass of
that side chain, averaged across likely side-chain states (or at
the Cα atom for glycine). This greatly reduces the degrees of
freedom that must be sampled during low-resolution backbone
movement while preserving chemical and structural features of
a given residue. Typical low-resolution sampling involves
replacement of the backbone conformation with peptide
fragments three and nine amino acids in length that are
derived from the PDB. Peptide fragments are generated from
the primary sequence of the protein. Centroid-mode scoring
and sampling are used during the initial stages of protein
modeling where exhaustive searches of conformational space
are performed such as de novo protein folding, loop building,
and rigid-body protein−protein docking.1,12,27,28 Common
score terms used in centroid mode are listed in Table 2.
High-resolution scoring, or “full-atom” mode, allows for full

representation of all atoms of each side chain. In full-atom
mode, conformational sampling relies on evaluating side-chain
rotamers (derived from the PDB) during a Metropolis Monte
Carlo simulated annealing protocol to find the global
minimum.29 Full-atom scoring was originally developed for
protein design but has seen several improvements throughout
Rosetta’s history to the current talaris2014 score func-
tion.6,30−32,37 We have provided an additional example tutorial
for the user on the basics of Rosetta scoring; see the
scoring_and_prep folder in the Supporting Information.

Score Function Optimization. The score function is a
linear weighted sum of energy terms; therefore, the weights can
be parametrized to generate meaningful scores for predicted
models. These are often fit against benchmark sets of modeling
challenges to guide prediction of native structures. An
algorithm “optE” was developed to streamline this weighting
term optimization.32 This algorithm excels at setting reference
weights for amino acids. Using the approximation that a native,

Table 2. Standard Rosetta Score Function Terms

score term definition

low-resolution scoring terms
env hydrophobicity term for each amino acid
vdw steric repulsion between two residues
pair probability of two residues interacting
rg radius of gyration
cbeta solvation term based on a number of surrounding residues
hs_pair, ss_pair, and sheet secondary structure terms

high-resolution scoring terms (talaris2014)
fa_atr, fa_rep, and fa_intra_rep decomposed 6−12 Lennard-Jones potential
fa_sol EEF1 solvation term
pro_close proline ring closure energy
omega omega backbone dihedral potential
dslf_fa13 updated disulfide geometry potential
rama potential of ϕ and ψ angles for each amino acid
p_aa_pp probability of an amino acid given a set of ϕ and ψ angles
fa_dun rotamer likelihood
hbond_sr_bb, hbond_lr_bb,
hbond_bb_sc, and hbond_sc

combined covalent−electrostatic hydrogen bond potentials for α-helices, β-sheets, side-chain backbone, and side-
chain−side-chain interactions, respectively

yhh_planarity tyrosine hydroxyl out-of-plane penalty
fa_elec Coulombic electrostatic potential between two residues with a distance-dependent dielectric (deprecates fa_pair)
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evolved sequence is close to the optimal sequence for a
structure,30 optE attempts to find reference weights that
minimize the divergence from native sequence profiles. Via
optimization of the talaris2014 score function for sequence
recovery (∼40%), performance in novel design tasks is also
improved.
Like previous iterations of the full-atom score function,

talaris2014 sums separate physics- and knowledge-based
potentials. It was found that combining physics- and knowl-
edge-based information in a given score term led to improved
Lennard-Jones and hydrogen bonding score terms.31 The
combined covalent−electrostatic hydrogen bonding terms were
further updated with improved geometry and parametrization
for sp2-hybridized hydrogen bond acceptors.37 Scoring
potentials of knowledge-based score terms were smoothed
with the use of bicubic-spline interpolation.32 An updated
rotamer library was included with an adaptive kernel
formulation, which allows for smoother potentials of
Ramachandran-based score terms.33 Ideal atomic coordinates
for amino acids, the geometry of disulfide bonds, and the
hydroxyl sampling of serine and threonine residues were also
expanded and improved. The free energies of solvation
(LK_DGFREE) were updated to improve the EEF1 solvation
energy potential of buried residues. Lastly, a new term that
describes the Coulombic electrostatic potential between two
residues with a distance-dependent dielectric (fa_elec) was
introduced and replaces the previous statistics-based potential
(fa_pair).32 Further refinements were made to reduce the
influence of the hydrogen bonding terms. This resulted in
improved sequence recovery, rotamer recovery, and model
discrimination.37 As of writing, these updates culminated in the
talaris2014 score function, which is the default for current
versions of Rosetta. All talaris2014 score terms are listed in
Table 2.
Continual optimization of the Rosetta score function means

that the default score function varies with Rosetta version:
score12 for versions prior to Rosetta 3.5, talaris2013 for weekly
releases until 2016.10, and talaris2014 for Rosetta 3.6 and
weekly releases since 2016.11. Further score function refine-
ment is ongoing, and it is likely that future Rosetta releases will
have a different default score function. Additionally, while
Rosetta strives to have a single all-atom score function to
encompass all modeling tasks, several application-specific
scoring potentials have been developed to include new score
terms and optimized score term weights. These include, but are
not limited to, modified score functions for small molecule
docking,16 protein−protein docking,12,34 and membrane
protein modeling,23,35 as well as specialized score functions
for low-resolution sampling stages.
Limitations and Caveats. Ongoing improvements made

by the Rosetta community have led to increasingly accurate
modeling protocols; however, there are still several hurdles that
must be overcome for Rosetta to accurately produce nativelike
models. First, Rosetta sampling is stochastic in nature.
Therefore, not every modeling trajectory will sample a regional
minimum on the score function. Second, the score function is
heuristic and abbreviated for speed. It fails to fully recapitulate
the fundamental forces. Therefore, minima of the energy
function are not guaranteed to describe biologically relevant
states. Third, even with its rapid score function, Rosetta is
unable to exhaustively sample all possible structural space due
to computational time restraints. Fourth, many Rosetta

protocols are optimized for local resampling and require a
starting model, which may not exist for some systems.

Evaluating Interfaces. Some biological applications of
Rosetta focus on improving, creating, or otherwise altering a
well-defined protein−protein, protein−small molecule, or
protein−DNA interface. These protocols typically inhabit a
much smaller search space and in some cases rely solely on
rigid-body optimization to generate a desired interaction.48 In
these instances, a series of specific interactions is evaluated, and
the widely used “score vs RMSD” plot (see Figure 5h for an
example of a score vs RMSD plot) is repurposed to look at
small changes at the interface; here, plotting the “interface
score” against the “interface RMSD” prevents small, meaningful
changes from being lost in the larger fluctuations when scoring
the entire model or computing the RMSD over all atoms.
Additionally, analytical tools like the Interface Analyzer provide
a series of useful calculations that include binding energy,49

shape complementarity, the number of buried, unsatisfied
hydrogen bonds, and the solvent accessible area buried at the
interface. These metrics can be used in conjunction with
RosettaHoles50 to generate a packing statistic score for the
interface.

■ DE NOVO STRUCTURE PREDICTION

De novo protein structure prediction is one of the greatest
remaining challenges in computational structural biology. This
process models the tertiary structure of a protein from its
primary amino acid sequence. Importantly, de novo modeling
differs from template-based or comparative protein modeling in
that structural predictions are not based upon a known
homologous structure. To address the challenge of predicting a
protein’s structure de novo, Rosetta uses short peptide
“fragments” to assemble a complete protein structure.
The Rosetta de novo protein folding algorithm continues to

follow the steps described in our previous review.38 Briefly,
short peptide fragments of known protein structures are
obtained from the PDB and are inserted into an extended-chain
protein following a Monte Carlo strategy.1 In that sense,
Rosetta de novo protein folding is not truly de novo; it combines
a very large number of small templates. The hypothesis is that
while not every protein fold is yet represented in the PDB, the
conformation of small peptide fragments is exhaustively
sampled. These peptide fragments are used to alter the
backbone conformation of the extended-chain protein, folding
it toward a low-energy tertiary structure. The process is
repeated to create an ensemble of models. Finally, these low-
resolution models can be filtered on the basis of pass/fail
criteria provided by the user. These models can be clustered,
and an energy minimization step applied to refine an all-atom
model with the high-resolution energy function.

Generating Peptide Fragments. De novo protein folding
relies on the assembly of short peptide fragments, usually
generated as a preprocessing step. First, the primary protein
sequence is used to generate secondary structure predictions.
Next, the sequence, secondary structure predictions, and NMR
data (if available) are used to pick candidate three- and nine-
amino acid fragments from the PDB. Finally, these candidate
fragments are scored, and the best N fragments are written to a
fragment library file. The ROBETTA Web server (http://
robetta.bakerlab.org) is available for noncommercial use and
allows users to generate fragment libraries using a simple
interface.51 Additionally, Gront et al. have developed the
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FragmentPicker that provides users with total control over the
fragment picking protocol.52

TopologyBroker. The TopologyBroker,53 a tool that allows
for more complex simulations, is an improvement added to
Rosetta since our last review. The conformational space
searched during a Rosetta de novo modeling simulation is
vast, and successful searches often integrate prior knowledge
with sampling. In de novo protein folding, this prior knowledge
may be in the form of β-strand pairing constraints or the
formation of a rigid chunk of the target fold based on a
structurally homologous domain. Previously, protocol devel-
opers were restricted to a sequential sampling approach in
which Rosetta could readily violate one set of these constraints
while sampling to satisfy the other. The TopologyBroker was
developed to create a consensus sampling approach that
satisfies all of the requested constraints without requiring
additional code development for each unique system; instead,
the Broker provides an Application Program Interface (API)
that allows for plug-and-play applications to generate complex
sampling strategies.
Benchmarking De Novo. The de novo modeling

capabilities of the object-oriented Rosetta software suite
(“Rosetta3”) were assessed in the CASP8 (Critical Assessment
of protein Structure Prediction) experiment.3 For 13 targets in
the assessment, no homologous templates were identified and
Rosetta’s de novo modeling protocol was used to predict the
structure of these targets. Following the observation that
Rosetta de novo structural predictions are sometimes improved
by using nonstandard fragment sizes, a range of fragment
lengths were used when modeling the CASP8 targets. Longer
fragment lengths were found to improve modeling of α-helical
proteins, while shorter fragment lengths mainly improved
modeling of β-strand proteins.
Limitations of De Novo. Because de novo structure

prediction is such a powerful tool and yet such a complex
challenge, it is critically important to understand the limitations
of the algorithm. Rosetta performs well at folding small,

globular, soluble proteins as well as small, simple membrane
proteins containing 80−100 residues. However, large and
complex proteins present additional difficulties that are not
easily overcome by de novo techniques alone. Instead, users
must incorporate other biochemical information to obtain
nativelike models. Ongoing work shows that the incorporation
of residue−residue co-evolution information can significantly
improve the prediction accuracy during de novo modeling
trails.2 Other techniques such as homology modeling and using
experimental constraints are discussed below.
Furthermore, because de novo structural prediction will

sample many potential protein folds, it is necessary to generate
large numbers of models (>10000) to adequately sample the
conformational space. Extensive computational resources are
needed to generate this number of models, and the use of
distributed computational methods (such as computational
clusters) is recommended. An example tutorial for the de novo
prediction of a protein structure with Rosetta is included in the
Supporting Information. This tutorial, protein_folding, pro-
vides an outline for a basic de novo protocol. Structural
prediction of a soluble protein is described, both with and
without the application of experimentally derived restraints.
Also, a brief review of model analysis is covered. Instructions on
how to run a membrane protein de novo protocol are included
in a subfolder of the protein_folding tutorial.

■ COMPARATIVE MODELING
Comparative modeling differs from de novo methods in that it
utilizes a known protein structure as the starting scaffold or
template for structural prediction. If the template structure is a
homologous protein, one speaks often of “homology
modeling”. Comparative modeling is a useful strategy for
predicting protein structure and function when experimental
methods fail or would be too resource intensive to employ. It
increases the probability of obtaining realistic conformational
predictions, especially when the target, or desired protein, is
greater than 150 amino acids in length and/or adopts a

Figure 1. Multitemplate comparative modeling with Rosetta. (A) General workflow of the RosettaCM protocol. (B) Fragment insertion (blue,
before insertion; red, after insertion). (C) Recombination of template segments. (D) Fragment insertion and minimization for loop closure.
Reprinted with permission from ref 5. Copyright 2013 Elsevier.
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complex tertiary fold. However, it requires that a related, often
homologous, structure has been determined experimentally;
this is termed the template. Ideally, the sequence identity
between the target and the template is >30%, although proteins
with lower sequence identity may still be used for comparative
modeling when their tertiary fold is conserved.
The latter case will be examined within the tutorial provided

with the Supporting Information. This tutorial, rosetta_cm,
outlines the basic steps necessary for comparative modeling in
Rosetta. The tutorial focuses on the use of RosettaRelax and
RosettaMembrane, as well as information for implementing
basic restraints.
Over the past several years, comparative modeling in Rosetta

has incorporated many improvements, specifically the use of
multiple templates and a specific low-resolution scoring
functions.5 Previously published protocols of comparative
modeling with Rosetta suggested using multiple templates to
obtain diversity and flexibility.4 However, models were built on
individual templates. The new RosettaCM protocol allows for
integration of multiple templates with de novo fragments into a
single structural model of the protein.5 Hence, this multi-
template, multistage protocol samples a broader structural
landscape and can select well-scoring subtemplates for different
regions of the protein to be modeled.
A highly detailed description of RosettaCM design, sampling,

and scoring has previously been published.5 Users are
encouraged to refer to this work for a comprehensive
assessment of RosettaCM applications, considerations, and
caveats. Herein, we will briefly describe features of RosettaCM
as they apply to the protocol presented.
Starting Templates. Before utilizing RosettaCM, starting

templates must be identified through remote homologue
detection methods such as PSIBLAST.54 When homologues
are not found using sequence-based methods, three-dimen-
sional (3D) fold recognition software may be used to obtain
suitable templates. As with other modeling software,
RosettaCM performance improves with higher sequence
similarity and identity.
Three Stages of Multitemplate Comparative Model-

ing. Multitemplate RosettaCM is a three-stage process in
which the best scoring model from each stage is utilized as the
input for the following step (Figure 1). The output of stage 1 is
a full-length, assembled model that is generally correct in
topology. However, segment boundaries where templates are
mended can be suboptimal in geometry and energetically
frustrated. To resolve these energetic frustrations and to
explore the conformational space around this starting model,
stage 2 of RosettaCM iteratively improves local environments
through a series of fragment insertions, side-chain rotamer
sampling, and gradient-based energy minimization of the entire
structure using a RosettaCM-specific low-resolution energy
function. The best model from this cycle is then moved to stage
3 for a final round of all-atom refinement that improves side-
chain geometries, backbone conformations, and packing density
before converging on a final output model.
Modeling Loops. In previous Rosetta comparative

modeling protocols, a user-defined, “loop” closure step was
required to remove chain breaks, reconcile long unstructured
coils, or rebuild regions of low sequence similarity (all of which
are defined as “loops” within the Rosetta framework). Two
different algorithms are available: Cyclic Coordinate Descent
(CCD) and Kinematic Loop Closure (KIC). Briefly, CCD
quickly closes roughly 99% of loops utilizing a robotics-inspired

iterative approach to manipulate dihedral angles of three
residue backbone atoms between user-specified C-terminal and
N-terminal anchor points. The second loop building algorithm,
KIC, explicitly determines all possible combinations of torsion
angles within the defined segment using polynomial resul-
tants.55 While being slower than CCD, KIC determines more
accurate loop structures, provided the anchor points are
optimally set. Both algorithms within Rosetta can be used in
conjunction with fragments derived from the PDB to build
regions of missing electron density, poor homology, or
backbone gaps.
Unlike the single-template loop building application,

comparative modeling with multiple templates closes chain
breaks and rebuilds loops internally during stage 2. De novo
fragment insertions are encouraged in regions of weak
backbone geometry, while template-based fragment insertions
anneal chain breaks and low-electron density regions. Addi-
tional smoothing occurs with the RosettaCM-specific scoring
function. This internal step removes the need for additional
loop closures by the user. However, it is encouraged for the
user to critically examine all output models to validate structural
accuracy.

■ PROTEIN−PROTEIN DOCKING

Determining the optimal binding orientation and interface of
two or more protein binding partners has many biological and
pharmaceutical applications, yet determining the structure of
protein−protein complexes by biochemical techniques is slow
and laborious. RosettaDock is a useful tool for computationally
predicting protein−protein interactions by employing an
algorithm that simulates a biophysical encounter of two or
more binding partners and optimizes the conformation of the
bound state. The RosettaDock algorithm includes a multiscale,
Monte Carlo-based docking algorithm that begins with a
centroid-mode stage to identify docking poses, followed by an
all-atom refinement stage to optimize rigid-body position and
side-chain conformations.12

Global versus Local Docking. The initial pose for docking
is determined by either global docking or local perturbation.
Global docking randomly orients one of the two binding
partners in relation to the other to determine an initial binding
interface. This is useful when there is no biological or structural
evidence to suggest a starting pose. Local perturbation allows
the user to define a general starting pose for the binding
partners when prior experimental knowledge exists; this initial
placement greatly decreases the conformational search space
and improves the sampling density close to the starting pose,
although this may bias models toward the starting con-
formation. The tutorial included in the protein−protein_dock-
ing folder illustrates one application of Rosetta protein−protein
local docking by using two known binding positions of the
CR6261 antibody to influenza antigen hemagglutinin (HA)
subtypes H1 and H5.

Low-Resolution versus High-Resolution Docking. The
full RosettaDock algorithm begins with low-resolution docking.
The first step involves rigid-body movements of the binding
partners that rotate and translate in relation to one another.13

The score function is used to achieve a threshold acceptance
rate of rigid-body moves.12 A high-resolution docking mode
follows in which the lowest-energy structures and/or largest
clusters assessed from the centroid-mode stage are selected for
high-resolution refinement. Centroid pseudoatoms are replaced
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with all-atom side chains in their initial unbound conformations
followed by additional fine-grained rigid-body docking.
Improvements to RosettaDock. The addition of Rosetta-

Scripts and PyRosetta to Rosetta now gives users the flexibility
to modularize the centroid mode and all-atom mode of
RosettaDock to suit case-specific applications. This was done
by splitting RosettaDock into three major classes: Dock-
ingProtocol, DockingLowRes, and DockingHighRes.13 The
increase in flexibility showed an only marginal increase in
successful predictions; however, it is particularly adept at
predicting antibody−antigen complexes.13 The modularization
of RosettaDock has allowed users to also incorporate additional
features within their docking protocols, including additional
parameters for nonprotein moieties and protonation
states,49,56,57 flexible peptide-chain docking using FlexPep-
Dock,14 and de novo peptide docking.15

FlexPepDock. The FlexPepDock de novo docking algorithm
is similar to the RosettaDock algorithm in that it begins with
sampling rigid-body moves from the initial protein−peptide
complex. Although not included in the tutorial, this step also
includes iterative peptide fragment insertions and random
moves of the peptide backbone using decreasing simulated
temperature weights. Next, the low-resolution model is
improved using an all-atom refinement stage by peptide side-
chain placement optimization using a Monte Carlo search of
“small” and “shear” moves described by Rohl et al.1 Each round
of refinement also includes a decreasing repulsive van der Waals
weight term and an increasing attractive van der Waals term to
allow a greater degree of perturbation within the binding
pocket without causing the peptide and protein to separate
during energy minimization. The FlexPepDock de novo
benchmark demonstrated that the protocol produces near-
native models with 86% accuracy (Figure 2).15

■ PROTEIN−SMALL MOLECULE DOCKING

Protein−small molecule docking aims to capture the binding
interactions between a protein and a small molecule. This
includes recapitulating the binding pose and quantifying the
interaction strength. RosettaLigand, Rosetta’s protein−small
molecule docking protocol, is designed to consider both
protein and small molecule flexibility.16,17 It uses a two-phase
docking approach similar to Rosetta’s protein−protein docking:
a low-resolution phase of rapid sampling based on shape
complementarity followed by a high-resolution phase of Monte
Carlo minimization of side-chain rotamers and small molecule
conformers. The models undergo a final gradient minimization
of the protein and molecule torsion degrees of freedom before
they are output along with an interface score as a proxy for
binding free energy. A small molecule docking tutorial
(ligand_docking) included in the Supporting Information
demonstrates this optimized protocol.

Improvements to RosettaLigand. In contrast to the
previously published RosettaLigand protocol,38,58 this tutorial
replaces the independent translation/rotation low-resolution
sampling steps with the new Transform algorithm.18 The
Transform algorithm couples translational, rotational, and
conformational sampling into a single Monte Carlo process.
In a benchmark case, the Transform algorithm demonstrated a
10−15% improvement in docking success rate and an effective
30-fold speed increase over the classical methods.18 The
improved search time permits the use of RosettaLigand for
screening medium-sized small molecule libraries, protocols for
which are found in the Supporting Information. For screening
work with much larger libraries, Rosetta’s Docking Approach
using Ray-Casting (DARC) is a GPU-accelerated method
demonstrated to be successful for protein−protein interface
small molecules.59 It should also be noted that screening
applications use a simplified scoring function because of the
computational complexity of fully flexible protein high-
resolution refinement.

Customizable Small Molecule Docking Protocols. The
RosettaLigand protocol can now be customized through the
RosettaScripts XML interface, allowing for greater flexibility of
use.58 Additional features now include docking with explicit
interface water molecules, which demonstrated 56% recovery
for failed docking cases across a CSAR (Community
Structure−Activity Resource) benchmark of 341 diverse
structures.60 Design of interfaces can now be incorporated
into a single step for the docking and design of protein−small
molecule binding pockets.61 These RosettaScripts-based
protocols have also been used to predict absolute binding
energies for HIV-1 protease−inhibitor complexes with an R
value of 0.71.62

Research questions often focus on small molecules binding to
a target protein without an experimentally determined
structure. Such cases require first building models of the
receptor using de novo Rosetta, RosettaCM, or similar protein
modeling protocols. When docking small molecules into
protein models, Kaufmann and Meiler observed a nativelike
binding pose among the top 10 scoring comparative models for
21 of 30 test cases.63 Furthermore, docking results were
significantly better in cases utilizing protein templates
containing a small molecule of similar chemotype compared
to templates with dissimilar small molecules or proteins in the
apo state. A full Rosetta protocol linking comparative modeling
and small molecule docking is available in ref 4. Combs et al.

Figure 2. Protein−peptide interface prediction using FlexPepDock ab
initio. Structure prediction of the Che-Z-derived peptide bound to
CheY (PDB entry 2FMF) from two opposite starting orientations
converges onto the same final conformation resembling the structure
of the native peptide. The left panel is a general view of the CheY
receptor (gray; interface residues colored light brown), the two initial,
extended peptide conformations (rainbow cartoons), and the final
helical peptide conformation (rainbow, transparent cartoon). The right
panel is a detailed atomic view of the top FlexPepDock ab initio
predictions from two simulations (yellow and orange) and the native
peptide conformation (green). Reprinted from ref 15.
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utilized the previously discussed independent translation/
rotation low-resolution sampling but can be easily modified
to the new Transform sampling.
Small Molecule Docking in Membrane Proteins.

Because of their biological importance and the challenges of
experimentally determining their structures, membrane pro-
teins are particularly attractive targets for the comparative
model docking strategy. While the comparative modeling
portion may be handled in a membrane environment, to date,
Rosetta handles small molecule docking in a soluble environ-
ment. Nguyen et al. demonstrated the applicability of the
soluble simplification for G protein-coupled receptors
(GPCRs).64 RosettaLigand sampled near-native poses when
docking small molecules into comparative models of GPCRs,
but selecting correct small molecule poses by Rosetta score
alone remains challenging (Figure 3). The use of templates

with high sequence identity, knowledge-based binding pocket
filters, and experimental contacts are recommended methods
for improving accuracy. Additional algorithm development and
benchmarking are being pursued to fully integrate RosettaLi-
gand with the RosettaMembrane framework.23

■ INCORPORATING EXPERIMENTAL DATA
While Rosetta can sample near-native structures in a variety of
situations, knowledge of limited experimental information can
guide sampling and discriminate conformations inconsistent
with experimental data, allowing more accurate determination
of structures with less sampling. The incorporation of
experimental data most commonly takes the form of
modifications to the energy function. Addition of experiment-
based scoring terms can make the energy landscape less rugged,

allowing Rosetta sampling to more rapidly converge on relevant
conformations.
For the incorporation of such information, Rosetta has a

flexible restraint system (termed “constraints” in Rosetta
parlance). Rosetta constraints have a two-part organization:
specification of structural measurements such as distances or
angles and a function that converts the measurement into an
energetic penalty. A wide variety of measurements and
functional transformations are currently available within
Rosetta, and these can be freely mixed and matched according
to the particular use case. There are also built-in tools for
incorporating experimental data, allowing users to select only
the best of a set of potentially inaccurate restraints. The
flexibility of these restraints allows them to be applied in a
diversity of situations, from incorporation of nuclear Over-
hauser enhancement (NOE) distances from NMR spectrosco-
py65 to the use of mass spectrometry cross-linking informa-
tion66 to the use of custom potentials derived from probability
distributions matching EPR/DEER measurements.67,68

Although the constraint system provides flexibility when
incorporating experimental data for most Rosetta protocols,
other experimental data types may reflect more complex
structural parameters and require specialized scoring terms.
Residual dipolar couplings,69 pseudocontact shifts,70 and small-
angle X-ray scattering71 have all been incorporated into Rosetta
using specialized score terms, as have several techniques for
working with electron microscopy (EM)- and X-ray-based
electron density.37,72,73 An example tutorial for using X-ray
crystallography data and electron density maps with Rosetta,
structure_refinement, is provided in the Supporting Informa-
tion.
Improvements in image data analysis and electron detectors

have led to advances in electron microscopy, producing
electron density maps at resolutions as high as 3 Å for complex
molecular machines. However, model building into these near-
atomic resolution electron density maps is still difficult and
error prone. DiMaio et al. have developed methods in Rosetta
that incorporate medium- to high-resolution (3−5 Å) cryo-EM
maps for density-guided structure determination and structure
refinement.72−74

Protein Structure Prediction with Cryo-EM Restraints.
This method takes advantage of near-atomic-resolution cryo-
EM density maps for protein structure prediction. Using this
method, highly accurate models of proteins up to 660 amino
acids in length can be determined without homologous
structures. This method includes density-traced backbone
conformation and side-chain density agreement for sequence
assignment during structure prediction. Structure determina-
tion starts with obtaining nine-residue fragments centered on
each amino acid in the sequence using the Fragment Picker as
mentioned previously in the de novo folding section. These
fragments are then docked into the electron density map using
a translational and rotational search to identify possible
fragment placement. To further refine these placements, side-
chain information is used to identify fragments with physically
realistic side-chain conformations consistent with the exper-
imental data. Finally, the largest mutually consistent subset of
fragment placements is selected. A subset of placements is
scored with a low-resolution score function that evaluates their
pairwise consistency. Monte Carlo-simulated annealing finds a
subset of fragment placements optimizing this score function.
This assignment will not necessarily assign a position for each
residue. This process is conducted iteratively until 70% of the

Figure 3. Application of RosettaLigand docking of negative allosteric
modulator MPEP into a comparative model of the mGlu5 trans-
membrane domain. The predicted lowest-energy MPEP docking
position (cyan) is close to residues demonstrating a change in MPEP
modulations upon mutation (yellow to red). Reprinted with
permission from ref 108. Copyright 2013 American Society for
Pharmacology and Experimental Therapeutics.
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sequence has been assigned a backbone conformation. For
consecutive iterations, the portion of the density map already
covered in the previous step is excluded from fragment
placements. Finally, Rosetta loop modeling and an all-atom
refinement step, both guided by the cryo-EM density map, fill
in any missing regions in the model.
Cryo-EM-restrained protein structure prediction72 yielded

models within 2.0−3.1 Å all-atom RMSD compared to
experimentally determined structures. Structure determination
of proteins rich in β-sheets is challenging for this method
because of the conformational variability of the structure.
Medium-resolution (4.8 Å) density maps provide another
challenge during partial structure building for this method.
Density-Guided Iterative Local Refinement. This

structure refinement protocol74 includes techniques from X-
ray crystallographic refinement, de novo structure prediction,
segment rebuilding, and all-atom refinement from comparative
modeling in Rosetta to predict models of proteins at atomic-
level accuracy starting from a low-resolution model (with the
correct topology). Like comparative modeling techniques,
backbone fragments are inserted onto a template structure via
superposition and minimization to close the peptide bonds. In
density-guided structure rebuilding, before the peptide bonds
are closed the fragments are optimized to fit the density after
superposition. The backbone fragments that do not fit into this
density are replaced by backbone fragments derived from the
PDB. Peptide bond, backbone, and side-chain geometries are
maintained during this step by coordinate constraints at the
fragment end points and Ramachandran and rotameric
constraints, respectively. This density-guided rebuilding step
is followed by alternative refinement of model coordinates and
atomic B factors until a good correlation is obtained between
the model and the density map. Finally, the quality of the
refined model is evaluated using all-atom energies as well as
agreement with the experimental data, using the Fourier Shell
Correlation between the model and map.
With homologues as starting points, the structure of the 20S

proteasome, periplasmic domains PrgH and PrgK of the needle
complex, and a peptide fiber assembly were refined using this
method.74 The accuracy of the refined models was tested
against the quality (sequence identity) of the starting model,
the number of images used for the reconstruction of the map,
and the resolution of the density map. Density-guided iterative
local rebuilding generated >75% accurate models for maps up
to 4.4 Å resolution and less accurate models for maps with a
resolution lower than 5 Å. This suggests that to successfully
refine a model, the helix pitch, individual β-strands, and some of
the aromatic side chains should be partially visible in the
density map.
Among many applications, the density-guided iterative local

rebuilding technique for structure determination in Rosetta has
been used to determine structures of the peroxisomal Pex1/
Pex6 ATPase complex with a unique double-ring,75 type VI
secretion system contractile sheath in Vibrio cholerae,76 and
SIRV2 virion that infects the Sulfolobus islandicus hyper-
thermophilic acidophile.77

Refinement with Phenix and Rosetta. Phenix78 is state-
of-the art X-ray refinement software used to determine crystal
structures of biomolecules. The Rosetta structure modeling
methodology has been combined with the Phenix refinement
method to improve structure determination at low and high
resolutions. Phenix benefits from the detailed all-atom force
field and more effective conformational search and minimiza-

tion procedures that exist in Rosetta. The Phenix.Rosetta
refinement approach73 utilizes Phenix for bulk solvent
correction to calculate electron density maps and refine atomic
B factors while the Rosetta force-field, minimization, and
sampling techniques are used to optimize the model geometry.
This method includes alternative real and reciprocal space
refinement to improve model structure. Rosetta force-field
constrains the refinement to physically plausible conformations,
and density maps restrain the Rosetta side-chain and backbone
sampling during refinement.
The Phenix.Rosetta refinement method was tested against

conventional refinement in Phenix, CNS,79 and REFMAC.80

On 26 models with density map resolution ranging from 3.0 to
4.5 Å, Phenix.Rosetta refinement generated models with
superior geometry in terms of free R factor, MolProbity
score, and RMSD compared to that of the published
structures.73

Phenix.Rosetta refinement has been successfully adapted to
determine structures of the flavin binding center of the NqrC
subunit of sodium-translocating NADH:quinone oxidoreduc-
tase,81 the full-length protein and regulatory domain of
Pseudomonas aeruginosa OxyR,82 the apo-TrmBL2 structure to
understand nonspecific binding of DNA by TrmBL2,83 and the
αβ T cell antigen receptor (TCR)−CD1a complex.84
Phenix.mr_rosetta is another model rebuilding technique

that integrates structure modeling tools from Rosetta with
crystallographic structure determination tools in Phenix.85 This
technique can be used to determine challenging structures for
which simple molecular replacement procedures usually fail,
when starting models are based on a remote homologue with
<30% sequence identity.86,87 The phenix.mr_rosetta algorithms
allow users to identify suitable templates and refine them with
Rosetta before performing molecular replacement and then
rebuilding the models with Rosetta and Phenix autobuilding
tools. Electron density map-guided energy optimization,
combinatorial side-chain packing, and torsional space mini-
mization are used to improve molecular replacement models
before applying crystallographic model building techniques.
Phenix.mr_rosetta allows rapid structure determination without
experimental phase information given the availability of
homologues structures with >20% sequence identity, diffraction
data sets of better than 3.2 Å resolution, and four or fewer
copies in the asymmetric unit cell.

■ PROTEIN DESIGN
Inverse Folding Problem. Protein design is a unique

protocol in that instead of finding the optimal conformation of
a particular sequence, it aims to determine an optimal sequence
for a given conformation. For this reason, it is often termed the
“inverse protein folding problem”.38 Generally, there are two
main design strategies: design for stability and design for
function. The stability protocol considers the entire protein for
design, and the score terms of interest are generally focused on
improved packing. The design for function protocol is usually a
localized design, centered on a specific region, domain, pocket,
etc., of a protein with a focused energy function that governs
precise interactions, such as electrostatics or hydrogen bonding.
Protein design involves iterative optimization of sequence

and structure. During the fixed backbone side-chain optimiza-
tion step, sequence space is sampled simultaneously with side-
chain conformational space using Monte Carlo-simulated
annealing by exchanging all possible amino acids at user-
specified designable positions while evaluating the predicted
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energy.6 This is followed by flexible backbone minimization to
optimize the model. The first successful use of de novo
RosettaDesign produced a sequence for a fold not seen in the
PDB.6 The experimentally determined structure had an RMSD
of 1.1 Å from the computationally design model. An example
tutorial for protein design, protein_design, is provided in the
Supporting Information.
Design for Stability. Protein stability can be affected by a

single-point mutation. Kellogg et al. evaluated several protocols
with varying levels of flexibility and sampling and determined
one method in particular to be useful for single-point
mutations.7 This method was made into the application
ddg_monomer. When ddg_monomer was tested on a set of
1210 single-point mutants from the ProTherm database, the
correlation of predicted ddGs to experimental ddGs was 0.69
while the stability classification accuracy was 0.72.
While ddg_monomer is a tool for predicting how a single-

point mutation affects the stability of a protein, RosettaVIP
(void in packing) is a design strategy that has been developed
to identify single-point mutations that could improve the
stability of a protein.9 When Borgo et al. fully designed
proteins, they found that the hydrophobic cores of the designed
models were poorly packed when compared to their respective
native proteins. RosettaVIP was able to identify packing
deficiencies and sample a much smaller sequence space to fill
the void in packing, resulting in a more stable design.
Design for Functionality. In addition to stabilizing

monomeric proteins, RosettaDesign can be used to design
interfaces between proteins. Fleishman et al. established a dock
design protocol that optimizes the sequence of a protein to
bind a surface patch of a target protein during design. Docking
was used to optimize the positioning of the interacting proteins
at the interface. Experimentally determined structures had an
interface very similar to those of the designed models.10

Other types of interfaces of interest for design applications
are protein−small molecule interfaces. Tinberg et al.11 provided
a great example of using RosettaDesign to design for affinity as
well as stability (Figure 4). First, RosettaMatch88 was used to
find a stable scaffold for design for binding a particular small
molecule. Next, RosettaDesign was used to maximize the
binding affinity between the protein and small molecule.
Finally, a second round of design was used to minimize
destabilization due to mutagenesis in the first round. To ensure
these mutations were meaningful, design was guided by a
multiple-sequence alignment. The resulting most energetically
favorable model was the highest-affinity binder in experimental
studies and had a cocrystal structure that agreed with the
computational model.
Most design algorithms in Rosetta are performed while

considering a single fixed backbone structure. Recently, efforts
to consider several structures during the design process have
been undertaken to tackle more difficult design problems. A
generalized multistate design protocol was introduced in 20118

to help in cases in which design should occur to satisfy multiple
conformations or to design specificity toward one state and
negative design against other states. Willis et al.89 showed that
RosettaMultistateDesign was capable of predicting residues that
were important for polyspecificity when designing the heavy-
chain variable region of an antibody. Sevy et al. introduced a
new approach to multistate design that accelerates the process
of multistate design by reducing the sequence search space,90

allowing more complex backbone movements to be incorpo-
rated into a design protocol.

■ ADDITIONAL ROSETTA METHODS
Symmetry. Previously, Rosetta2 was limited in its ability to

model large symmetric complexes.24 In 2011, DiMaio et al.
introduced a new mode in Rosetta to model symmetric
proteins.25 This allowed protocols to sample and score large,
symmetric complexes much more quickly and with less
memory usage as this approach samples only symmetric
degrees of freedom, greatly reducing the search space. The
underlying assumption, however, is that the interactions
between all subunits are symmetric. The current implementa-
tion of RosettaSymmetry can create complex symmetric
assemblies through the use of a symmetry definition file for a
symmetric or nearly symmetric structure from the PDB. In the
case of de novo folding, a symmetry definition file must be
generated from scratch.

Membrane. RosettaMembrane has been the method used
to model helical transmembrane proteins for several years.
RosettaMembrane consists of both low-resolution35 and high-
resolution91 scoring functions that were developed to describe

Figure 4. Design of protein−ligand interactions for high affinity and
selectivity. (A) The design approach involved specifying binding
interactions between the protein and ligand followed by design of the
binding site. Finally, only designs in which shape complementarity was
better than what is seen in native complexes were selected for
experimental characterization. (B) Design crystal structure (purple)
and computational model (gray) of the protein−ligand complex
resulting from design for high affinity and selectivity. The RMSD was
0.54 Å, while the bound form (C) had an RMSD of 0.99 Å. Reprinted
with permission from ref 11. Copyright 2013 Macmillan Publishers
Ltd.
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how the protein interacts with the membrane environment.
Recently, RosettaMP, a new framework for modeling
membrane proteins in Rosetta, was developed to facilitate
communication between model sampling and scoring.23 Work
is ongoing to adapt existing protocols to be compatible with
RosettaMP.
Noncanonical Amino Acids and Noncanonical Back-

bones. Rosetta was initially developed to predict the three-
dimensional structure of proteins using the 20 canonical amino
acids. However, the expansion to include noncanonical amino
acids (NCAAs) and noncanonical backbones (NCBs) is
important, as they allow for the flexibility to create more
precise interactions between proteins,92 metal ions,93 or
antigens.94 While the expansion to include more diverse
structures is critical, the addition is nontrivial.
The addition of NCAAs requires the modification of both

the scoring function and how the space is explored. These
hurdles, however, are not easy to clear, as Rosetta is built on a
foundation of knowledge-based components within its scoring
function. Most of these knowledge-based score terms come
from published protein structures, and few NCAAs have a
statistically relevant representation in the PDB. Therefore,
developers need to rework key components of the Rosetta
scoring function.21 All score terms were then reweighted to
account for the changes in the score terms. Along with the new
score terms, the authors created rotamer libraries for 114
NCAAs, as well as a tool, MakeRotLib, for creating rotamers for
user-supplied NCAAs.
An effort was also undertaken to add noncanonical

backbones to Rosetta, and in the initial attempt, five new
backbones were added.22 The first hurdle in the addition of an
NCB is defining what a “residue” is. In Rosetta,326 the “residue”
became the central object; therefore, with NCBs, a repeating
subunit must be defined. Additionally, new backbone sampling
movers must be created, or the backbone must be fixed, as the
NCB will have flexibilities different from those of a linear chain
of three singly bonded atoms. The final key point in the
addition of NCBs is the creation of new rotamer libraries for
the side chain. Even if the side-chain atoms are identical to
those of a canonical side chain, the chemical change in the
backbone will cause different flexibilities, due to sterics or
electrostatics. A peptoid (a backbone structure identical to the
canonical backbone, with the only change being the side-chain
branches from the nitrogen instead of the α-carbon) rotamer
generator has been created95 for users to create rotamers for
their own side chains. However, care must be taken when
creating rotamers for a blended backbone system.96

The main considerations for a user attempting to use NCAAs
and/or NCBs in Rosetta are understanding the chemical
properties of their side chain and/or backbone and properly
representing this knowledge in Rosetta. The correct score
terms need to be used, as the standard knowledge-based score
terms will not apply. An appropriate rotamer library and/or
mover must be added to allow for proper sampling of the
protein landscape. Finally, the user must understand that
because work on NCAAs and NCBs is still limited, novel score
terms or sampling methods may be required.
RNA. Structural predictions of RNA molecules require

confronting the same challenges as protein modeling: sampling
the conformational space of the heteropolymer and accurately
scoring different conformations. Rosetta applies the same
strategies developed for modeling proteins to address these
challenges in nucleic acids.19 An assembly of fragments that

have been observed in known RNA structures is used to
produce nativelike tertiary models. This procedure also
captures sequence-dependent local conformational biases. A
centroid-based “low-resolution” scoring function is used for
selection of initial models. It is knowledge-based (statistically
derived from frequencies observed in known crystal structures)
and includes scoring terms for base pairing, base stacking, and
compactness and terms for maintaining coplanarity and
disfavoring steric clashes. In current protocols, models are
subsequently refined using a full-atom physics-based energy
potential and a Stepwise Ansatz.20 This protocol is termed
FARFAR, Fragment Assembly of RNA with Full-Atom
Refinement, and is available using the distributed Rosetta
suite and the ROSIE Web server.46

The Stepwise Ansatz (Figure 5) has been benchmarked on
loops and hairpins up to 10 nucleotides in length. For larger
structures, additional information is needed to restrict the
conformational sampling to a tractable amount. This

Figure 5. Stepwise assembly (SWA) structure modeling method for
RNA. Illustration of the J2/4 loop from the three-way junction of a
TPP-sensing riboswitch (PDB entry 3DV2). (A) Crystallographic
conformation of the five-nucleotide loop (colored). (B) Schematic of
the three-way junction. (C−F) The loop is built in a stepwise manner,
starting from the 3′ end. (G) A directed acyclic graph recursively
covers all possible build-up paths. The steps shown in panels C−F are
colored magenta. Gray vertices correspond to the starting point with
none of the loop nucleotides built. Black vertices are partially built
subregions. Red vertices correspond to the ending points with the loop
completely built. (H) Energy vs RMSD from the crystal for models
generated by SWA (blue points) and by the prior method (FARFAR,
red points). The SWA fourth lowest-energy cluster center (purple
circle) is within atomic accuracy of the crystallographic model (0.85 Å
RMSD). Reprinted with permission from ref 109. Copyright 2011
National Academy of Sciences.
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information can come from both predictions and experimental
data. Secondary structure predictions can be made using
algorithms that take into account structures of homologous
sequence. Chemical mapping experiments provide useful
reactivity data that help assign base pairing status to each
nucleotide. Multidimensional chemical mapping, such as “M2,
mutate-and-map”97 and Multiplexed -OH Cleavage Analysis by
paired-end sequencing (MOHCA-seq),98 can provide specific
pairwise proximity information. Additional efficiency is gained
by the preassembly of helical structures as input to the fragment
assembly step. These methods have performed well in the
recent blind prediction experiments called “RNA-Puzzles”.99

The same techniques used for structure prediction can also
be applied to structure refinement, to improve the quality of
RNA crystallographic models in the presence of X-ray data.
This procedure has been implemented in the “Enumerative
Real-space Refinement ASsisted by Electron density under
Rosetta” ERRASER-Phenix pipeline100 and was demonstrated
to improve the geometrical parameters and model quality of 24
RNA-containing structures in the PDB, including small
pseudoknots and large ribosomal subunits.101

NMR structure determination of proteins or nucleic acids
typically relies on a large number of NOE measurements to
derive distance constraints for structure calculations. Using a
relatively small number of measurements of only 1H chemical
shift values, CS-Rosetta-RNA was demonstrated to provide
sufficient information to determine the structures of 23
noncanonical RNA motifs at high resolution.102 This
functionality is also available on the ROSIE Web server.46

RNA Design. RNA can be designed using Rosetta’s RNA
Redesign algorithm. It performs fixed backbone design on 3D
RNA structures to produce sequences that best stabilize a given
3D conformation.103 The success rate for a benchmark set of 15
RNA crystal structures was 45% sequence recovery overall and
65% sequence recovery for noncanonical sequences (not
Watson−Crick or G-U). Finally, the algorithm was able to
predict a sequence that would increase the thermostability of
domain IV of the signal recognition particle.

■ CONCLUSIONS
The Rosetta software suite represents a compilation of
computational tools aimed at obtaining physically relevant
structural models of proteins, RNA, and small molecule
interactions. Herein, we presented a general outline of updated
Rosetta applications, protocols, frameworks, and functionalities
with the aim of improving user success. All protocols are
generalizable and can be applied to an extended list of
biological queries that other structure-determining methods
may not be able address.
Improvements to the variety of Rosetta interfaces (Rosetta-

Script, PyRosetta, and many web interfaces) allow the user a
high degree of flexibility and personalization for each specific
structural problem, as well as providing a previously unavailable
entry point for novice users.
The current, default Rosetta score function (talaris2014) has

been optimized and improved with new score terms as well as
reweighted knowledge- and physics-based potentials. Rosetta
also incorporates a new release of the Dunbrack rotamer
library.33

De novo structure prediction has greatly improved with the
implementation of the TopologyBroker, which was developed
to create consensus sampling that satisfies all user-requested
constraints without requiring additional code development for

each unique system. Recent progress in comparative modeling
applications has broadened the possible conformational search
space by incorporating multiple starting templates. Protocols
for protein−protein docking now include flexibility to
modularize the coarse-grained and high-resolution modes of
RosettaDock, giving the user more freedom to incorporate
additional features in the docking process while narrowing the
computational search space. Improvements in protein−small
molecule docking utilize an improved Transform algorithm that
increases both the speed and quality of this tool in obtaining
more nativelike conformations. Likewise, the flexibility in
incorporating experimentally derived constraints for most
protocols has also greatly improved. To tackle the challenge
of the inverse folding problem, new implementations of
multistate design permit users to optimize sequences while
considering several structures simultaneously.
Continuous developments in Rosetta have enhanced its

utility by adding functionality to model proteins embedded in
the membrane, expansion into nontraditional protein modeling
by adding noncanonical amino acids, noncanonical backbones,
and nucleic acids, and adding the ability to model ever-larger
proteins by the addition of symmetry.

Installation and Licensing. The Rosetta licenses are
available at http://www.rosettacommons.org/software free of
charge for academic and governmental laboratories. Rosetta is
compatible with most Unix-based operating systems and is
distributed as source code. A user manual describing
compilation, installation, and usage for the current release can
be found at http://www.rosettacommons.org/docs/latest/.
Demos and tutorials for additional Rosetta protocols can be
found at http://www.rosettacommons.org/demos/latest/. In-
terested developers can join the RosettaCommons organization
to contribute to the Rosetta software package.
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