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Experimental structure determination by x-ray crystallography and
NMR spectroscopy is slow and time-consuming compared with the
rate at which new protein sequences are being identified. NMR
spectroscopy has the advantage of rapidly providing the structurally
relevant information in the form of unassigned chemical shifts (CSs),
intensities of NOESY crosspeaks [nuclear Overhauser effects (NOEs)],
and residual dipolar couplings (RDCs), but use of these data are
limited by the time and effort needed to assign individual resonances
to specific atoms. Here, we develop a method for generating low-
resolution protein structures by using unassigned NMR data that
relies on the de novo protein structure prediction algorithm, ROSETTA

[Simons, K. T., Kooperberg, C., Huang, E. & Baker, D. (1997) J. Mol. Biol.
268, 209–225] and a Monte Carlo procedure that searches for the
assignment of resonances to atoms that produces the best fit of the
experimental NMR data to a candidate 3D structure. A large ensemble
of models is generated from sequence information alone by using
ROSETTA, an optimal assignment is identified for each model, and the
models are then ranked based on their fit with the NMR data
assuming the identified assignments. The method was tested on nine
protein sequences between 56 and 140 amino acids and published CS,
NOE, and RDC data. The procedure yielded models with rms devia-
tions between 3 and 6 Å, and, in four of the nine cases, the partial
assignments obtained by the method could be used to refine the
structures to high resolution (0.6–1.8 Å) by repeated cycles of struc-
ture generation guided by the partial assignments, followed by
reassignment using the newly generated models.

nuclear magnetic resonance � de novo fold prediction � ROSETTA Monte
Carlo optimization � chemical shift–atom assignment

Knowledge of the 3D structures of proteins is critical for many
biological questions, but the time-consuming process of struc-

ture elucidation through x-ray crystallography or NMR spectros-
copy cannot keep up with the rapidly growing number of sequenced
genes and genomes. In contrast to x-ray crystallography, where the
growing of suitable crystals is often the time-consuming step, the
collection of data can be done rapidly by NMR spectroscopy, once
the protein is expressed. Techniques such as the use of residual
dipolar couplings (RDCs) (1, 2), gradient techniques (3), and
crosscorrelated relaxation (4), offer possibilities for the rapid
collection of structural information, and, hence, the application of
NMR spectroscopy in the field of structural genomics (5). However,
rapid NMR structure determination is limited by the time-
consuming and error-prone step of assigning observed resonances
to individual atoms.

Traditional methods for assigning resonances to atoms rely on
experiments that couple atoms on adjacent residues. These exper-
iments are complicated by the large total number of signals that
result in numerous spectral overlaps and poorly resolved peaks.
Alternatively, if a 3D structure is already known, one can in
principle evaluate different possible assignments, based on the
match between the experimental data and simulated data gener-
ated from the structure assuming a particular assignment. In the
absence of a known structure or a structure of a homologous
protein, models generated by de novo structure prediction methods
that are based on amino acid sequence information alone can, in
principle, be used for evaluating possible assignments.

Even the best current method for de novo structure prediction,
ROSETTA (6), generates structures with the correct overall topology
only a relatively small fraction of the time. For roughly half of
proteins �150 amino acids, one of the five largest clusters of
structures found is structurally similar to the true structure after
large numbers of independent folding simulations (7). This success
rate can be pushed �50% if more than five clusters are considered.
However, to distinguish among these possible structures, experi-
mental data are necessary, and, given a method for finding an
optimal assignment, unassigned NMR data can potentially help to
identify and refine the most accurate model.

Here, we develop a method for global fold generation that utilizes
unassigned chemical shifts (CSs), intensities of NOESY crosspeaks
[nuclear Overhauser effects (NOEs)], and RDCs in conjunction
with the ROSETTA structure prediction approach to build a low- to
medium-resolution structural model in a short period, refine this
model to higher resolution, and gain a partial CS–atom assignment.

Materials and Methods
We present a computational approach that enables the gener-
ation of an experimentally validated protein structure within a
time frame of 12–48 h, based on unassigned NMR data including
CSs, NOEs, and RDCs. We assume a worst case scenario where
no homologues of known structure are present in the Protein
Data Bank (and, therefore, only low-resolution de novo models
are available) and no NMR data points are assigned to individual
atoms (and, therefore, the complete assignment needs to be
evaluated); only the amino acid sequence and peak lists of
unassigned data are available. A simplified flow chart of the
algorithm is shown in Fig. 1.

Generating Possible Structural Models de Novo F (Fig. 1ai). ROSETTA
has proven to be one of the most successful approaches for de novo
fold prediction as demonstrated in the Critical Assessment of
Techniques for Protein Structure Prediction experiments CASP3,
CASP4, and CASP5 (8, 9). The sequence of the unknown structure
is cut into overlapping fragments of three and nine amino acids. The
Protein Data Bank is subsequently screened for fragments that have
a high primary sequence homology and a secondary structure that
matches the predicted secondary structure (10–12) of the query
sequence. These fragments, which sample possible conformations
for the protein backbone, are combined using a Monte Carlo
algorithm. Thousands of models are generated, and five represen-
tative models are selected by using a clustering procedure. This
procedure is explained in detail in recent publications (7–9) and is,
therefore, only discussed briefly in this work.

Input of Unassigned NMR Data (Fig. 1aii ). NMR spectra can be
analyzed manually or in an automated fashion (e.g., refs. 13–16) to
obtain lists of experimental data that are the starting point for our
approach. For the current protocol, a CS list, an NOE list, and an
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RDC list are used. The first list consists of all of the observed
resonance frequencies (as CSs in ppm) for hydrogens, nitrogens,
and carbon atoms in the protein. This information is useful because
CSs are sensitive to the local conformation of the protein backbone,
e.g., secondary structure elements (17, 18). Crosspeaks in NOESY
spectra can be represented as a list of two hydrogen CSs (taken from
the CS list) and one NOE intensity, which reflects an effective
distance between the two groups of hydrogen atoms assigned to the
two CS values. The network of unassigned NOE data can be seen
as a description of the 3D density distribution of hydrogens in the
unknown protein (19, 20). In a similar fashion, RDCs form a list of
two CS values, plus one RDC value, and indirectly code the relative
orientation of atom–atom vectors, because the relative orientation
of a bond vector (e.g., N–HN) to the molecular alignment frame is
described (21–24).

From the list of RDCs, an additional list of connectivity con-
straints is derived, requiring that the atoms assigned to those CS
values are separated by one or two bonds in the bonding network,
respectively. Such connectivity constraints limit the possible space
of assignments, and, are therefore valuable information. They are
implemented in a very general fashion, requiring that at least one
pair of atoms assigned to a pair of CSs is separated by a certain
number of bonds in the bonding network. Hence, they can also be
used if additional connectivity information from triple resonance
spectra is available. Even simpler, although not used here, is the
addition of partial assignments by fixing the mapping of a certain
atom of the protein to a certain CS value.

All three sources of information (CSs, NOEs, and RDCs) have
inherent ambiguities. Hydrogen atom CS signals heavily overlap
and several hydrogen atoms can appear to have one and the same
CS value. In turn, NOE and RDC data cannot be unambiguously
assigned to a single atom without additional information. However,
if a structural model exists, and one particular assignment is
assumed, theoretical CS, NOE, and RDC data can be computed
and compared with the experiment.

The experimental data used for the eight example proteins (see
below) were obtained from the Protein Data Bank (www.pdb.org)
and the BioMagResBank (www.bmrb.wisc.edu). To ensure as re-
alistic as possible a set of data, the following processing was applied
to the published CS, NOE, and RDC information: all atom
references in the NOE and RDC lists were replaced with references

to the respective entry in the CS list; the information about the
particular atom assigned to a CS value was removed from the CS
list and only the atom type information (hydrogen, carbon, or
nitrogen) was kept; the distances given in the NOE list were
replaced with intensities by computing rij

�6; and signals that might
overlap in the spectra were combined to one entry in the CS list. If
two hydrogen atoms having a given distance to a common partner
were merged, the respective NOE entry was combined by adding
the two intensities. Two signals were assumed to be potentially
unresolved if they were marked in the BioMagResBank entry as
overlapping, ambiguous NOEs to a common partner were reported,
or the CS values were similar (�CSH � 0.02 ppm, �CSC � 0.2 ppm,
and �CSN � 0.2 ppm). The average CS value was assigned to these
entries in the CS list (4). For calculation of the score S (see below),
an SD and a maximum tolerance were assigned to every experi-
mental data point. Due to the lack of experimental error estimates,
the following rather large values were used: CSH: � 0.25 and � 1.00
ppm, CSC: � 1.00 and � 4.00 ppm, and CSN: � 2.50 and � 10.00
ppm, NOE: the intensity equivalent for � 0.25 and � 1.00 Å, and
RDC: � 2.5% and � 10.0% of the axial tensor component as
determined from the histogram (25). As discussed below, all
predicted values that have a deviation to the experiment smaller
than the SD are treated as completely satisfied. Hence, all published
experimental data points (that were potentially refined on the
published solution structure) are converted into broad ranges that
are consistent with the experiment. The knowledge of the exact
number is thus removed and only blurred information is left that is
first, more realistic in terms of automatically picked data, and,
second, more likely to fit low-resolution models.

Scoring of a Particular CS–Atom Assignment by Using a 3D Model (Fig.
1aiii ). Individual assignments were scored in the context of a
particular structure model, based on the consistency of the CS,
NOE, and HRDC data with the model, given the assignments.

For scoring the consistency of the experimental CS values with
a given assignment and structure model, theoretical CS values were
computed from the model by using a neural-network approach
(www.jens-meiler.de�proshift.html; ref. 26). The neural-network
input consists of sequence information, backbone conformation, as
well as local atom environments and predicts 1H, 13C, and 15N CSs
for all backbone and side-chain atoms. The SD of the predictions
are 0.3, 1.3, and 2.6 ppm respectively.

Theoretical crosspeak intensities Iij
NOE between two CS values i

and j in a NOESY spectrum were obtained from the 3D model,
together with the assignment by computing the sum noeij

calc �
A�¥ijrij

�6 over all pairs of hydrogen atoms assigned to the respective
CS values, where A is a global scaling factor that was fitted to give
the best overall agreement of experimental and back-computed
NOE values.

RDC values are given by rdcij
calc � F�v�ij�Ŝ�v� ij

T where F is a constant
known factor, v�ij is the vector that connects the interacting nuclei in
the molecular frame, and Ŝ is the Saupe order matrix that describes
size and orientation of the alignment frame relative to the molec-
ular frame. By singular value decomposition, the 3 � 3 symmetric
and traceless Saupe order matrix, Ŝ is determined in such a way that
�i

Nrdc(rdci
exp�rdci

calc)2 is minimized (27).
The individual score of a single data point, Si � [0, 1] (i � CS,

NOE, or RDC) is computed applying a fuzzy-logic filter. The score
is set to be 1 if the value is reproduced from the structural model
within the SD and 0 if it lies outside the maximum tolerance.
Between standard and maximum deviation a linear decay is ap-
plied. The advantage of this function over a more standard qua-
dratic penalty function is that it is more tolerant of errors in the
model (e.g., an incorrect loop) and mispicked NMR signals. Both
scenarios are likely to occur when using de novo fold prediction and
automated peak-picking methods and result in a fraction of unfea-
sible restraints. Large penalties from these data could overshadow

Fig. 1. Simplified flow chart of the two steps of the algorithm. In the first step
(a), an experimentally validated model of the protein is generated by computa-
tional methods. Parallel with the collection of the NMR data (i), ROSETTA is used to
generate possible 3D models for the sequence (ii). For each model, an optimized
assignment is identified by a Monte Carlo search (iii). Models are ranked accord-
ing to their consistency with the NMR data (iv). In the second step (b), the
best-ranked models are refined by detecting partial CS–atom assignments (v) and
by using the derived constraints as input for ROSETTANMR (vi).
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significant similarities in other parts of the structure and assign-
ment. The overall Scs, Snoe, and Srdc are defined as the arithmetic
averages of the respective individual scores.

The weight associated with a single CS, NOE, or RDC data point
is determined by optimizing the discrimination of good from bad
models assuming the correct assignment in a set of eight proteins
with a total of 80 models (see below). The optimal ratio between the
weights on the three terms was found to be 2:5:70. Because this ratio
was determined across a set of eight different proteins with
different composition of experimental data, it is assumed to be
universal and was kept constant; 25% changes in the relative weight
do not alter the result significantly. The ratio of 2:5:70 refers to a
single CS, NOE, or RDC data point rather than to the complete set
of data. This finding ensures that the relative influence of CSs,
NOEs, or RDCs increases if their number increases and decreases
(or even vanishes) if fewer (or no) experimental data are available
(compare Eq. 1). Because the number of CSs and NOEs is usually
higher than the number of RDCs, the actual relative influence
(Scs:Snoe:Srdc) is 	1:3:6, but varies from protein to protein depend-
ing on the ratio of collected CS, NOE, and RDC data points. If for
example the number of RDC data points increases, the relative

weight of the score, Srdc, will increase too. The overall consistency
of the NMR data with a structural model, S, can be written as:

S �

� 2��
i�1

Ncs

Si
cs � 5��

i�1

Nnoe

Si
noe � 70��

i�1

Nrdc

Si
rdc�


2�Ncs � 5�Nnoe � 70�Nrdc�
. [1]

Monte Carlo Search for an Optimal Assignment Given a Model (Fig.
1aiii ). As shown in Fig. 2, given an accurate model not only the
correct assignment but also a large number of similar assignments
show considerable agreement with the experimental data. The
number of assignments that produce good agreement with the
experimental data decreases as the model becomes worse. Thus, in
contrast to high-resolution structure elucidation, for distinguishing
the correct fold from incorrect conformations, it is not necessary to
find a completely correct assignment. If the space of all possible
assignments is sampled sufficiently densely, good models can be
identified by their statistically improved agreement with the exper-
imental data after alignment optimization.

To sample the (huge) space of possible CS–atom assignments, a
Monte Carlo algorithm was implemented. A random CS–atom
assignment is generated by assigning every atom to one CS signal.
The only biases are the connectivity constraints obtained from the
RDCs, and that, after completion, a maximum number of CS
signals have at least one atom assigned. Starting from this random

Table 1. Results of ROSETTA fold prediction and filtering with unassigned NMR data

Protein NMR data
Ranking of ROSETTA models using NMR

data

PDB ID code Fold type No. of residues CS NOE RDC
Correlation
coefficient*

Best-scoring
cluster rmsd,

Å†

Correctly
assigned
backbone
atoms, %‡

1b4c � 92 472 830 218 �0.73 4.58 3.1
1cmz � 128 1,042 1,221 104 �0.72 6.67 1.4
1gbl �� 56 471 612 283 �0.90 4.46 6.6
1ghh �� 81 771 760 530 �0.86 4.81 10.9
1khm �� 88 735 1,128 206 �0.87 4.45 4.1
1ubi �� 76 803 1,240 628 �0.91 3.43 13.5
2ezm � 101 767 1,005 327 �0.81 6.23 3.2
2ezxA � 89 808 729 245 �0.85 6.29 2.7

*Correlation coefficient between the rmsd of the nine protein models to the native structure and the average score of the top five
assignments for each of the models

†rmsd of the best-scoring cluster to the native structure.
‡Average percentage of correctly assigned backbone atoms for the best-scoring cluster center.

Fig. 2. Scoring of alternative assignments. The consistency score S (y axes) is
plottedversusassignmentaccuracy (xaxes) for thenativeprotein,1ghh,a refined
model (1.6Å), thecluster centerclosest tothenative (3.9Å), andthecluster center
farthest away from the native (12.0 Å).

Fig. 3. The consistency score, S (y axis), for 10 different conformations of the
DNA-damage-inducible protein I (1ghh) with the correct assignment (a) and with
the assignment achieved by the optimization procedure (b) is plotted versus the
rmsd to the correct structure (x axis). �, native structure; E, cluster centers; ‚, four
additional hand-picked models.

15406 � www.pnas.org�cgi�doi�10.1073�pnas.2434121100 Meiler and Baker



assignment, two moves are possible: (i) A single atom is reassigned
to a different CS value, and (ii) two atoms exchange their assigned
CS signals. The agreement between the structure and the experi-
mental data for the current assignment is assessed by the consis-
tency score, S [0, 1] that reflects CS, NOE, and RDC information
(Eq. 1 above). No moves are considered that would result in a
violation of the bond constraints derived from the RDCs.

Model Selection by Using the Consistency Score, S (Fig. 1aiv). It is
expected that not only the correct assignments but also the opti-
mized assignments found for the native structure and near native
structures will produce higher scores than assignments based on
incorrect structures. As shown in Fig. 3 a and b, this is indeed the
case: the lower the rms deviation (rmsd) of the model to the correct
structure, the higher its consistency score, S � [1].

To rank a set of possible structure models, for each structure 100
random assignments are generated and 100,000 Monte Carlo
optimization steps are performed in a first round. The best 20
scoring assignments per model are selected and a second round of
900,000 additional optimization steps is applied. The average score
of the five highest scoring assignments per model are used to build
the ranking.

Extraction of Reliable Partial Assignments by Consensus (Fig. 1bv).
Once a model is selected, it is desirable to be able to identify the
subset of atoms that are most confidently assigned to NMR signals.
Atoms have a higher chance to be correctly assigned if they are
commonly assigned to one and the same signal in different opti-
mization runs. To increase the reliability in the detection of such
atoms, 1,000 random assignments for the model selected in Fig. 1aiv
were optimized for 100000 steps and the 100 best-scoring assign-
ments were further optimized for a total of 1,000,000 steps. If one
atom was assigned to one and the same signal in at least 12 (60%)
of the 20 best-scoring assignments, this assignment was assumed to
be correct.

Refinement of the Assignment and the Structure (Fig. 1bvi). The
NOEs and RDCs associated with the subset of atoms detected in
Fig. 1bv have a high probability to be correctly assigned to the
structure. This probability was further increased by excluding NOEs
and RDCs inconsistent with the current structure. By using the
remaining experimental data points as restraints, structural models
were built refining the previous model. The ROSETTA algorithm was
applied as modified for the utilization of NMR data (28, 29). Of 100
generated models, the one with the best agreement with the
experimental data was selected and used as a starting point for
generating assignments as described in Fig. 1bv.

Results and Discussion
The method was applied to eight proteins with published CS,
NOE, and RDC data: the Ca2� binding rat apo-S100(��) (1b4c;
ref. 30), the human G�-interacting protein (1cmz; ref. 31), the
immunoglobin-binding domain of protein G (1gb1; refs. 32–34),
the DNA-damage-inducible protein I (1ghh; ref. 35), the C-
terminal KH domain of heterogeneous nuclear ribonucleopro-
tein K (1khm; ref. 36), ubiquitin (1ubi; ref. 37), cyanovirin-N
(2ezm; ref. 38), and the human barrier-to-autointegration factor
(2ezxA; ref. 39). These proteins range from 56 to 128 amino acids
in length and include all �-, �-, and ���-folds (Table 1).

Two tests were carried out: First, unassigned NMR spectra were
used to distinguish models that adopt the native fold from incorrect
conformations (model selection, Fig. 1a). Second, the structure of
the selected models was refined to fulfill the NMR data even better
(model refinement, Fig. 1b). The procedure and the algorithms are
described in detail in Materials and Methods. In the following, only
the fundamental results and conclusions are discussed.

Model Selection. Ten models, the five largest ROSETTA-generated
cluster centers, four additional ROSETTA-generated models chosen
to span a wide rmsd range, and the native, were used as input along

Table 2. Improvement of the top 20 assignments during refinement of 1ubi, 1gb1, 1ghh, 1khm

rmsd, Å Average score

Average no. correctly
assigned atoms (%) Consensus assigned atoms

Experimental data
used for refinement

Overall Backbone Overall Correct NOEs RDCs

lubi Cluster center 3.43 0.643 32 (5) 27 (8) 16 16 — 36
First cycle 2.07 0.656 67 (11) 59 (17) 33 28 5 56
Second cycle 1.55 0.668 127 (20) 113 (33) 114 102 34 195
Third cycle 1.16 0.701 168 (26) 153 (45) 173 164 70 323
Fourth cycle 0.76 0.782 253 (40) 225 (66) 221 205 130 403
Fifth cycle 0.60 0.801 272 (43) 235 (69) 333 282 249 395
1gbl Cluster center 4.46 0.593 25 (4) 18 (6) 20 20 0 40
Eighth cycle 1.36 0.763 116 (18) 110 (39) 77 65 10 117
1ghh Cluster center 4.81 0.557 47 (5) 40 (10) 25 25 10 38
Ninth cycle 1.54 0.708 393 (42) 283 (70) 303 268 145 337
1khm Cluster center 4.45 0.431 30 (3) 22 (5) 20 15 3 21
Seventh cycle 1.97 0.632 101 (10) 92 (21) 113 76 9 31

Fig. 4. The best-scoring ROSETTA models obtained before refinement in comparison with the native structure.
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with the unassigned NMR data to the Monte Carlo assignment
search procedure (Fig. 1a). A correlation between the score of the
optimized CS–atom assignments and the rmsd of the model was
obtained in all cases (Table 1 and Figs. 2 and 3b). The correlation
between rmsd and score is significant, particularly in the important
range from 2 to 8 Å, and the cluster center closest to the native
rmsd-wise could consistently be identified by its consistency score,
S, that reflects the consistency of a particular model with the
experimental data when a certain CS–atom assignment is assumed.

The cluster center with the best agreement with the unassigned
data is selected as the best candidate model before the refinement
step. Fig. 4 compares the structures of these selected models to the
true structures for the eight proteins. The topology as well as the
relative orientation of secondary structure elements is correctly
determined in all models. Larger discrepancies between native fold
and model are obtained in the length of some secondary structure
elements and many of the loop and coil regions.

If the correct native structure is used for optimizing the CS–atom
assignment, between 50% and 90% of all nuclei can be correctly
assigned to their CS value. The high agreement suffers, of course,
if imperfect models are used; in particular, the fraction of correctly
assigned side-chain atoms drops, because no dipolar couplings are
available in these regions. Using ROSETTA models with a 3–6 Å
rmsd from the native structure, the percentage of correctly assigned
atoms ranges from 5% to 40%, with a higher fraction for smaller
proteins with fewer possible assignments. As the model is refined
to high resolution (see below), this fraction increases up to 70%
(Table 2). The majority of the correctly assigned atoms are in the
protein backbone due to the additional RDC information.

To detect these correctly assigned signals, similarities between
multiple optimized assignments are analyzed. The selection of
consensus assigned CS–atom pairs among these assignments clearly
enriches for correctly assigned CS–atom pairs (Table 2). In indi-
vidual assignments, 5–10% of the atoms were correctly assigned to
their CS signal for the cluster center closest to the native. In the
consensus subset of signals, this fraction increased to lay between
75% and 100%. The overall percentage of CS–atom pairs that are
detected by this procedure drops to 	50% relative to the average
percentage of correctly assigned CS–atom pairs in the individual

assignments. However, these rather small subsets were sufficient
to obtain restraints for refining the models using ROSETTANMR
(28, 29).

Model Refinement. The iterative refinement process is illustrated for
1ubi in Fig. 5 and summarized for 1ubi, 1gb1, 1ghh, and 1khm in
Table 2. In these cases, a small number of RDCs and NOEs used
initially was sufficient to restrict the structural space significantly
and allow ROSETTANMR to build improved models. These models
can be detected by their excellent agreement with the experimental
data, and, in turn, can be used to obtain even better assignments.
An iterative application of these steps (Fig. 1b) decreases the rmsd
of the model and increases the consistency score, the average
percentage of correctly assigned signals, and the number of de-
tected signals. The rmsd to the native structure decreases below 2 Å
for all four examples.

The success of the structure refinement protocol depends criti-
cally on the percentage of correctly assigned CS–atom pairs in the
initial models. As described, the better agreement with the exper-
imental data obtained for structures that are closer to the native
results in a higher probability of good scoring assignments that are
sufficient to detect those models. Successful refinement requires
that at least 15–25 CS–atom pairs are consistently assigned to one
another in the best-scoring assignments and can therefore be
detected by the consensus analysis. This scoring cannot be achieved
if the average fraction of correctly assigned backbone atoms drops
under a critical threshold, which is 	4% (see Table 1). In these
cases, the increased score for some of the optimized assignments
was sufficient enough to detect the best cluster center. However, the
fraction of correctly assigned signals was lower, which, in turn,
reduces the consensus part of optimized assignments. If this part
becomes too small, not enough CS–atom pairs are reliably detect-
able. This result explains why refinement for 1b4c, 1cmz, 2ezm, and
2ezxA was impossible.

This limit can be pushed either by having better models (which
results in better assignments), using more experimental data (which
restricts the space of possible CS–atom assignments and therefore
increases the chance that a high scoring assignment is also one with
a significant fraction of correctly assigned atoms), or increasing the
number of analyzed assignments. It should be remembered that this
experiment was designed to be a worst case scenario: de novo
structural models were used with completely unassigned NMR
data. Often better structural models will be available through
comparative modeling approaches. Moreover, the optimization
algorithm is written in a way that easily allows the addition of
experimental information about obligate bond connections, as
obtainable through HN(CO)C� experiments and dihedral angles
derived from J-couplings or crosscorrelated relaxation. Triple res-

Fig. 5. Refinement of the best-scoring ubiquitin model to high resolution. Five
cycles of the optimization process were necessary to achieve convergence. Start-
ing from the best-scoring cluster center (cc) with an rmsd of 3.43 Å, the number
of correctly assigned atoms that were detectable (blue bars) steadily increases
and the rmsd of the refined model decreases (bars shown in the color of the
corresponding backbone model shown on the left). Both the backbone (green
model, rmsd � 0.60 Å) and side-chain (rmsd � 0.76 Å) conformation in the final
structure are quite close to the correct structure (ribbon). The number of correctly
assigned backbone atoms increases from 16 to 205.

Fig. 6. The structure of the fumarate sensor DcuS (a) as determined using
ROSETTA de novo fold prediction and unassigned CSs, NOEs, and RDCs. The
suggested model adopts the correct topology and has an rmsd of 6.0 Å to a
near-final NMR model (44). (b) The correlation between the rmsd to this near-
final structure (blue circle) and the consistency score, S. The de novo cluster center
(green diamond) and the two comparative models (red and black squares) score
better than the incorrect folded cluster centers (gray diamonds).

15408 � www.pnas.org�cgi�doi�10.1073�pnas.2434121100 Meiler and Baker



onance NMR data can also constrain NOEs by connecting one of
the two hydrogen atoms to the directly bonded carbon or nitrogen
atom. Such information is considered by introducing additional
constraints that require the respective CS values to be assigned to
bond hydrogen and carbon�nitrogen atoms as already derived and
used for the RDC information.

The quality achievable by the refinement is somewhat limited by
the capabilities of ROSETTANMR, which is not designed to generate
highest-resolution models. ROSETTANMR currently does not handle
high-resolution side-chain NOEs, and, therefore, does not take
advantage of the number of unambiguously assigned side-chain
NOE increases. Also, ROSETTANMR, in its current implementation,
is unable to handle ambiguities caused by overlapping signals,
because only unambiguous distance constraints can be input. Thus,
further improvement of the models might become possible by using
programs designed for high-resolution structure elucidation [e.g.,
X-PLOR (40), CNS (41), and ARIA (42)]. However, the strength of the
ROSETTANMR algorithm, namely the ability to built excellent models
from only a few data points, is certainly critical for the success of the
described approach. The models are similar in quality to those
generated by ROSETTANMR using sparse assigned datasets (28, 29).

An alternative approach for using unassigned NMR data has
recently been described by Grishaev and Llinas (19, 20) and Hus et
al. (43). The ‘‘clouds’’ algorithm of Grishaev and Llinas (19, 20)
searches for a proton distribution consistent with the distance
information contained within NOESY spectra and fits the protein
structure into this distribution by using molecular dynamics. Hus et
al. (43) described the automated protein backbone assignment from
RDC by means of a combinatorial optimization algorithm, if the
x-ray structure of the protein is known.

The major advantage of our approach in comparison with the
latter methods is the simultaneous incorporation of NOE, RDC,
and CS information, together with the utilization of protein struc-
ture prediction algorithms. The derivation of a low-resolution
model, together with a partial assignment, makes the algorithm well
suited as a step in structure elucidation. Its capability of incorpo-
rating partial assignments as input and running the protocol
iteratively also suggests its value for accompanying the structure
elucidation process. The algorithm is nondeterministic, which
makes it robust with respect to overlap in the obtained spectra,
missing signals or additional artifacts, which should allow using the
output of automated peak-picking protocols as input. It is also
forgiving regarding the quality of the initial protein model.

The algorithm was recently applied to unassigned NMR data for

the 140 amino acids fumarate sensor, DcuS (44). The protein is a
prototype for a sensory histidine kinase with transmembrane signal
transfer. A total of 1,100 CS signals, 3,000 NOESY crosspeak
intensities, and 209 RDCs were extracted from the original spectra
and directly used as input to the algorithm. De novo structure
prediction as well as comparative modeling using a remote homo-
logue (GAF domain 1f5mA: ref. 45) was performed. Two com-
parative models and six cluster centers from de novo prediction were
selected for analysis. While the high-resolution structure elucida-
tion has not been completed, we can compare theses eight models
with a near-final model (44). The cluster center most similar to the
DcuS model (rmsd � 6.0 Å) as well as the two comparative models
(rmsd � 8.3 and 9.4 Å) have the correct topology and are scored
significantly better than the remaining cluster centers (Fig. 6).

Conclusions
We have developed a rapid method for protein fold determina-
tion from unassigned NMR for proteins with up to 130 amino
acids. Depending on NMR and computational resources, the
procedure could be completed soon after the protein is ex-
pressed. In combination with the automation of the protocol, this
approach has the potential to be scaled up for protein fold
prediction in structural genomics. The low-resolution models
produced can be used to identify the structural family of the
protein, assist the search for related proteins, help to identify the
function, and accelerate high-resolution NMR structure deter-
mination greatly. The analysis of the consensus of several
different assignments optimized for one and the same structural
model allows the detection of CS–atom assignments with a high
probability of being correct, and these partial assignments can
allow a refinement of the initial model to higher resolution,
automatically and without manually assigning signals. However,
the applicability of this refinement protocol depends on the
quality of the obtained assignments, and, therefore, critically on
the amount of experimental data as well as the quality of the
structural models produced by ROSETTA.
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