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Abstract In order to process data of proteins, a numeri-
cal representation for an amino acid is often necessary.
Many suitable parameters can be derived from experi-
ments or statistical analysis of databases. To ensure a fast
and efficient use of these sources of information, a re-
duction and extraction of relevant information out of
these parameters is a basic need. In this approach estab-
lished methods like principal component analysis (PCA)
are supplemented by a method based on symmetric neu-
ral networks. Two different parameter representations of
amino acids are reduced from five and seven dimen-
sions, respectively, to one, two, three, or four dimensions
by using a symmetric neural network approach alterna-
tively with one or three hidden layers. It is possible to
create general reduced parameter representations for
amino acids. To demonstrate the ability of this approach,
these reduced sets of parameters are applied for the ab
initio prediction of protein secondary structure from pri-
mary structure only. Artificial neural networks are imple-
mented and trained with a diverse representation of 430
proteins out of the PDB. An essentially faster training
and also prediction without a decrease in accuracy is ob-
tained for the reduced parameter representations in com-
parison with the complete set of parameters. The method
is transferable to other amino acids or even other molec-
ular building blocks, like nucleic acids, and therefore
represents a general approach.

Keywords Amino acid parameters · Neural networks ·
Quantitative structure–property relation · Secondary
structure prediction

Introduction

Artificial neural networks are now a widespread and in-
tensively discussed method for analyzing data and de-
scribing relationships in chemistry. [1, 2] Neural net-
works are often the preferred solution if the dependence
cannot be expressed by a simple mathematical equation
or this equation is unknown and also not important for
solving the problem. Moreover, neural networks are par-
ticularly suitable for working with blurred information
and are able to apply learned correlations to unknown
examples. Many applications of these networks already
exist in chemistry [3, 4, 5, 6, 7, 8, 9] and in particular
also for secondary structure prediction of proteins. [10,
11, 12, 13, 14, 15, 16]

However, the focus of this paper is the introduction of a
so far not intensively discussed possibility of using neural
networks: reducing the number of dimensions for a param-
eter representation as traditionally performed by principal
component or cluster analyses. The method was introduced
by Livingstone et al. [17] and also used by Kocjancic and
Zupan [18] as a mapping device. Here it is applied to re-
duce the dimension of property representations of amino
acids. The potential of these reduced parameter representa-
tions is demonstrated by comparing them with the com-
plete property representations in their ability to serve as in-
put for another neural network that predicts the secondary
structure of proteins from primary structure only.

System and methods

A dataset of l individuals containing m properties for each
of these individuals is called a m-dimensional property
representation of these l individuals. These m properties
can be projected into n dimensions with n&lt;m by princi-
pal component analysis or cluster analysis. This is of spe-
cial interest for obtaining linear dependencies between
these properties and of course for visualizing relations be-
tween the l individuals. However, these purposes can also
be obtained using artificial neural networks. As given in
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Fig. 1, a three-layer neural network can be built with m in-
puts and m output neurons but only n hidden neurons. Due
to their symmetric architecture (m inputs, n hidden neu-
rons, m output neurons), these networks are called sym-
metric networks. This is in one sense a critical name since
the nodes in the input layer act mainly as distributors.
Therefore, they are also not regarded as neurons in Fig. 1.
They process the non-weighted input data without sum-
marizing and with a linear transfer function y=x to pass
the information to the hidden neurons. So the three basic
features of an artificial neuron, the summation of previ-
ously weighted information to process it with a transfer
function, are hardly recognizable in this case. Therefore,
the nodes of the first layer have a different structure than
the neurons in further layers. Thus the phrase “symmetric”
just targets the symmetric distribution of all neurons in-
cluding the nodes of the input layer relative to the central
hidden layer. It does not reflect the fact that the nodes of
the input layer have a significantly different structure than
the neurons of the output layer. Moreover, the weights are
also not restricted to be symmetric in their value with re-
spect to the central hidden layer.

However, training this network with the m properties
of l individuals to predict again the same m properties
provides a network where in the hidden layer all the 
information is represented by n numbers. If now these 
n numbers for the l individuals are obtained, an 
n-dimensional representation of the m properties for each
of the l individuals is found. Depending on the transfer
function, the representing parameters lay between 0 and
1 (e.g. ) or between –1 and 1 (e.g.

). The completeness of this representa-
tion can be obtained by investigating the deviation of the
original properties with the properties back- calculated
by the three-layer network.

Using a neural network with only one hidden layer,
the dependence of the reduced parameter set p'j (1≤j≤n)
on the original one pi (1≤i≤m) is linear except for the sig-
moidal transfer function:

Also the back transformation of the reduced parameters
to the original uses the same “pseudolinear” equation.
Thus, the similarity of this approach to a principal com-
ponent analysis is obvious. Each of the derived parame-
ters is a linear combination of the original parameters
processed with the transfer function.

To analyze the data due to a more complex depen-
dence, a five-layer network can be created, again with m
input and output neurons and n neurons in the third layer
as given in Fig. 1. Now an additional hidden layer allows
a modification of the data before the reduced parameter
representations are obtained in the central hidden layer
and another hidden layer is inserted after the central hid-
den layer (Fig. 1). The model is much more complex
than linear and therefore able to simulate even compli-
cated polynomial functions because of the very flexible
network model.

The number of neurons in these additional hidden lay-
ers could obviously be varied between n and m. Less
than n neurons in these layers would force the network to
reduce the dimension in the second and the fourth layer
even further than just to n dimensions, whereas more
than m neurons would distribute m input values in even
more parameters in the second and the fourth layer. As
expected, the lowest RMSD value in the optimization of
these networks is obtained using m neurons in the second
and in the fourth layer. In this case one working neuron
in the additional layers is provided for every input and
output neuron to process the information. The two latter
points justify the use of m neurons in the second and the
fourth layer. Since it is the largest possible value be-
tween n and m it is consequently the most complex mod-
el and therefore capable of achieving the biggest contrast
to the three-layer case. Again the property information is
represented by only n numbers in the third layer.

A more detailed description of the method as well as
a comparison to other methods can be found in the litera-
ture. [17, 18, 19]

Algorithm and implementation

The generation and the testing of the reduced parameter
representations is performed in two consecutive steps:
● Training of symmetric neural networks with property

representations of all twenty naturally occurring ami-
no acids and obtaining the reduced parameter repre-
sentations from these networks.

● Testing the reduced parameter representations by
comparison with the complete parameter representa-

Fig. 1 An m-dimensional parameter representation for an amino
acids is presented to an artificial neural network with three or five
hidden layers. The data are processed through a central hidden
layer with n≤m neurons and recalculated by the output layer con-
taining again m neurons. The network is trained with parameter
representations for all 20 amino acids that occur in natural systems



ed from a subspace of the PDB [21] containing 430 pro-
teins with over 60,000 residues. Thus, every one of the
20 naturally occurring amino acids is represented by five
or seven properties, respectively.

Overall, 24 small neural networks were trained with
different number of hidden neurons to obtain the reduced
parameter representations:

Number of Three layer Five layer
hidden neurons network network

Five parameter set 1, 2, 3, 4, 5 1, 2, 3, 4, 5
Seven parameter set 1, 2, 3, 4, 5, 6, 7 1, 2, 3, 4, 5, 6, 7

For the mapping procedure, no testing set of data is re-
quired. All 20 amino acids are therefore a part of the
training set of data. The training is continued until the
root mean square deviation of the recalculated property
values is minimized. After the training process the net-
works are “cut” after the second (three-layer network) or
third layer (five-layer network) to obtain the reduced pa-
rameter sets. The central hidden layer becomes the out-
put layer and the values detected by applying the proper-
ty values at the inputs for all 20 amino acids provide the
parameter representations.

In order to test the information conserved in these re-
duced parameter representations, neural networks were
trained to predict secondary structure of proteins from
primary structure only: basically the secondary structure
is predicted for every amino acid in one run. The se-
quence information is provided as input for a symmetric
window around this amino acid of interest. The second-
ary structure of a protein is calculated by moving this
window over the sequence and calculating the secondary
structure for every amino acid individually. This concept
of a moving window has been widely used for this pur-
pose (e.g. [10]).

The input values for every amino acid are the m prop-
erties of the amino acid or their reduced n-dimensional
parameter representations. The number of values neces-
sary to describe one amino acid is therefore not fixed but
varies between one and seven. In our example the size of
the window was optimized to contain the central amino
acid as well as 15 amino acids before and after it
(Fig. 2). Thus, this initial window has a size of 31 amino
acids. This is a compromise between a window as large
as possible to provide the most possible complete se-
quence information and a preferably small input layer to
minimize the number of connections. Since the number
of connections is equal to the degrees of freedom in the
artificial neural network, this parameter determines the
necessary training information (number of sequences
with known secondary structure) as well as the time for
the training procedure.

Although the next neighbors of the amino acid of in-
terest have a larger impact on the formation of secondary
structure fragments, the part of the sequence not repre-
sented by the 31 amino acid window also influences the
formation of secondary structure. This is because the
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tions. Therefore both parameter representations are
used to code protein sequences and their secondary
structure is predicted by training another artificial
neural network with these numbers.

For the calculation of the reduced parameter sets, five
properties of amino acids are used: a steric parameter,
hydrophobicity, volume, polarizability, [20] and isoelec-
tric point (Table 1).

The steric parameter is the graph shape index Ξ. This
parameter encodes complexity, branching, and symmetry
of a group and can be calculated directly from the graph
structure of the amino acid side chain.

The hydrophobicity π is defined as a side chain pa-
rameter as π(side chain)=log P(amino acid)–log P(gly-
cine) in which P is the partition coefficient of the amino
acid in octanol/water.

The normalized van der Waals volume υv is defined
by υv(side chain)=[V(side chain)–V(H)]/V(CH2). The
measure is therefore 0 for glycine and 1 for alanine.

The polarizability α is related to the molar refractivi-
ty. It is given by:

(n: index of refraction, M: molecular weight, d: density,
N: number of atoms).

These values are used alone (five-parameter set) as
well as in combination with two statistical parameters:
helix and sheet probability (seven-parameter set, Ta-
ble 1). The secondary structure probabilities are extract-

Table 1 Amino acid parameter sets

Name Ξa αb υv
c πd Ιe αf βg

ALA 1.28 0.05 1.00 0.31 6.11 0.42 0.23
GLY 0.00 0.00 0.00 0.00 6.07 0.13 0.15
VAL 3.67 0.14 3.00 1.22 6.02 0.27 0.49
LEU 2.59 0.19 4.00 1.70 6.04 0.39 0.31
ILE 4.19 0.19 4.00 1.80 6.04 0.30 0.45
PHE 2.94 0.29 5.89 1.79 5.67 0.30 0.38
TYR 2.94 0.30 6.47 0.96 5.66 0.25 0.41
TRP 3.21 0.41 8.08 2.25 5.94 0.32 0.42
THR 3.03 0.11 2.60 0.26 5.60 0.21 0.36
SER 1.31 0.06 1.60 -0.04 5.70 0.20 0.28
ARG 2.34 0.29 6.13 -1.01 10.74 0.36 0.25
LYS 1.89 0.22 4.77 -0.99 9.99 0.32 0.27
HIS 2.99 0.23 4.66 0.13 7.69 0.27 0.30
ASP 1.60 0.11 2.78 -0.77 2.95 0.25 0.20
GLU 1.56 0.15 3.78 -0.64 3.09 0.42 0.21
ASN 1.60 0.13 2.95 -0.60 6.52 0.21 0.22
GLN 1.56 0.18 3.95 -0.22 5.65 0.36 0.25
MET 2.35 0.22 4.43 1.23 5.71 0.38 0.32
PRO 2.67 0.00 2.72 0.72 6.80 0.13 0.34
CYS 1.77 0.13 2.43 1.54 6.35 0.17 0.41

a Steric parameter (graph shape index)
b Polarizability
c Volume (normalized van der Waals volume)
d Hydrophobicity
e Isoelectric point
f Helix probability
g Sheet probability
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secondary structure is influenced not only by short pri-
mary structure sequences but also by long-range interac-
tions that occur in the tertiary structure and can therefore
contain interactions between amino acids that are far
apart in the primary sequence.

To enable the network to use at least some informa-
tion about the parts of the sequence not considered, all
amino acids before and after this window of 31 amino
acids were incorporated into average property and pa-
rameter values. These averages somehow represent the
character of the remaining part of the protein that sur-
rounds the 31-amino acid window (e. g. mainly aliphatic
amino acids, pH character,...). The averages are comput-
ed for four groups of amino acids before and after the
31-amino acid window, respectively. The first three
groups contain the average values for five amino acids
each. They therefore hold information for another 30
amino acids, 15 on each side of the window. The fourth
group on both sides contains the average values of all re-
maining amino acids before or beyond this window of
now 61 amino acids to the start or to the end of the se-
quence. As visualized in Fig. 2 this leads to 31+8=39
groups of input properties (or parameters). For every one
of these 39 groups either m properties or n parameters
are used as description, which leads to 39·m and 39·n in-
put neurons, respectively. The use of these additional

four groups with averaged parameters on both sides
leads to an overall improvement of about 2% in the pre-
diction (compare with the Q3 values discussed later).

All three-layer neural networks contain 39 hidden
neurons. This number is optimized for the network
trained with the seven-property representation and re-
mains constant to ensure comparable conditions for all
experiments.

Probabilities for being a part of an α-helix, β-sheet, or
coil for every amino acid (in the range of 0–1) are ob-
tained at the output layer. “Coil” covers in our case all
other secondary structure elements, loops, and turns ex-
cept α-helix and β-sheet. For the training of these net-
works these probabilities are set to be "1 0 0”, "0 1 0”, or
“0 0 1”, respectively.

Optimizing these networks shows that an increase of
correctly predicted secondary structure is obtained by
predicting the secondary structure of more than one ami-
no acid in one run. The optimum is found by calculating
probabilities for five amino acids before and after the
central amino acid, respectively. Therefore, 11 amino ac-
id probability sets are predicted parallel in one network
run, which leads to 33 output neurons for all neural net-
works (Fig. 2). By moving the window over the amino
acid sequence, every single amino acid is part of the out-
put window exactly eleven times. These 11 predicted
probabilities for one amino acid are combined by a trian-
gular weighted average. The prediction is weighted with
1 if the amino acid is the central one and the weight is
reduced as the amino acid moves to the edges of this
window of 11 amino acids. The vector of the 11 weights
is consequently w=(0.166, 0.333, 0.500, 0.666, 0.833,
1.000, 0.833, 0.666, 0.500, 0.333, 0.166). The three
probabilities are computed by

where pi
H,S,C are the eleven predicted probabilities for an

amino acid to be part of a helix, a sheet, or a coil region.

Fig. 2 Three-layer network for predicting secondary structure of
amino acids is visualized. 39 n-dimensional parameter or m-di-
mensional property representations of amino acids are presented
to the network. The number of input neurons is therefore 39n or
39m, respectively. The gray shaded central amino acid is sur-
rounded by 15 amino acids represented by individual parameters
as well as 15 additional amino acids represented by average pa-
rameters computed for three groups of five amino acids, respec-
tively. All other amino acids surrounding this window of 61 amino
acids are represented by the average value of their parameters
(“edge”). The data pass a hidden layer containing 39 hidden neu-
rons and the network is trained to predict probabilities for α-helix,
β-sheet, and unknown secondary structure for the central amino
acid as well as the next five amino acids on both sides of the cen-
tral amino acid
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This procedure allows us to correct a possible wrong
judgment for the central amino acid alone. In about 3%
of all cases this correction takes place and the overall ac-
curacy is therefore improved by 3% using this procedure
(compare with the Q3 values discussed later).

All in all 16 neural nets using different property and
parameter representations as input are trained. Two net-
works with the complete five- and seven-parameter rep-
resentations as well as 14 networks using one-, two-,
three-, and four- (only for the seven-property representa-
tion) dimensional parameter representations are obtained
from three- and five-layer networks with five and seven
properties used for training. To ensure the use of all
known folds in this procedure, the FSSP database
(http://www.ebi.ac.uk/dali/fssp/) introduced by Holm
and Sander [21] is used.

For the training of these networks, 430 peptides de-
rived from this database are separated into two sets of
data: first with 95% of the peptides for training the net-
works and second with the remaining 5% for testing. The
networks are trained until the root mean square deviation
of the testing data set is minimized. Probabilities be-
tween 0 and 1 are obtained using a sigmoidal transfer
function and back-propagation of errors as the training
method. All neural networks are trained and analyzed us-
ing the program “Smart”. [22]

Discussion

Figure 3 gives the root mean square deviation of the re-
calculated and normalized property values depending on
the number of layers, number of hidden neurons and
number of properties. As expected, a network with m
hidden neurons is able to recalculate the m given proper-
ties totally. The small deviation obtained for the net-
works with five or seven hidden neurons, respectively, is
due to the use of an optimization instead of a direct cal-
culation of the weights. However, differences are ob-
served for networks with a reduced number of hidden
neurons. First of all, networks with five layers are able to
reproduce the data with smaller deviation than nets with
only three layers using the same number of hidden neu-
rons. This is in line with expectations because of the
ability of these nets to simulate more complicated depen-
dencies and proves that in these cases more information
can be projected into an n-parameter representation. In
this case for both the five- and the seven-property repre-
sentation, a nearly complete description of the properties
is given by only three numbers. The RMSD is about
0.020 in both cases. The RMSD for the three-layer net-
works is significantly larger with about 0.053 and 0.080
for the five-property and for the seven-property fit, re-
spectively. These values are in the order of the according
networks with only one hidden neuron but five layers.
However, one has to keep in mind that in the networks
with five layers, two layers are used to recalculate the
property values from the parameter representation in-
stead of only one layer in the three-layer network. Thus,
the recalculation again uses a much more complicated
model and of course more weights. The improvement of
the prediction going from five to seven properties and
especially for going from three- to five-layer networks is
clearly observable.

All reduced parameter representations derived are
given in Tables 2 and 3, and some examples are visual-
ized in Fig. 4. Groups of amino acids with similar prop-
erties are plotted closer together and become better sepa-
rated by increasing the number of layers from three to
seven and also by using seven instead of five properties,
even for the one-dimensional representations. 

For example, the aromatic amino acids are all plotted
together in a range of 0.20 in the three-layer case but in a
range of 0.05 in the five-layer case. Also, the basic ami-

Fig. 3 Final RMSD values for neural network back-calculation of
an m-dimensional parameter set drawn on the y-axes. The number
of hidden neurons used is given on the x-axes. The number of lay-
ers and the parameter set used are varied according to: a) three-
layer networks trained with five-parameter set; b) three-layer net-
works trained with seven-parameter set; c) five-layer networks
trained with five-parameter set; d) five-layer networks trained
with seven-parameter set. The assigned letters correspond to the
letters used in Tables 2, 3, and 4

Fig. 4 Obtained reduced pa-
rameters for the five-layer neu-
ral network mapping the seven-
parameter set in one (a), two
(b), or three (c) dimensions
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no acids are plotted closer together and separated clearly
from the rest. Only histidine is found between the aro-
matic and the basic amino acids because of its ambigu-
ous character. Glutamine and asparagine are plotted clos-
er together and become clearly separated from glutamic
and asparagic acid in going from three- to five-layer net-
works. While methionine and cysteine are also plotted
close together, aliphatic amino acids are relatively wide-
spread but sorted by the size of the side chains. Also ser-
ine and threonine are projected with a large difference.

This marks the incomplete representation given in this
one dimension and is improved by introducing further
parameters. This incompleteness also causes the ambigu-
ous position of proline in the one-dimensional represen-
tations (0.34, 0.45, 0.77, 0.00). The network obviously
learns the large and easily obtainable differences first.
The single neuron in the hidden layer reaches its capaci-
ty fast, and the proline parameter becomes ambiguous.
The RMSD values of the back-calculated properties
(Fig. 3) prove that only a part of the information can be

Table 2 Reduced parameter representation obtained from the three-layer network

Name (a) Three-layer networks trained (b) Three-layer networks trained with seven-parameter set
with five-parameter set

1D 2D 3D 1D 2D 3D 4D

ALA 0.13 0.15 0.04 0.20 0.84 0.27 0.28 1.00 0.52 0.84 0.50 0.00 1.00 1.00 0.98 0.56
GLY 0.00 0.00 0.03 0.03 1.00 0.32 0.00 0.99 1.00 0.04 0.05 0.20 0.29 0.76 0.18 0.07
VAL 0.55 0.57 0.04 0.69 0.59 0.18 0.76 0.19 0.68 0.68 0.20 0.87 0.38 0.73 0.31 0.93
LEU 0.61 0.62 0.03 0.71 0.53 0.20 0.69 0.45 0.44 1.00 0.43 0.49 0.79 0.82 0.73 0.87
ILE 0.75 0.73 0.03 0.91 0.50 0.16 0.84 0.13 0.60 0.88 0.25 0.88 0.47 0.73 0.38 1.00
PHE 0.81 0.80 0.11 0.83 0.25 0.32 0.83 0.17 0.52 0.88 0.39 0.83 0.43 0.33 0.32 0.78
TYR 0.76 0.75 0.28 0.66 0.09 0.45 0.81 0.18 0.52 0.56 0.44 0.92 0.18 0.03 0.12 0.54
TRP 1.00 1.00 0.20 1.00 0.03 0.32 1.00 0.00 0.36 0.96 0.51 1.00 0.35 0.09 0.31 0.86
THR 0.36 0.37 0.11 0.40 0.56 0.36 0.50 0.47 0.76 0.40 0.22 0.68 0.26 0.42 0.14 0.48
SER 0.15 0.15 0.09 0.14 0.72 0.41 0.26 0.77 0.84 0.24 0.21 0.39 0.32 0.55 0.22 0.26
ARG 0.46 0.40 1.00 0.06 0.00 0.00 0.51 0.92 0.00 0.00 1.00 0.52 0.05 0.21 1.00 0.13
LYS 0.33 0.27 0.82 0.00 0.16 0.05 0.42 0.93 0.20 0.00 0.84 0.47 0.08 0.36 0.87 0.14
HIS 0.52 0.50 0.43 0.37 0.25 0.18 0.57 0.56 0.44 0.32 0.56 0.68 0.18 0.30 0.47 0.38
ASP 0.16 0.20 0.19 0.09 0.44 0.98 0.23 0.87 0.76 0.48 0.40 0.18 0.53 0.00 0.04 0.00
GLU 0.24 0.28 0.24 0.14 0.31 1.00 0.36 0.95 0.40 0.88 0.74 0.00 0.94 0.09 0.46 0.14
ASN 0.21 0.20 0.34 0.09 0.44 0.41 0.25 0.86 0.68 0.12 0.43 0.40 0.19 0.24 0.27 0.06
GLN 0.31 0.32 0.30 0.20 0.31 0.55 0.43 0.84 0.40 0.64 0.67 0.24 0.59 0.30 0.59 0.26
MET 0.58 0.58 0.09 0.60 0.41 0.34 0.67 0.48 0.40 0.96 0.52 0.48 0.74 0.58 0.66 0.73
PRO 0.34 0.33 0.01 0.43 0.72 0.14 0.45 0.44 0.92 0.08 0.00 0.82 0.00 0.58 0.00 0.46
CYS 0.42 0.42 0.00 0.57 0.75 0.16 0.57 0.29 0.88 0.44 0.04 0.81 0.27 0.82 0.20 0.75

Table 3 Reduced parameter representation obtained from the five-layer network

Name (c) Five-layer networks trained (d) Five-layer networks trained with seven-parameter set
with five-parameter set

1D 2D 3D 1D 2D 3D 4D

ALA 0.01 0.13 0.06 0.23 0.19 0.19 0.11 0.55 0.78 1.00 0.19 0.25 0.56 1.00 0.86 0.19
GLY 0.00 0.00 0.00 0.00 0.00 0.09 0.00 0.92 1.00 0.90 0.00 0.00 0.05 0.70 0.59 0.17
VAL 0.93 0.26 0.11 0.89 0.29 0.84 0.72 0.26 0.88 0.71 0.18 0.79 0.48 0.77 0.30 0.99
LEU 0.94 0.78 0.23 0.98 0.39 0.48 0.91 0.21 0.57 0.90 0.76 0.79 0.70 0.78 0.89 0.49
ILE 0.94 0.44 0.15 1.00 0.29 1.00 0.74 0.20 0.88 0.71 0.45 0.89 0.94 0.83 0.35 1.00
PHE 0.96 0.92 0.23 0.93 0.59 0.36 0.98 0.14 0.45 0.83 0.77 0.88 0.69 0.50 0.81 0.58
TYR 0.96 0.94 0.30 0.50 0.75 0.16 0.99 0.16 0.27 0.66 0.67 0.89 0.58 0.23 0.70 0.52
TRP 1.00 0.98 0.15 0.95 1.00 0.11 1.00 0.00 0.00 0.95 1.00 1.00 1.00 0.37 0.89 0.66
THR 0.74 0.18 0.13 0.41 0.32 0.52 0.59 0.40 0.92 0.37 0.18 0.73 0.23 0.55 0.38 0.67
SER 0.03 0.12 0.09 0.16 0.30 0.10 0.04 0.56 0.94 0.76 0.11 0.37 0.19 0.55 0.57 0.41
ARG 0.50 1.00 1.00 0.05 0.96 0.00 0.45 1.00 0.02 0.00 0.76 0.66 0.34 0.00 1.00 0.01
LYS 0.47 0.97 1.00 0.02 0.75 0.00 0.51 0.97 0.08 0.15 0.42 0.86 0.27 0.11 0.86 0.08
HIS 0.69 0.90 0.40 0.30 0.65 0.05 0.55 0.31 0.31 0.20 0.34 0.92 0.39 0.25 0.76 0.39
ASP 0.09 0.07 0.40 0.23 0.27 1.00 0.07 0.75 0.88 0.54 0.29 0.22 0.51 0.41 0.11 0.00
GLU 0.12 0.13 0.45 0.27 0.40 0.76 0.21 0.61 0.49 0.68 0.57 0.37 0.90 0.87 0.32 0.01
ASN 0.37 0.59 0.55 0.11 0.49 0.04 0.05 0.61 0.92 0.17 0.27 0.68 0.19 0.18 0.68 0.18
GLN 0.34 0.67 0.45 0.20 0.55 0.09 0.28 0.42 0.45 0.71 0.69 0.65 0.46 0.49 0.84 0.21
MET 0.94 0.84 0.30 0.73 0.52 0.21 0.94 0.23 0.53 0.88 0.78 0.79 0.66 0.67 0.89 0.42
PRO 0.77 0.18 0.09 0.70 0.17 0.71 0.00 0.36 0.96 0.24 0.05 0.82 0.00 0.82 0.00 0.99
CYS 0.92 0.21 0.02 0.93 0.30 0.44 0.61 0.24 0.98 0.88 0.03 0.65 0.09 0.54 0.65 0.74



saved by the network. However, an increase in the num-
ber of dimensions will overcome this problem and the
parameters for proline will also become rather well de-
fined. The still observable usually relatively small differ-
ences between the individual parameter representations
are then only based on differences in the applied proper-
ty sets (five- versus seven-property representation) or on
different models (three- versus five-layer network).

For the two- and three-dimensional parameter repre-
sentations, an improvement can again be obtained using
two additional hidden layers. Moreover, the representa-
tion changes significantly going from five to seven prop-
erties. A better use of space while using the seven prop-
erty values and a clearer separation of the amino acid
groups is obtained by increasing the number of layers in
the network.

Beside the information obtainable by this projection
method about similarities in a data set, these reduced pa-
rameter representations given in Tables 2 and 3 can be
used as general reduced parameter sets for representing
amino acids. Using the trained and cut neural networks,
the same parameter representation can also be calculated
for other amino acids. Of course, the parameters repres-
ent a combination of the properties used and therefore
they cannot be directly interpreted as easily understand-
able properties. Their advantage is the reduction in num-
ber. Visualization becomes possible and allows a graphi-
cal analysis of the parameter space. Calculation time can
be saved by using, for example, three instead of seven
parameters. For a 200-amino acid protein the represent-
ing code can thus be reduced from 1,400 using all seven
properties to only 600 numbers using a three-dimension-
al parameter representation. In our special case, the cal-
culation of all secondary structure probabilities for the
database with 430 proteins can be reduced from 120 s for
the seven property values to 50 s for the three-dimen-
sional parameter representation. However, this is only a
relative small improvement considering the high speed
of computers today. Much more impressive is the gain of
time in the training process. The necessary time for sta-
bilizing the weights does not depend linearly on the
number of weights, but increases much faster with high-
er number of weights. This is difficult to calculate in
general, but for the same example the complete training
process lasts about 24 h for the seven property values but
less than 4 h in the case of the three-dimensional param-
eter representation. (All CPU times are obtained from a
450 MHz Pentium II processor equipped with 512 MB
RAM.)

The method could also become more effective if a
higher number of parameters can be projected in two or
three dimensions. Considering the enormous number of
amino acid and nucleic acid sequences, the potential of
this method to provide general parameter representations
combining a large number of relevant properties is re-
markable and can lead to better mapping pictures as well
as substantial gain in processing time.

Moreover, the influence of each property on a param-
eter can be extracted by a “sensitivity analysis” of the

neural network. In order to do this, the value for each in-
put is varied within the experimental input range, while
all other input are set to be zero. The covered range of
the output neurons gives a sensitivity value between 0
and 1. If the influence of a particular input on a particu-
lar output value is high, the output range covered is large
and the sensitivity becomes 1. However, if the input has
no influence at all, the output value will remain constant
and the sensitivity stays 0.

It must be mentioned that this method gives only a
qualitative picture for several reasons: the unchanged in-
put values are set to be zero, which is just one realistic
input signal. However, there are usually a lot more real-
istic input values, which are not used for this analysis.
The use of another static realistic input signal might in-
fluence the sensitivities obtained. Moreover, due to the
constant signals chosen for all other neurons, the method
is unable to detect cross-correlation effects between dif-
ferent input values. However, the method works reliably
in our hands. The sensitivity values change below 10%
by setting the unchanged input data to other realistic in-
put values. The relations between the different sensitivi-
ties, which change by less than 5%, are preserved even
better.

The one-dimensional parameter representation is
found to be dominated by the volume, while, for exam-
ple, the isoelectric point has no influence at all. In the
two-parameter representation the first parameter is still
dominated by the volume but the isoelectric point is pro-
jected into the second parameter together with the pol-
arizability, which is also only badly represented in the
one-dimensional parameter. The three-parameter repre-
sentation takes all the five parameters into consideration.
The possibility of projecting a part of the steric informa-
tion together with hydrophobicity in parameter 1, and
polarizability, volume, and again hydrophobicity in pa-
rameter 2 is in line with the empirical understanding of
these parameters.

The secondary structure prediction of proteins was
chosen as an example problem in order to test the re-
duced parameter representation. Methods for predicting
the secondary structure of proteins have been discussed
widely and are therefore optimal for testing the derived
amino acid parameters. However, this prediction is car-
ried out to compare the results for the full and reduced
parameter representations only and not to achieve an op-
timal secondary structure prediction. Therefore, the set-
up was not optimized to give the best possible results.

The Q3 values (as introduced in the literature [23]) for
the 16 trained neural networks obtained for the test data
set are given in Table 4. The results for the training data
set are slightly better than those obtained for the testing
data as expected, and therefore not reported here. The
fraction of correct predictions achievable with this
straightforward use of the primary sequence of one pro-
tein only is 67% for the total seven-parameter represen-
tation and 63% for the five-parameter representation.
However, the three- and four-dimensional reduced pa-
rameter representations give results of the same quality.
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The prediction accuracy remains in a range of ±2% con-
stant in all cases. In the case of the five-layer three-di-
mensional representation it even becomes slightly better
than the complete parameter representation.

The prediction accuracy increases by about 5% with
every new dimension introduced for the first three di-
mensions. No further increase is obtained on introducing
further dimensions. Since the prediction accuracy reach-
es the level obtained for the full parameter representa-
tions, the optimal prediction using this method of coding
is reached by introducing the third parameter. The com-
pleteness of the description with these three parameters
is shown by analyzing the RMSD values in Fig. 3 and
now also becomes visible in these results.

It is not surprising that the reduced parameter set ob-
tained from the five-layer networks gives only slightly
better results than that obtained from the three-layer net-
works. The step of data interpretation not performed in
the latter case can be completed by the three-layer neural
network used for deriving secondary structure informa-
tion. Thus, a more significant improvement for parame-
ter sets derived with symmetric five-layer networks com-
pared with three-layer networks might become obtain-

able if linear methods instead of neural networks were
used for the further data processing.

Figure 5 provides an analysis of the input sensitivities
for the calculation of secondary structure with the seven-
property representation. This analysis leads to compara-
ble results for all networks with a prediction accuracy
better than 60%, so that the network using the complete
seven-parameter representation is chosen as an example.
All sensitivities for one of the 39 input data blocks are
summarized in order to derive information about the in-
fluence of each of these input data blocks. The values are
normalized to give 1 for the highest sensitivity. As ex-
pected, the sensitivity for the central amino acid is the
highest. Moreover, a comparably high sensitivity is ob-
tained for the four bordering input blocks on both sides
containing averaged information for the surrounding
amino acids. Of special interest is the higher influence of
amino acids located after the central amino acid in the
PDB file. These are the amino acids synthesized after
this central amino acid in nature and would therefore
suggest that these amino acids have a higher influence
on the folding behavior of the central amino acid. A plot
of the sensitivities obtained only for the helix probability

Table 4 Results for secondary structure prediction of proteins from test data set using the reduced parameter representation in compari-
son with the complete parameter set

Dimension of parameter Prediction of artificial neural networks (%)
representations

α-helix predicted as β-sheet predicted as Coil predicted as Q3 (Σ)

Helix Sheet Coil Helix Sheet Coil Helix Sheet Coil Correct

(a) 1 9.4 3.6 16.8 3.6 8.8 14.7 3.1 4.4 35.5 53.8
2 10.8 3.4 15.7 2.4 10.9 13.7 3.1 3.7 36.3 58.0
3 14.3 3.0 12.6 2.2 12.0 12.9 2.8 3.9 36.4 62.7

(b) 1 9.7 4.0 16.2 3.9 10.0 13.2 3.4 4.8 34.8 54.5
2 16.1 2.9 10.9 1.9 10.2 15.0 4.6 5.6 32.9 59.1
3 19.6 2.2 8.1 1.3 11.7 14.0 4.0 4.6 34.4 65.7
4 19.5 2.8 7.6 2.3 12.2 12.5 4.4 4.7 34.0 65.7

(c) 1 7.7 3.6 18.6 1.9 10.6 14.5 3.5 4.4 35.2 53.5
2 13.8 1.9 14.1 1.9 7.3 17.9 3.7 3.1 36.2 57.3
3 16.4 2.3 11.1 1.8 12.2 13.1 4.5 3.7 34.8 63.4

(d) 1 11.8 2.7 15.4 3.3 8.7 15.1 3.7 4.0 35.3 55.8
2 15.4 2.2 12.3 2.8 9.8 14.4 5.2 4.0 33.8 59.0
3 20.3 1.7 7.9 3.5 9.8 13.8 4.5 3.2 35.3 65.3
4 20.0 1.8 8.0 1.8 12.0 13.2 4.4 4.9 33.8 65.8

Five-parameter set 16.1 2.0 11.8 2.6 11.5 13.0 3.6 4.2 35.3 62.8
Seven-parameter set 20.1 2.2 7.6 3.3 12.4 11.3 4.1 4.4 34.6 67.1

Fig. 5 Input sensitivity for the
39 input blocks of the neural
network predicting secondary
structure probabilities from the
seven-parameter set of amino
acids. The sensitivity is nor-
malized to give 1 for the cen-
tral amino acid. Summarized is
over all output values (gray
bars) and only over the helix
probability (white bars)
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provides an increased sensitivity for the –8th, –4th, +4th,
and +8th amino acids. This result shows the influence of
the local primary structure on the formation of hydrogen
bonds to form an α-helix, which is also the reason for
the higher accuracy in the prediction of α-helices.

Figure 6 gives the sensitivity summarized for the sev-
en- and five-parameter representations, respectively, ob-
tained for the two networks using the complete parame-
ter representations. The dominating influence of the he-
lix and sheet probability in the seven-parameter repre-
sentation is easy to obtain. The improvement in the pre-
diction obtainable on going from five to seven properties
is caused by the two statistically derived values and is
therefore also the reason for their high sensitivity. In this
case the neural network extracts an essential part of the
information not on the basis of amino acid parameters
but rather on the basis of the database knowledge. While
the amino acid properties only reflect primary structure
information, the database averages already contain infor-
mation about the preferred secondary and tertiary struc-
tures of proteins. This additional relevant information
has consequently to improve the prediction of secondary
structure.

A relative increase of the sensitivity for the volume
and the steric parameters is obtained for the five-parame-

ter representation with respect to the seven-parameter
representation as compensation for secondary structure
probabilities not provided in this case. Both parameters
have a high influence on the formation of secondary
structure, as is well known. However, the better results
obtained for the seven-parameter representation prove
that this information cannot be replaced completely.

As widely discussed, errors in secondary structure
prediction often occur at the beginning and end of sec-
ondary structure elements, so that their length or their
position becomes ambiguous. However, most of the sec-
ondary structure elements are found. The comparison of
the three predicted probabilities for helix, sheet, and coil
allows us to decide whether the network is “sure” about
its judgment, or whether a second possibility or even all
three possibilities are of similarly high probability.

Without going into too much detail, the available in-
formation is illustrated on one small protein, ubiquitin,
in Fig. 7. Beside the probabilities for helix, sheet, and
other (the sum is normalized to be one) the true second-
ary structure obtained from the X-ray structure as well as
the predicted secondary structure are given. The overall
prediction of the network is as good as 68% for this pro-
tein. The network misses the small β-sheet region 49–51
and converts the β-sheet 65–72 into an α-helix. The oth-
er secondary structure elements are found at their correct
positions. The α-helix is one period too short and two of
the β-sheets are one amino acid too short. However, the
black dashed line shows 1 minus the second highest
probability divided by the highest probability in %. This
value would be 100%, if one of the three types had been
predicted with 100% probability and the other with zero,
and can reach 0% if two probabilities are the same and
higher than the third. We therefore suggest using this
value as a confidence measure for secondary structure
predictions. As can be seen from Fig. 7, the value is high
if changes in secondary structure occur and especially
for the wrongly predicted α-helix at the end of the se-
quence, since the β-sheet probability is close to having
the same magnitude. If only the predictions with a confi-
dence value smaller than 50% are considered, 91% of the
predicted secondary structure types are correct.

Conclusion

Symmetric neural networks have been implemented suc-
cessfully to reduce the dimensionality of amino acid pa-
rameter sets. The relevant information of these parameter
sets is projected into three numbers, which can be used

Fig. 6 Input sensitivity for the five or seven parameters out of the
complete parameter set obtained from the neural network predict-
ing secondary structure probabilities. The sensitivity is normalized
to give 1 as maximum value

Fig. 7 Secondary structure of ubiquitin is given as obtained from
the X-ray structure (bars above 100) and as seen from the neural
network using the complete seven-parameter representation (bars
below 0). Light gray stands for β-sheet and dark gray stands for α-
helix. The individual probabilities normalized to give a sum of
100% are plotted. Light gray squares are again for β-sheet and
dark gray squares for α-helix. The coil probability is given by a
black line. The final network prediction is given by the highest out
of these three values. The dashed black line is the one minus the
fraction of the second highest and the highest probability in per-
cent. This value provides a confidence value, monitoring how safe
the judgment of the network is for each individual residue
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for further data analysis. The use of reduced parameter
representations has a general potential to increase the
speed of data analysis. In this special case the number of
necessary parameters is decreased by more than 50%,
representing seven properties by three parameters with-
out losing essential information.

The ability of the reduced parameter representations
to provide the complete information is proven by pre-
dicting the secondary structure of proteins from their pri-
mary structure. The reduced parameter representations
with three parameters give comparably good results to
the complete parameter representations. The speed of
computing the secondary structure is increased about lin-
early compared to the complete parameter representa-
tions by more than 100%. The time necessary for train-
ing the network is decreased by a factor of 6.

The approach can be adopted to predict reduced pa-
rameter representations for other amino acids and of
course also for other structural building blocks, as for
example nucleic acids. Moreover, additional or other pa-
rameter sets can be used to create reduced parameter rep-
resentations for the solution of special problems.

Data processing inside a neural network is illustrated
by analyzing input sensitivities of the networks. A confi-
dence value for secondary structure prediction, which al-
lows the critical analysis of the network suggestion of
secondary structure and might be useful to detect false
positives in the predicted secondary structure elements,
is suggested.

Supplementary material. The derived reduced parameter
representations for amino acids, the program for predict-
ing secondary structure: “Secondary” as well as the pro-
gram for training and analyzing artificial neural net-
works “Smart” are available for academic use as supple-
mentary material or from http://www.jens-meiler.de.
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