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ABSTRACT

During CASP10 in summer 2012, we tested BCL::Fold for prediction of free modeling (FM) and template-based modeling
(TBM) targets. BCL::Fold assembles the tertiary structure of a protein from predicted secondary structure elements (SSEs)
omitting more flexible loop regions early on. This approach enables the sampling of conformational space for larger pro-
teins with more complex topologies. In preparation of CASP11, we analyzed the quality of CASP10 models throughout the
prediction pipeline to understand BCL::Fold’s ability to sample the native topology, identify native-like models by scoring
and/or clustering approaches, and our ability to add loop regions and side chains to initial SSE-only models. The standout
observation is that BCL::Fold sampled topologies with a GDT_TS score > 33% for 12 of 18 and with a topology score > 0.8
for 11 of 18 test cases de novo. Despite the sampling success of BCL::Fold, significant challenges still exist in clustering and
loop generation stages of the pipeline. The clustering approach employed for model selection often failed to identify the
most native-like assembly of SSEs for further refinement and submission. It was also observed that for some b-strand pro-
teins model refinement failed as b-strands were not properly aligned to form hydrogen bonds removing otherwise accurate
models from the pool. Further, BCL::Fold samples frequently non-natural topologies that require loop regions to pass
through the center of the protein.
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INTRODUCTION

Experimental structures in the protein data
bank (PDB) are biased toward small soluble
proteins

The tertiary structure of a protein provides essential
insights to its biological function in living organisms.
Accordingly, experimental methods are applied to ascer-
tain protein structure including X-ray crystallography
and nuclear magnetic resonance (NMR) spectroscopy.
Currently, the PDB contains more than 89,258 proteins
(December 2013) of which 79,585 (89%) were elucidated
by X-ray crystallography, 8971 (10%) by NMR, and the
remainder by other technologies.1 Despite these efforts,
the structures represented in the PDB are biased; 87,004
of the proteins in the PDB are soluble while only 2254
(2.5%) of the proteins represent membrane proteins.1

Further, the size distribution of proteins in the PDB is
biased toward small proteins omitting many large macro-
molecular assemblies greater than 500,000 Da (2.0%).1–3

This bias is due to the limitations of experimental meth-
ods for structure determination. Membrane proteins are
underrepresented in the PDB because they are too large
for NMR and their embedding in the two-dimensional
membrane complicates formation of three-dimensional
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crystals required in X-ray crystallography.4 For mem-
brane proteins up to !1000 folds remain to be deter-
mined.5,6 Large macromolecular assemblies are also
underrepresented in the PDB because its protomers do
not fold in isolation, they are difficult to crystallize, and
they are too large for NMR spectroscopic methods.7

Thus, for many biologically relevant proteins only lim-
ited experimental data can be collected with a combina-
tion of experimental techniques such as solid state NMR,
cryo-electron microscopy, electron paramagnetic reso-
nance, mass spectrometry, and small angle X-ray scatter-
ing. On their own, these datasets are insufficient for
atomic-detail structure determination. One major justifi-
cation to develop de novo protein structure prediction
algorithms is to complement such limited experimental
datasets.

De novo protein structure prediction needs
a reduced search space

The cornerstone of de novo protein structure predic-
tion methods is based on the assumption that (most)
folded proteins exist in their lowest energy conforma-
tion.8 Protein folding becomes an energy minimization
process that depends on interaction of amino acids with
the environment and other amino acids in the sequence.
Finding the global minimum of the energy function on
the energy landscape is challenging for several reasons
including that the energy landscape contains many local
minima. Currently, no universal method of identifying
the global minimum of the energy function exists.9 In
practice, the conformational space of a protein is also far
too large to be comprehensively searched with a highly
accurate and therefore slow to compute energy function.
Therefore, the conformational space is reduced by work-
ing with simplified protein representations, at least in the
initial folding simulation. In effect, this reduces the reso-
lution of the energy function which allows a more rapid
calculation but decreases its accuracy to the point where
the global energy minimum cannot be unambiguously
detected and several local energy minima need to be
considered.

Competing de novo structure prediction software
reduces the search space similarly. Rosetta addresses the
sampling challenge by assembling protein models from
three and nine residue peptide fragments.10–12 These
fragments are determined from peptides of similar
sequence and secondary structure extracted from other
proteins in the PDB. For proteins smaller than 80 resi-
dues Rosetta was able to predict atomic detail models in
the absence of any experimental restraints for about 30%
of the test cases.13 For larger proteins up to around
150–180 residues Rosetta samples the correct topology
about 50% of the time.13–15 Generally, Rosetta tends to
perform better for a-helical proteins which is related to
their reduced fold complexity. The complexity of a fold

can be measured by contact order (CO) which is defined
as the average sequence separation of residues in contact,
that is, residues whose Cb atoms are <8 Å apart.16,17 As
the complexity of protein topology increases (high CO)
the accuracy of the Rosetta prediction decreases.16,18

I-Tasser threads the target sequences through a library
of PDB structures with a pair-wise sequence identity
cut-off of 70% to search for plausible protein folds.
Rather than using a fixed set of three and nine residue
peptide fragments, I-Tasser uses fragments of variable
size that are identified by threading.19–21 The frag-
ments are used to reassemble full-length models while
the loop regions between fragments being constructed
de novo. Critical to the success of I-Tasser is the identi-
fication of a suitable templates to create the peptide
fragments—a Pearson correlation coefficient of 0.89 for
RMSD and 0.95 for TM-score.21 Generally, I-Tasser
samples the correct topology about a third of the time
for proteins up to 155 residues long with RMSD< 6.5
Å.21 I-Tasser shares the most critical limitation with
Rosetta, the ready formation of long-range interactions
between residues.

BCL::Fold was designed to overcome size
and complexity limitations in de novo protein
structure prediction methods

BCL::Fold is a de novo protein structure prediction
algorithm based on the placement of disconnected sec-
ondary structure elements (SSEs) in three-dimensional
space as previously published.6,22,23 This algorithm was
developed to test the hypothesis that for many proteins
the core responsible for thermodynamic stability is
largely formed by SSEs. In this case, likely protein topol-
ogies could be detected from SSE-only models. Thereby,
the size and CO restrictions in protein structure predic-
tion can be overcome by assembling disconnected, rather
rigid SSEs, reducing the search space substantially and
allowing the ready formation of nonlocal contacts.22 A
coarse grained knowledge based energy function identi-
fies native-like SSE arrangements using a Monte Carlo
simulated annealing sampling algorithm with Metropolis
criterion.6,22,23 In contrast to I-Tasser or Rosetta, this
algorithm is truly de novo as no fragments from the PDB
are used. Loop regions between SSEs and side chains
atoms are added to the model in subsequent steps using
for example Rosetta.24–26

BCL::Fold uses a consensus of secondary
structure prediction technologies to identify
SSEs

Critical to the success of the BCL::Fold algorithm is
the correct prediction of SSEs: a-helices, b-strands, coil
regions, and trans-membrane spans from sequence.
These predictions are obtained from a consensus predic-
tion from PHD,27,28 PsiPred,29,30 and Jufo9D31–33 for
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soluble proteins. In addition to these methods we used
Octopus34,35 and Jufo9D31 for the trans-membrane
span region of membrane proteins. The consensus pre-
diction is used to build a pool of SSEs, which is input
for protein folding.

A Monte Carlo Metropolis sampling
algorithm positions SSEs in space

Protein models are assembled using a Monte Carlo
sampling algorithm. Each iteration of the algorithm con-
sists of a randomly selected modification to the current
model. Modifications include the addition of an SSE
from the SSE pool to the model; the removal of an SSE
from the model; translational and rotational transforma-
tions of SSEs in the model; swapping of two SSEs; modi-
fications of groups of SSEs (domains) consist of
translating the domain; flipping; and shuffling the differ-
ent SSEs.

After each modification, the model is evaluated by a
knowledge based scoring function.23 This coarse grained
scoring function is designed to evaluate the arrangement
of SSEs in Euclidean space. It is a weighted sum of scor-
ing terms that represent different aspects of SSEs of pro-
tein structures as observed in experimental structures like
the preferred environment of amino acid types (buried
or solvent exposed); the radius of gyration; an SSE pack-
ing and a strand pairing potential; a loop length poten-
tial; clash terms for amino acids and SSEs; and a loop
closure penalty. The loop closure penalty limits the
Euclidean distance between two consecutive SSEs to the
maximum length a stretched out amino acid chain can
bridge and applies a steep penalty for longer loop
distances.

The evaluation with the Metropolis criterion results
in one of four possible outcomes: (1) improved and
accepted, if the calculated energy score is lower than
the energy of the previous model; (2) accepted by the
Metropolis criterion with a function taking the energy
difference and the simulated temperature into account;
(3) rejected if the score is higher than the previous
model and rejected by the Metropolis criterion; (4)
skipped, if the modification is not applicable to the
model, for example swapping SSEs if the model con-
tains only a single SSE. The probability of a step being
accepted with higher energy is based on the tempera-
ture used by the Metropolis criterion. BCL::Fold
adjusts the temperature to achieve a ratio of accepted
steps that reduces from 50 to 20% in the course of the
simulation.

All scoring terms (except for the clash terms and the
loop closure penalty) are statistically derived using
Bayes’ theorem from a divergent high resolution subset
of the PDB generated by the PISCES server with a max-
imum sequence identity of 25%36,37 and then energies

were approximated using the inverse Boltzmann
relation.

The algorithm will continue generating modified mod-
els and evaluating them until a maximum number of
2000 steps was completed or no improvement in the score
was found for 400 consecutive steps; this constitutes one
folding stage. The folding process of one model has five
assembly stages and one refinement stage, which employ a
decreasing number of modifications for large scale pertur-
bations (for example, swapping SSEs) and an increasing
amount of small scale perturbations (for example, bending
an SSE). The lowest energy model within the trajectory
will be saved as resulting model for this run.

The CASP10 experiment: a critical tool for
development of techniques for protein
structure prediction

To evaluate the accuracy of BCL::Fold in de novo pro-
tein structure prediction, we participated in the Critical
Assessment of protein Structure Prediction (CASP10)
experiment, which is held every two years.38,39 The
double-blind experiment tests protein structure predic-
tion methods objectively because the experimentally
determined structure is withheld from predictors, organ-
izers and the assessors until the experiment is finished.
After protein predictions have been made, the experi-
mentally determined structures are revealed and the
results are assessed. CASP10 contained the following cat-
egories: (1) Tertiary structure prediction, which can be
classified as: (a) Template Based Modeling (TBM): start-
ing from a homologous protein template in the PDB. (b)
Free Modeling (FM): no homologous template exists in
the PDB; (2) Tertiary structure prediction with limited
experimental information, for example, amino acids in
contact40; (3) Residue-residue contact prediction41; (4)
Model refinement42; (5) Identification of disordered
regions; (6) Function prediction; (7) Quality
assessment.43

To maximally leverage CASP10 for testing
BCL::Fold we assume all CASP10 targets
to be FM targets

For some targets, templates can be found, that is, pro-
teins with similar sequence and known structure that can
guide the prediction. Based on if templates can be found
and how similar the template structure is to the target
structure, measured by the Global Distance Test/Total
Score (GDT_TS),44 prediction for CASP10 targets is cate-
gorized as easy or hard TBM (easy if the maximal
GDT_TS" 50, hard if the maximal GDT_TS< 50), FM or
a combination of both (TBM/FM). The GDT_TS could
obviously only be employed after the target structures
were available; in the prediction process other measures
like sequence similarity to proteins in the PDB were used
to classify targets. To maximize the assessment of the
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BCL::Fold de novo protein structure prediction algorithm
in CASP10 we treated all targets as FM targets, that is, no
homologous template from the PDB was used at any
point as input into the BCL::Fold prediction algorithm.

MATERIAL AND METHODS

Secondary structure and transmembrane
span prediction

In the first step, the secondary structure is predicted
for soluble proteins using Jufo9D,31–33 PsiPred,29,30

and ProfPHD.27,28 For membrane proteins Jufo9D31

and Octopus34,35 are used to detect secondary structure
and transmembrane spans. From the predicted secondary
structures, a pool is created for use by BCL::Fold as
described before.22 The pool is manually examined to
ensure a complete as possible set of SSEs.

Fold recognition and domain identification

Fold recognition methods combined in bioinfo.pl were
used to see if the target sequence contains multiple
domains,45 and if proteins of those folds have been experi-
mentally determined. If the fold recognition result indicated
that the target has multiple domains, the SSE pool is split
up into sub pools according to the domain boundaries.

BCL::Fold folding simulation

BCL::Fold is run next to produce 12,000 models for
each domain of one target. Depending on the target, the
soluble or membrane protocol is employed. For each
model, a completeness estimate is calculated as fraction
of the sum of the sequence lengths of all SSEs in the
models to the total sequence length of the target. Models

that are 2% less complete than the average model pro-
duced are removed.

Clustering to identify topologies that reside
in wide energy funnels

After filtering the 12,000 models per target by com-
pleteness score, models were selected by three criteria for
further refinement. The first method for selection was
clustering by average RMSD linkage between models
where the clusters ideally only contain models with the
same fold. Cluster sizes varied with the largest clusters
having a few hundred models and the smallest clusters
containing a few or even a single model. Cluster radii
leafs were between 0 and 18 Å with most at 10 Å. The
RMSD cutoff was manually adjusted based on protein
size and model similarity. Up to five models from each
cluster were selected for further refinement. The second
method for selection was ranking by the BCL scoring
function. All filtered models were sorted by BCL sum
score and the lowest scoring models were selected. The
third method was only used if we successfully identified
a template model of the target protein and models were
pooled into a separate set. In this case, the RMSD
between the template and BCL generated models were
computed. The models with the highest similarity (lowest
RMSD) were selected for further refinement. Furthermore,
in some cases the selected models were visually inspected
in PyMOL to evaluate sequence length and Euclidean dis-
tances for later loop reconstruction. In this step, some
models were removed from further processing if loops
went through the center of the protein core (Table I).

Combining domains into complete models

If the target consisted of multiple domains, models of
all possible combinations of domains are created either
by arranging the domains in space close to each other or,
if possible, by aligning the domain models to a template.
The domains do not have to be connected by creating a
loop at this point, because all models consist of only
SSEs and loops will be built in the next step.

Loop construction using cyclic coordinate
decent

Adding loops is a two-step process of inserting the miss-
ing amino acids in a model and creating coordinates for
them by CCD. Once SSEs have been placed, loop regions
between SSEs must be built. Creating loops is a two-step
process of inserting the missing amino acids in a model
and creating coordinates for them. This is accomplished by
adding loop residues using (1) knowledge based potentials,
(2) likely phi and psi backbone angles, and (3) cyclic coor-
dinate descent (CCD). The first step is to dynamically add
missing residues in the loop region. Residues are added
with initial phi and psi angles derived from a probability

Table I
Clustering Statistics of CASP10 Targets folded by BCL::Fold.

Target
Folded
models

After
filtering

Top
cluster

Top
scoring

Top
homology

T0644 9980 4485 2 0 0
T0649 10,000 5135 3 5 0
T0655 9980 4335 1 3 2
T0663 12,000 6495 3 2 3
T0666 12,000 5979 3 3 0
T0676 12,000 6341 3 0 1
T0678 12,000 6371 5 1 2
T0682 12,000 5554 0 3 4
T0684 12,000 5884 16 0 1
T0686 12,000 6230 2 1 0
T0691 12,000 6083 4 1 2
T0700 12,000 6605 1 2 3
T0704 12,000 5932 1 3 1
T0720 12,000 6345 2 2 1
T0722 12,000 8747 1 2 1
T0724 11,999 5886 3 1 0
T0743 12,000 6374 2 2 4
T0745 12,000 6108 2 2 0
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distribution of experimentally observed angles. They are
then perturbed and scored using a knowledge based poten-
tial for native like angles. This potential has scoring terms
that penalize clashes between atoms using van der Waals
radii, compare the sequence length with the Euclidean dis-
tance, measure the gap between adjacent SSEs, incorporate
angles derived from Ramachandran plots, and score the
likelihood that the distance between the SSEs can be closed
by a loop. Once the initial residue coordinates of the loop
region have been placed, CCD46 is used to minimize the
distance between a freely moving and fixed set of coordi-
nates to close a loop. In this second step, an additional
penalty term is added to the scoring function that scores
how close the residue at the loop end is to the pseudo resi-
due at the N terminus of the target SSE. Between 200 and
8400 loop models were build depending on model size
and complexity to achieve a sufficiently low BCL sum
score that is, in a similar score range than the nonloop
start model. Models with loops difficult to close were
either modified to allow an easier loop closure by shorten-
ing the SSEs adjacent to the loop or they were removed
from further modeling. The best scoring loop models
according to the BCL sum score were further processed.

Addition of side chains and model relaxation

One of two methods was used: either side chains were
added with a relax step in which the relative position of
the amino acids were restrained, or, if the first method fails
because of misaligned b-strands, by adding and repacking
side chains. Between 10 and 200 side-chain models were
built to obtain an optimal overall Rosetta score.

Model selection for submission

From the lowest scoring side chain models for each
loop model, the ones deemed most native-like by visual
inspection were selected for CASP10 submission. If a
template model and a similar BCL model were found
before, it was selected as the fifth submitted model.

Topology score to evaluate protein models

To evaluate if BCL::Fold can sample the folding space
required for our target proteins, we introduce a new
measure that focuses on SSE contacts instead of compar-
ing atom positions like RMSD10047 or GDT.44 This new
measure computes the similarity of a model to a native
protein by calculating the fraction of SSE contacts of the
native that are present in a given model and the total
number of SSE contacts of the native (true positive rate,
sensitivity). An SSE contact is assumed if the distance of
the central axis of two SSEs is less than a certain thresh-
old. An SSE can be represented by its central axis for the
purpose of the distance calculation, because all SSEs in a
BCL model are idealized. The threshold below which two

SSEs are assumed in contact depends on the type of SSE
contact (helix-helix: 16 Å; helix-sheet: 16 Å; strand-
strand: 5.5 Å; sheet-sheet: 14 Å) and was derived from
native protein structures from the PDB. These thresholds
were chosen to be large to be as inclusive as possible.
The strength of the interaction is represented by line
thickness of the connecting lines (Fig. 4).

RESULTS

Eighteen targets included in this analysis

During CASP10 a total of 53 targets were released for
human predictors. Eighteen of these had at least one
domain in the FM category. To focus our efforts we
excluded proteins that were very small (<50 residues) or
very large (>400 residues). Further, for some targets calcula-
tions did not finish in time for submission. For 21 targets
models were submitted, five of them in the FM category.
For two targets files were corrupted on our server, for one
target no experimental structure has been released. This
leaves 18 targets, three in the FM category, for analysis
(Table II). Accordingly, treatment of the TBM targets as FM
targets substantially increased the number of proteins that
could be included in the study beyond the small number of
FM targets. One consequence of this procedure is that
BCL::Fold will not rank among top methods for the TBM
section, as we do not expect BCL::Fold to predict protein
structure more accurately than comparative modeling.

An automated pipeline with minimal human
intervention was setup

Here we give an overview of the overall protocol (Fig.
1). A detailed description of the individual steps is given
in the methods section. The folding pipeline starts with
the downloaded target sequence from CASP10 Prediction
center. In the first step, secondary structure and trans-
membrane spanning regions are predicted and stored in
a “pool” using the consensus SSE prediction results. The
SSE pool is manually examined to ensure that weakly
predicted SSEs are available. Domain boundaries were
identified with bioinfo.pl - a consensus fold recognition
Meta server.45 At this stage of folding, templates were iden-
tified for TBM targets and comparative models were con-
structed using the Modeler24–26 link of the bioinfo.pl
server. The homology model was saved for later analysis or
prioritization of the de novo folded models. It was not
used to bias the folding simulation. If the fold recognition
result from bioinfo.pl indicated that the target consisted of
multiple domains, the SSE pool was split into subpools
according to the domain boundaries. Next, each domain
was folded 12,000 times with BCL::Fold. Resulting models
were filtered for completeness before entering the clustering
protocol. The completeness estimate is the total number of
residues in SSEs divided by the total number of residues in
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Table II
Statistics on 18 CASP10 Targets Predicted with BCL::Fold.

Target PDB ID Length NCO Category Oligomeric state Domains a-Helices TM a-helices b-strands

T0644 4FR9 166 22.1 TBM-easy Monomer 1 2 0 8
T0649 4F54 210 58.9 TBM-hard Monomer 1 4 0 9
T0655 2LUZ 182 44.2 TBM-easy Monomer 3 4 0 8
T0663 4EXR 205 28.4 FM Monomer 2 2 0 8
T0666 3UX4 195 64.9 FM Trimer 1 6 6 0
T0676 4E6F 204 45.2 TBM-hard Dimer 1 4 0 7
T0678 4EPZ 161 30.5 TM-hard Monomer 1 7 0 0
T0682 4JQ6 235 63.5 TMB-easy Trimer 1 7 7 0
T0684 4GL6 270 36.9 FM Dimer 2 8 0 8
T0686 4HQO 259 55.7 TMB-easy Dimer 3 4 0 5
T0691 4GZV 163 25.7 TMB-easy Monomer 3 0 0 8
T0700 4HFX 86 18.0 TMB-easy Tetramer 2 3 0 0
T0704 4HG2 254 55.4 TMB-easy Dimer 3 9 0 8
T0720 4IC1 202 47.5 TMB-easy Monomer 1 7 0 6
T0722 4FLA 152 44.1 Cancelled Tetramer Cancelled 4 0 0
T0724 4FMR 265 42.6 TMB-easy Tetramer 2 4, 5 0 16
T0743 4HYZ 149 36.9 TMB-easy Monomer 1 4 0 5
T0745 4FMW 185 49.4 Cancelled Dimer Cancelled 6 0 6

Figure 1
CASP10 Pipeline. Obtain target sequence from CASP10 prediction center (A); Perform SSE prediction (B); Split multimeric proteins into individual
domains (C); Assemble SSEs in Folding algorithm, analyze fold models, compare generated models with native secondary structure, evaluate loop
closure potential and beta sheet register shift (D); Filter erroneous models from further analysis (E); Cluster predicted folds and analyze cluster cen-
ters (F); Combine domains if previously split (G); Reconstruct loop regions and analyze models (H); Build side chains with Rosetta or other high
resolution refinement software (I); Select final models and analyze final model selection (J). [Color figure can be viewed in the online issue, which
is available at wileyonlinelibrary.com.]
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the protein model. The filtering cutoff is the average of all
the completeness estimates reduced by 0.01. After filtering,
cluster centers of the 10 to 20 largest clusters were selected
for further processing. In addition, we included the five best
scoring models measured by the BCL sum score. If tem-
plates were identified, best-scoring models that were similar
to the template by Mammoth z-score48 were retained in a
separate pool of models. If the target was split into multiple
domains, these were recombined at this stage. The backbone
of the resulting models was completed using a Cyclic Coor-
dinate Decent (CCD)46 loop closure algorithm within the
BCL. Afterwards, side chain coordinates were constructed
and the model was relaxed using Rosetta. From the resulting
set of up to 200 models, five were chosen for submission by
Rosetta energy. If a template has been identified, the fifth
model submitted was chosen from the second pool as the
one most similar to the template, to assess BCL::Fold’s sam-
pling capability independent from scoring.

Accuracy of secondary structure and
transmembrane span prediction

Table III depicts Q3 accuracies (a measure of the accu-
racy for predicting per residue secondary structure), the
percentage of native secondary structures correctly pre-
dicted and the average shifts for the SSE pools of the 18
CASP10 protein targets. The shift values are the sum of
the deviations in the first and last residues of the pre-
dicted SSEs when compared with native SSEs. The overall
average percentage of native secondary structures correctly
predicted (% found) using PHD,27,28 PSIPRED,29,30 and
JUFO9D31–33 was 91.8%. In the original benchmark of
BCL, the overall average % found was 96.6%.22 We

achieve the highest overall accuracy by combining multiple
secondary structure prediction methods to create the SSE
pool, rather than relying on a single secondary structure
prediction method. For example, the % found values for
PHD, PSIPRED, and JUFO9D are 78.9, 91.0, and 91.4%,
respectively. In the original BCL benchmark, these values
for PSIPRED and JUFO are 96.1 and 90.3%, respectively.
This indicates that the secondary structure prediction is
more challenging for the CASP10 targets than the original
BCL benchmark. In addition, during a folding run,
BCL::Fold can merge, grow, or shrink SSEs based on the
predicted probabilities.

Quality of CASP10 FM models submitted by
other research groups

There were 20 FM targets in CASP10. For all partici-
pating methods the average GDT_TS score ranged from
7.0 to 36.0% with a mean GDT_TS score of 21.7% and a
standard deviation of 7.2%. The maximum GDT_TS
score ranged from 16.5 to 44.0% with a mean GDT_TS
score for 32.8% and a standard deviation of 8.1% (Sup-
porting Information Table S1). For the three targets
attempted with BCL::Fold (T0663, T0666, and T0684)
the average GDT_TS score submitted by CASP10 partici-
pants was 24.5% with a standard deviation of 10.2%.
The mean of the maximum GDT_TS scores for these tar-
gets was 34% with a standard deviation of 9.5% (Fig. 2).

Quality of BCL::Fold models and sampling of
the topology space

We assess the quality of BCL::Fold models in two
ways. The GDT_TS score allows for comparison with

Table III
Secondary Structure Pool Statistics for CASP10 Targets

Target PDB ID

PHD PSIPRED JUFO9D Combined

Q3 % Found Shift Q3 % Found Shift Q3 % Found Shift % Found Shift

T0644 4FR9 68.7 80.0 1.8 80.1 100.0 1.1 77.7 100.0 1.5 100.0 0.9
T0649 4F54 63.8 53.8 6.0 71.9 69.2 5.2 65.2 76.9 5.3 61.5 2.9
T0655 2LUZ 54.9 75.0 5.4 76.4 91.7 3.7 70.9 91.7 4.4 66.7 3.5
T0663 4EXR 54.1 80.0 2.9 80.5 100.0 1.5 69.3 100.0 1.8 90.0 0.9
T0666 3UX4 50.3 57.1 9.5 74.9 85.7 8.3 81.0 85.7 7.0 85.7 4.8
T0676 4E6F 66.7 80.0 8.9 77.9 90.0 1.9 57.4 90.0 7.3 90.0 1.3
T0678 4EPZ 72.0 85.7 11.7 83.2 100.0 2.7 78.9 100.0 3.4 100.0 1.3
T0682 4JQ6 62.6 100.0 14.1 71.1 100.0 10.6 79.1 100.0 11.6 100.0 4.0
T0684 4GL6 72.2 81.3 3.4 73.7 87.5 2.9 67.8 75.0 3.2 100.0 1.9
T0686 4HQO 64.1 72.2 5.0 74.5 66.7 2.8 67.6 88.9 4.3 94.4 3.4
T0691 4GZV 47.9 75.0 4.7 69.9 100.0 3.6 59.5 100.0 4.8 100.0 3.3
T0700 4HFX 74.4 100.0 5.0 75.6 100.0 4.3 72.1 100.0 3.3 100.0 2.7
T0704 4HG2 63.0 58.8 3.1 74.8 88.2 3.3 72.0 88.2 2.8 94.1 2.1
T0720 4IC1 70.3 84.6 5.5 84.2 92.3 3.6 79.2 92.3 3.8 92.3 3.3
T0722 4FLA 87.5 100.0 30.0 89.5 100.0 9.0 80.3 100.0 16.5 100.0 7.0
T0724 4FMR 71.3 84.2 2.9 86.0 89.5 1.8 78.5 94.7 1.7 89.5 1.2
T0743 4HYZ 72.5 77.8 3.7 77.2 77.8 2.7 67.8 77.8 6.6 88.9 1.8
T0745 4FMW 65.9 75.0 2.8 77.3 100.0 1.9 67.6 83.3 2.9 100.0 1.8
Average 65.7 78.9 7.0 77.7 91.0 3.9 71.8 91.4 5.1 91.8 2.7
Std Dev 9.6 13.4 6.6 5.3 10.7 2.7 7.2 8.8 3.8 11.3 1.6
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other results; the topology score focuses its evaluation
criteria specifically on SSE contacts which tests
BCL::Fold’s method of assembly.

GDT_TS scores for the best model generated by
BCL::Fold ranged in from 23.3 to 64.5% with a mean
GDT_TS score of 36.8% and a standard deviation of
10.4%. Using the mean GDT_TS score of 33% as a com-
parative measure between other methods, BCL::Fold was
able to sample models above this threshold in 12 out of
18 cases. Comparisons of the BCL models with the
experimentally determined structure by measuring
RMSD10049 and GDT_TS show efficient sampling of the
correct topology (Table IV, Fig. 3).

BCL::Fold’s sampling performance was evaluated previ-
ously with soluble and membrane proteins. BCL::Fold was
able to sample the correct topology in 61 of 66 soluble
benchmark proteins22 and in 32 of 38 membrane bench-
mark proteins.6 The correct topology was defined as the abil-
ity to fold models with an RMSD100 of <8 Å to the native.

While RMSD100 is suitable to assess Rosetta models,
it is not as helpful for BCL::Fold models that are focus-
ing on sampling long-range contacts between SSEs. Fig-
ure 4 shows how well BCL::Fold samples the different
protein topologies, measured the topology score. Its
applicability is limited foremost by the number of SSE
contacts. For targets with very few contacts (T0722 has a
single contact) many models achieve a high score, and
the discriminative value of the topology score is reduced.
While the topology score does currently not consider
specific types of interactions between SSEs, it does
include the secondary structure type; thus, an incorrectly
predicted secondary structure type leads to all contacts
of this incorrect SSE to be evaluated as false. The thresh-

olds to assume a contact between two SSEs are derived
from idealized, native protein models and therefore fairly
large; this can lead to detection of SSE contacts even for
SSEs that are only indirectly in contact but still a very
short Euclidean distance apart, like the first and third
strand of a sheet. Additionally, the value of the topology
visualization is narrowed by the projection of three-
dimensional protein structures into two dimensions,
which reaches its limits for complex topologies. While
the topology score has some caveats, overall it captures
the protein topology quite well.

For the topology score, which measures the true positive
contact ratio, we set the threshold to 0.8. At this level, two
topologies share an overwhelming number of SSE contacts.
Furthermore, we observe similarities when visually inspect-
ing the topology plots of protein models (Fig. 4).

BCL::Fold samples models above the threshold of 0.8
for 11 out of 18 targets (Fig. 5). All targets with a native
SSE contact count up to 20 have a topology score above
the threshold. With increasing native SSE contact count
and complexity, the topology score decreases expectedly.

Selection of models for loop and side chain
construction

Difficult, however, proved the selection of models for
the subsequent refinement steps. During CASP10 we
attempted selecting the best models by BCL sum score,
the centers of the largest clusters, and the best scoring
models in each cluster. However, no method enriched for
high GDT_TS and consequently the models most similar
to the native were consistently lost. For model T0700, we
sampled a topology with an overall GDT_TS score of

Figure 2
GDT_TS score analysis. Twenty FM targets from CASP10 (left two bars, pattern). Three targets folded also by BCL::Fold from FM category in
CASP10 (left two bars, gray). All 18 targets folded by BCL::Fold (black). Three FM targets folded by BCL::Fold (right five bars, gray). The y axis
represents GDT_TS score.
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64.5. We selected a model with a GDT_TS score of 57.6
for further refinement. After loop and side chain recon-
struction, our model drifted further from the true native
structure with a GDT_TS score of 38.6. Our final sub-
mitted model for this target had a GDT_TS score of
31.3. Most of the targets folded with BCL::Fold had this
attrition pattern. Interestingly, model T0682 improved
substantially after loop reconstruction from a GDT_TS
score of 28.8 to 37.1. Our final submitted to CASP10 for
this target had an RMSD100 score of 5.4 and GDT_TS
Score of 33.0 (Figs. 2 and 6).

Addition of loop and side chain coordinates

While adding loops to the cluster centers decreased
the average GDT_TS scores from 31.2 to 23.5, the
GDT_TS average dropped again from 23.5 to 22.4 when
the side chains were added with Rosetta version 3.3. To
rebuild side chains, the models were relaxed. To limit
movement of the backbone constraints for every Ca-Ca

bond distance below a cutoff of 8 Å were applied using a
harmonic function with a standard deviation of 0.5. Dur-
ing side-chain reconstruction with Rosetta, 12 of the 18
CASP10 targets had a radius of gyration score >1100 for
approximately 30% of all models indicating unfolding

despite the constraint used (T0644, T0649, T0655, T0663,
T0666, T0684, T0691, T0704, T0720, T0722, T0743, and
T0745). This unfolding-like event was triggered because
the BCL models scored poorly in the Rosetta energy
function (Fig. 7). Models that were unfolded were not
considered further. As a method of last resort, Rosetta
was used to add side chains without relaxing the back-
bone but only repacking the side chains.

DISCUSSION

BCL::Fold fails to sample to correct
topology in seven cases

In 7 out of 18 cases, the best scoring BCL::Fold
model had a topology score of <0.8, which means the
correct topology was not found. Investigating the rea-
sons for these failures, we found that the target with
the lowest topology scores had SSEs missing in the sec-
ondary structure prediction and subsequently in the
SSE pool. T0655 had a topology score of 0.44 and had
two helices missing; T0649 had a score of 0.68 and had
one helix missing.

Models for T0724 have an incorrect strand topology
because BCL::Fold models were created as protomers

Figure 3
Highest GDT_TS model sampled with BCL::Fold (rainbow) overlaid with experimental protein structure (gray).
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while the native exists as dimer in which strands from
both monomers form a sheet.

The remainder of four incorrect targets failed to sam-
ple the correct topology because of a combination of rea-
sons, most notably for two reasons. Long SSEs were split
into two smaller ones, either by DSSP when assigning
secondary structure to the natives, or by the secondary
structure prediction methods that we employed. The cor-
rect topology was simply not sampled and recognized as
a best scoring model, often with the order of strand SSEs
in sheets being incorrect.

BCL::Fold models have loops that are
impossible to close

BCL::Fold assembles tertiary structure from discon-
nected SSEs. Because of this, we must ensure that the
distance between the end of one SSE and the beginning
of the next SSE can be bridged by a loop. Two compo-

nents of the BCL::Fold scoring function control this
requirement: First, there is a penalty if the Euclidean dis-
tance between two SSEs is longer than the maximal
Euclidean distance that can be bridged by the number of
amino acids in the loop. Models that violate this rule are
heavily penalized during Monte Carlo sampling and
likely rejected. The second component is designed to
place SSEs so that loops between them match a loop
score potential that reflects native loop conformations
from the PDB (PISCES dataset, see Methods). This loop
score potential evaluates the Euclidean distance probabil-
ity in dependence of number of residues.23 As this score
is a function of only Euclidean distance and sequence
distance, it neglects the spatial arrangement of SSEs.
Analysis of CASP10 models revealed that BCL::Fold con-
structs models where loops cannot be closed without
passing through SSEs. Figure 8 depicts a model produced
by BCL::Fold for target T0663. The Euclidean distance
between residues ASN55 of helix 1 and TYR65 of helix 2

Table IV
Comparison of the GDT_TS Score and RMSD100 Score with the Native Showing the Best Model Produced During Folding with BCL::Fold (A);
The Selected Models from Clustering (B); The Models After Loop Reconstruction (C); The Models After Side Chain Addition (D); The Final Sub-
mitted Model (E)
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is 25.5 Å. To bridge this distance with 9 amino acids,
each amino acid has to be 2.8 Å on average, which is less
than the average Ca-Ca distance of 3.3 Å. However, with
the placement of strand SSEs between the loop ends, all
paths to close the loop between helices 1 and 2 pass
through the strand SSEs. Overall, 76% of BCL::Fold

models produced during CASP10 folding simulations
contains nonclosable loops because of this behavior.

The BCL::Fold loop potential is often
violated for consecutive SSEs

Loops found in native proteins bridge preferable
Euclidean distances de depending on the loop’s sequence
length ds . The current loop potential of BCL::Fold mir-
rors this preference. It is a sequence independent score,
which contributes to the overall energy function. The
PISCES data set used to create this potential includes all
possible loops, that is, loops between consecutive and
nonconsecutive SSEs. Because BCL::Fold does not assem-
ble SSEs in sequence order, the potential must evaluate
incomplete protein models with unplaced SSEs. There-
fore, nonconsecutive SSEs were included in the loop
scoring potential.

To test the loop potential accuracy, we compare the
CASP10 models produced by BCL::Fold to structures
from the PISCES pdb set. Because the Euclidean distance
that a loop spans depends on the sequence length of the
loop, we normalize the Euclidean distance by the loga-
rithm of the sequence length, de=logds ; this results in
homogeneous distributions independent of loop length.
The all-loop distributions (that is, consecutive and non-
consecutive loops) for de=logds for CASP10 models,
CASP10 natives, and PISCES are alike [Fig. 9(A)]. The
means of the distributions are 6.2, 6.6, and 6.5 Å, respec-
tively, and confirm their similarity. Thus, we conclude
that this weighted potential distinguishes native-like
sequence and distance length of loops from non-native
configurations in terms of sequence length and corre-
sponding Euclidean distance.

Figure 4
Visualization of the topologies for the native and the best scoring
model according to the topology score for selected target showing both
successful (T0663, T0666, and T0682 in order from the top down with
topology scores of 0.81, 0.82, and 1.00 for the respective best scoring
model) and unsuccessful cases (T0655 at the bottom with a topology
score of 0.44). [Color figure can be viewed in the online issue, which is
available at wileyonlinelibrary.com.]

Figure 5
True positive rate (precision, y axis) compared with the complexity of a
protein (number of SSE contacts in the native, x axis). The true positive
rate of BCL::Fold models decreases with increasing complexity.
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However, when evaluating the CASP10 models with
the consecutive-only loop distribution (that is, only
loops between consecutive SSEs are included), we find a
substantial bias between CASP10 models and both
CASP10 natives and PISCES structures [Fig. 9(B)]. Their
means are 8.1, 5.8, and 5.7 Å, respectively. The sequence
length ds of a loop is not changing as it is defined by the
secondary structure (prediction) of the particular protein
and only used for normalization. Therefore, the differ-
ence between the distributions can only be caused by dif-
ferences in the Euclidean distances de . Creating models
with loops of longer Euclidean distances de than found
in native structures for a given sequence length causes
BCL::Fold to produce non-native like loop arrangements.
Thus, the loop potential is not a sufficient metric to gen-
erate native-like models from disconnected SSEs. Fur-
thermore, the current loop potential does not consider
the spatial positioning of other SSEs and does not
account for potential clashes between these SSEs and a
loop (Fig. 8).

A small loop angle favors more native-like
loops

To address the shortcoming we devised a loop measure
that reflects this difference between consecutive and non-
consecutive SSEs more drastically. For native proteins, we
observe that loops between consecutive SSEs are posi-
tioned locally on a protein structure, that is, consecutive
loops tend to begin and end on the same side of the
structure and do not connect through the center. Geo-
metrically this can be measured at as the angle between

the end of one helix, the center of the protein, and the
start of the next helix [Fig. 10(A)]. In native protein
structures, consecutive loops overwhelmingly favor small
angles, as shown for the CASP10 native and PISCES pdb

Figure 6
Comparison of example BCL models with the native target structure for T0663 (top) and T0722 (bottom). The experimental structures without
loops are shown in gray (based on PDBIDs 4EXR and 4FLA, respectively). The predicted models (rainbow) show the highest scoring model pro-
duced by BCL (A, D, with a GDT_TS of 43.0 and 53.5, respectively); The best scoring model by BCL energy function (B, E, with a GDT_TS of
28.9 and 26.9); The best scoring model in largest cluster (C, F, with a GDT_TS of 22.1 and 32.6). [Color figure can be viewed in the online issue,
which is available at wileyonlinelibrary.com.]

Figure 7
BCL model for target T0655 before (A) and after side chain addition
and relaxation with Rosetta (B). [Color figure can be viewed in the
online issue, which is available at wileyonlinelibrary.com.]

S. Heinze et al.

558 PROTEINS

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com


sets, of which 75% are smaller than 40# [Fig. 10(B) green
and blue, respectively]. Models with loops that would
clash with other parts of the protein frequently have
large angles of close to 180# [Fig. 10(B), red]. We can
use this information to discriminate native like arrange-
ments from models with large angles.

When including nonconsecutive loops, the distribution
of loop angles is exhibiting two frequently occurring
angles, small ones for loops connecting consecutive SSEs,
and large ones for connecting nonconsecutive SSEs [Fig.
10(C)]. To evaluate the loop angles of a protein model,
we must differentiate between loops that connect consec-
utive and nonconsecutive SSEs.

To test whether filtering by the new loop angle measure
would select for lower RMSD models compared to the
existing loop score, we folded models for eight CASP10
targets (1000 models for T0655, T0663, T0676, T0678,
T0684, T0700, T0745; 700 models for T0722). The RMSD
cutoff was set to 10th percentile. Both, the existing loop
score and the loop angle score were then used to select the
best 50% according to each score. The existing loop score
filtered on average 50% of the models below the RMSD
cutoff and in three cases decreased the number of models
below the RMSD cutoff by more than the expected 50%
(T0684, T0700, and T0722). The loop angle score filtered
on average 61% of the models below the RMSD cutoff

and only in one case, T0722, it selected less than 50% of
the models below the RMSD cutoff. Thus, the loop angle
score is selecting more native-like models and can improve
the BCL scoring function moving forward (Table V).

BCL::Fold misaligns b-strand registers

Carbonyl and amide groups in parallel and antiparallel
strands of native proteins are aligned to allow the forma-
tion of stabilizing hydrogen bonds. A hydrogen bond is
formed between the carbonyl-oxygen (hydrogen-bond
acceptor) of one amino acid with the amide hydrogen of
another amino acid (donor). In a sheet with the antipar-
allel strands i and j, the following pairs of atoms form
hydrogen-bonds, here denoted as (acceptor, donor): ðCi;
CjÞ; ðCj ;CiÞ; ðCi12;Cj22Þ; ðCj22;Ci12Þ; ðCi14;Cj24Þ; ðCj24

;Ci14Þ; . . . [Fig. 11(A)]; the pattern for parallel strands i
and j is:ðCi;Cj11Þ; ðCj11;Ci12Þ; ðCi12;Cj13Þ; . . . [Fig.
11(C)].

BCL::Fold does not control for this alignment in order
to simplify the folding energy landscape. It only controls
for distance and relative orientation of b-strands within
b-sheets. We hypothesized that misalignment of hydro-
gen bonds within b-sheets might cause clashes that are
responsible for the large fraction of models that unfolds
during Rosetta refinement.

To evaluate the strand register alignment of BCL mod-
els and compare them to natives, we measured the angle
between carbonyl-carbon, the carbonyl-oxygen and the
amide-hydrogen, and the distance from the carbonyl-

Figure 8
A model for CASP10 target T0663 folded by BCL. The Euclidean dis-
tance between residues ASN55 in helix 1 (rainbow colored on the right)
and TYR65 in helix 2 (rainbow colored on the left) is 25.5 Å. Without
the central sheet (pink) the loop could be closed; it is impossible to
close the loop if the connecting amino acids have to be positioned
around the sheet. [Color figure can be viewed in the online issue, which
is available at wileyonlinelibrary.com.]

Figure 9
The density distribution of the BCL loop score displaying Euclidean
distance over the logarithm of the sequence separation for loop regions
between all SSEs (A) and consecutive SSEs only (B). While the distribu-
tions of BCL models (red), CASP10 natives (green) and PISCES dataset
(blue) match each other for loops between all SSEs (A), the distribution
of BCL models shows a shift when only loops between consecutive SSEs
are considered (B). [Color figure can be viewed in the online issue,
which is available at wileyonlinelibrary.com.]
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oxygen to the amide-hydrogen. While in native proteins
a hydrogen bond rarely has a Euclidean distance longer
than 2.1 Å, we measured putative hydrogen bond atom
pairs that were in paired b-strand SSEs and within a
relaxed cutoff of 4.5 Å. The hydrogen-bonds in aligned
strands of elucidated proteins have characteristic angles
close to 180# and distances of 1.9 to 2 Å. Analysis of
CASP10 BCL::Fold models, CASP10 experimental struc-
tures, and the PISCES is summarized in Figure 11. In
BCL models, we find substantial deviations to smaller
angles and larger distances up to 4 Å for more than half
of the models for both antiparallel and parallel sheets.
The deviation in hydrogen bond angle and distance is
correlated in BCL models. Additionally, BCL models
exhibit a slightly shorter hydrogen bond distance of 1.8
to 1.9 Å even for hydrogen bonds with a native-like
angle (Supporting Information Fig. S1). This points to
an incorrect placement of SSEs.

Misaligned b-strands cause clashes in
Rosetta

The misaligned b-strands result in a high positive con-
tribution from the repulsive score term (fa_rep) and no
attractive contribution from the hydrogen bond score
term (hbond_lr_bb), which leads to an unfavorable
Rosetta score overall. The fa_rep term is the repulsive
component of the van der Waals force, for example orig-
inating from carbonyl-oxygen of two strands being posi-
tioned too close to each other. The hbond_lr_bb term
evaluates backbone-backbone hydrogen bonds distant in
the primary sequence as they appear in sheets. Due to
the misalignment of strands, the hbond_lr_bb term is
zero and does not contribute to the overall Rosetta score
(Fig. 12).

This causes Rosetta to unfold BCL models, despite
constraints (Fig. 7), in the last step of our CASP10 pipe-
line, which adds side chains and structurally refines the
protein by cycling through repack and minimization
steps.

b-Strand placement in BCL::Fold models
needs to be refined to align hydrogen bond
donors and acceptors

The assembly of disconnected SSEs allows BCL::Fold
to sample different sheet topologies and register positions
without being restricted by the residues connecting the
two strand SSEs. For this reason b-strand placement is
controlled only by a mutate-function that places one
strand next to another in the preferred angle and dis-
tance.23 However, the placement of b-strands only by
the distance and torsion angle within the b-sheet is
insufficient to produce BCL::Fold models that can be

Figure 10
Visualization of loop angle metric, which measures the angle a between the end of one SSE (dark blue), the center of gravity, and the beginning of
the next SSE (light blue; A). The density distribution of the cosðaÞ metric for loop regions between consecutive SSEs only is concentrated to acute
angles for PISCES and CASP10 natives (B, blue and red, respectively). BCL models exhibit a higher number of large angles for consecutive loops
(B, red). The density distribution of the cosðaÞ metric for loop regions between all possible SSEs shows two frequently found angles, small ones
and large ones, for all sets, BCL models (red), CASP10 natives (green) and PISCES (blue; C). [Color figure can be viewed in the online issue, which
is available at wileyonlinelibrary.com.]

Table V
The Percentage of Models Below the RMSD Cutoff Kept When Filtering
Models for Each Target with the Existing Loop Score and the Loop
Angle Score, Showing that the Loop Angle Score Keeps in All Cases
More Low RMSD Models

Target
% Models kept by
existing loop score

% Models kept by
loop angle score

T0655 70 70
T0663 67 76
T0676 52 57
T0678 52 63
T0684 44 57
T0700 37 57
T0722 16 43
T0745 59 62
Average 50 61
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refined with other programs. We plan to add a refine-
ment stage into BCL::Fold that translates b-strands along
their z-axis and evaluates a scoring term that controls
the angle a introduced above. This will result in an

improved scoring function that selects for more native-
like models. We expect that improved alignment of b-
strands will reduce the unfolding events observed during
Rosetta refinement.

Figure 12
The analysis of Rosetta energy scoring terms for the native and a BCL model of target T0655 (shown is only the sheet part of native and model).
The native shows no penalty from the repulsive score (A, fa_rep Rosetta score term) and a beneficial contribution from the hydrogen bonding
score term (B, hbond_lr_bb Rosetta score term). Contrary, the BCL model exhibits a very high repulsive score (C, fa_rep) and little benefit
from the hydrogen bonding term (D, hbond_lr_bb). The color scale stretches from blue representing 21.5 Rosetta energy units (REU) through
gray (0 REU) to red (6 REU); the scale was chosen to red depict a value further from zero than blue to account for the bigger range of the
repulsive score.

Figure 11
Hydrogen-bond pattern and angles between the carbonyl-carbon, carbonyl-oxygen, and amide-hydrogen in antiparallel (A) and parallel strands (C).
Comparison of the hydrogen-bond angle for BCL models (red), CASP10 natives (green), and PISCES (blue) for antiparallel (B) and parallel strands
(D). While the angles for CASP10 native and PISCES sets match, BCL models deviate. The x axis shows the cosine of the hydrogen-bond angle,
the y axis the normalized density. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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CONCLUSION

Despite inaccuracies in secondary structure prediction,
BCL::Fold was able to sample the correct fold for most
of 18 cases studied herein. The best methods in CASP10
submitted models with an average GDT_TS of around
33% in the FM category. BCL::Fold achieves this thresh-
old in initial models after folding for 12 of 18 targets.
Similarly, BCL::Fold is able to produce models with a
topology score of at least 0.8 for 11 of 18 targets. How-
ever, the post folding filtering and refinement strategies
removed correctly folded models from consideration in
almost all cases, mostly for structural artefacts present in
the BCL::Fold models. This result shows that BCL::Fold
has the potential to compete with the best de novo struc-
ture prediction algorithms if a) unrealistic geometries in
loops and b-strands can be removed and thereby the
attrition of accurate topologies during model refinement
can be stopped and b) an approach can be found that
recognizes the most accurate models within the
BCL::Fold ensemble. However, with this analysis and
planned work to address the recognized weaknesses,
future versions of BCL::Fold produce more native-like
models without incorporating templates or experimental
data.
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