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ABSTRACT We describe predictions of the
structures of CASP5 targets using Rosetta. The Ro-
setta fragment insertion protocol was used to gener-
ate models for entire target domains without detect-
able sequence similarity to a protein of known
structure and to build long loop insertions (and
N-and C-terminal extensions) in cases where a struc-
tural template was available. Encouraging results
were obtained both for the de novo predictions and
for the long loop insertions; we describe here the
successes as well as the failures in the context of
current efforts to improve the Rosetta method. In
particular, de novo predictions failed for large pro-
teins that were incorrectly parsed into domains and
for topologically complex (high contact order) pro-
teins with swapping of segments between domains.
However, for the remaining targets, at least one of
the five submitted models had a long fragment with
significant similarity to the native structure. A fully
automated version of the CASP5 protocol produced
results that were comparable to the human-assisted
predictions for most of the targets, suggesting that
automated genomic-scale, de novo protein structure
prediction may soon be worthwhile. For the three
targets where the human-assisted predictions were
significantly closer to the native structure, we iden-
tify the steps that remain to be automated. Proteins
2003;53:457–468. © 2003 Wiley-Liss, Inc.
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INTRODUCTION

Rosetta was developed originally as an approach to the
problem of de novo protein structure prediction, which
sought to incorporate insights from experimental studies
of protein folding.1,2 After promising results in CASP33

and in light of the rapid rate of experimental structure
determination, Rosetta was extended to model evolutionar-
ily variable regions (such as long loops, domain insertions,
and N- and C-terminal extensions) in the context of a
template built by classical comparative modeling methods.
In CASP4, Rosetta-built models (both with and without
templates) were good in many cases.4

For CASP5, we followed the CASP4 approach of attempt-
ing to build complete models using Rosetta for every target
sequence. To generate template-based models, we used

homologous structure information; insertions, loops, and
extensions with low-sequence similarity to the homologue
were modeled by using the fragment insertion method in
the context of the template. When convincing homology
information was not detected, we modeled the entire
sequence with our de novo fragment insertion method.

Here we describe the methods used to generate the de
novo domain and long insertion predictions, with an
emphasis on improvements made since CASP4 and the
factors most likely to have contributed to both our success-
ful and unsuccessful predictions. With the long-term goal
of developing an accurate, completely automated proce-
dure, we identify the contributions of human expertise to
our predictions by comparing with results from a com-
pletely automated version of our protocol.

MATERIALS AND METHODS
Improvements in Rosetta Since CASP4

The Rosetta method of de novo protein structure predic-
tion is based on the assumption that the distribution of
conformations available to each three-and nine-residue
segment of the chain is reasonably well approximated by
the distribution of structures adopted by the sequence of
the segment (and closely related sequences) in known
protein structures. Fragment libraries for each three-and
nine-residue segment of the chain are extracted from the
protein structure database using a sequence and second-
ary structure profile–profile comparison method. The con-
formational space spanned by these fragments is then
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searched using a Monte Carlo procedure with an energy
function that favors hydrophobic burial and strand pairing
and disfavors steric clashes. For each target sequence,
large numbers of decoy structures are generated with this
protocol and then clustered; the five largest clusters are
generally chosen as our predictions. Further details may
be found in the Supplemental Materials.

Between CASP4 and CASP5, advances were made in
several aspects of the Rosetta method. The first improve-
ment was the incorporation of two filters that remove
conformations with non-protein-like properties. The first
filter removes overly local, low contact order conforma-
tions,5 whereas the second removes conformations with
�-strands not properly assembled into �-sheets.6 These
filters were applied to large populations of decoy conforma-
tions and were very useful during CASP4 and have since
been incorporated into the standard Rosetta procedure.
The numbers of conformations generated for each CASP5
target given below refer to conformations that pass both
filters.

The second area of improvement is in the energy func-
tion used during the search of conformational space. The
atomic radii for backbone atoms and distances of closest
approach between centroids used in the original Rosetta
force field1,2 were obtained from the distances of closest
approach of atom pairs in a large set of protein structures.
During the subsequent development of full-atom refine-
ment methods, we noted that many of the decoys produced
by the initial low resolution search contained significant
backbone clashes. This resulted from artificially small
atomic radii that derived from unrealistically short dis-
tances of closest approach in low-resolution crystal struc-
tures and NMR solution structures in the protein data set
used to obtain the radii. Recomputation of these parame-
ters using a set of high-resolution crystal structures
resulted in more physically realistic larger values, and
incorporation of this information into Rosetta reduced the
number of backbone-atom clashes significantly and (most
likely) the frequency of overly compact (but low scoring)
conformations. The environment-dependent pair term in
the original centroid mode-scoring function2 was replaced
by an environment-independent term to eliminate binning
artifacts. Defects in the r-sigma term2 that gave rise to
incorrect �-strand register were fixed, as well as mistakes
in the logic associated with restricting the backbone
hydrogen bonding of a given segment of a �-strand to
backbone atoms of not more than two other strands.
Numerous other small bugs were corrected and speedups
were implemented, along with the incorporation of mod-
ules for loop modeling, backbone refinement, domain as-
sembly, and protein design, which were useful in some of
the special cases described below.

The methodology for picking fragments from the protein
structure database (the program NNMAKE) was also
improved by ensuring that an appropriate diversity of
secondary structures is present in the fragment library for
regions with weak propensity to adopt a single secondary
structure. In the Rosetta picture of folding, the secondary
structure ultimately adopted by such regions will reflect

the nonlocal interactions in the low-energy tertiary struc-
tures; hence, it is important that a diversity of conforma-
tions be present in the fragment libraries for these regions.
Diversity is ensured by using three secondary structure
predictions independently to supplement the sequence
profile score used by NNMAKE. Between CASP4 and
CASP5, a quota system was introduced to ensure that the
percentages of sheet, helix, and coil in the fragments
matched those of the input secondary structure predic-
tions, and a new prediction method, JUFO,7,8 was added.

Numerous other methods currently in development in
our group were tested on subsets of the targets. Increased
production of complex topologies was achieved in part
through development of methods for detecting diverging
turns and penalizing the formation of hairpins in such
regions as well as for promoting nonlocal sheet contacts
(J.M., in preparation). A method was used for recognizing
evolutionarily conserved functional patches.9 We also used
cluster centers from our decoy population to search the
PDB for structurally similar regions using the structure
comparison method MAMMOTH.10 Finally, significantly
larger numbers of decoys were made for the targets in
CASP5 compared to those in CASP4, resulting in a greater
likelihood of producing native-like (and possibly topologi-
cally complex) decoys.

In the following subsections, we describe our standard
prediction protocol; deviations from this standard protocol
will be noted in the description of the individual targets.

Target Classification

A sequence was classified as a de novo or template-based
target with use of PSI-BLAST11 and Pcons212 (also de-
scribed in this volume). If the E-value of the top PSI-
BLAST hit was worse than 0.001 and the score of the top
Pcons2 hit was worse than 1.5, the sequence was predicted
to be a new fold/difficult fold recognition target and was
modeled with Rosetta’s de novo method. Otherwise, the
target was classified as comparative modeling/easy fold
recognition target and was modeled using Rosetta’s tem-
plate-based by approach. Sequences that received border-
line Pcons2 scores were modeled separately using both
methods and the most plausible models were submitted.

Domain Parsing

Target sequences were parsed into domains using mul-
tiple-sequence information and matches to known struc-
tures as described in the accompanying article on the
Robetta server in this issue. For large targets, we at-
tempted to use regions of low-sequence conservation to
determine segment boundaries; however, in cases in which
multiple-sequence information was uninformative, we split
the sequence into roughly equal lengths. Models were
generated for each predicted domain independently.

De novo (Fragment-Insertion) Modeling: Fragment
Selection and Model Generation

See supplemental materials.
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Clustering and Model Selection

For each target, fragment libraries and sets of decoy
structures were generated both for the target sequence
and for up to three homologous sequences identified with
PSI-BLAST. Twice as many models were generated for the
target sequence as for the homologues; the resulting
models from the target and homologous sequences were
pooled and then clustered as described previously.13 Mod-
els of the target sequence were selected from the largest
resulting clusters.

For clustering to succeed, a sufficient number of native-
like decoys must be present among the models generated.
Unfortunately, formation of native-like structures can be a
low-probability event for larger, more complicated pro-
teins; in such cases, the population is generally dominated
by non-native conformations. To improve model selection
for proteins with at least three predicted �-strands, we
used a test set of mixed �/� proteins of �130 residues to
develop a filter that enriched for native-like structures in
our model populations. With the requirement that the
three most native-like models (assessed by C� RMSD)
remain in the final population, we experimented with
iterative filtering methods using individual terms of the
total energy function as selection criteria. The most success-
ful protocol was to select the top third of the population
based on the �-strand pairing score and the third of those
models with the smallest radius of gyration.

All-Atom Refinement of Models

For targets under 100 residues, the submitted predic-
tions were chosen without clustering, as follows. The top
15% lowest-energy models were refined by using an im-
proved version of the full-atom refinement protocol de-
scribed previously,14 which couples Monte Carlo minimiza-
tion of the backbone and side-chain conformations. The
full-atom energy function is dominated by Lennard-Jones
interactions, an orientation-dependent hydrogen-bonding
potential, and an implicit solvation model. Typically, 5,000–
20,000 decoys were refined, and the five decoys with the
lowest energies that belonged to different clusters were
submitted.

Template-Based Modeling: Sequence Alignment

Our alignment method “K*Sync” (D.C., in preparation)
produces large sets of candidate alignments (via a modified
Smith-Waterman alignment algorithm15) by systemati-
cally varying the weights on score terms representing
multiple-sequence information for both the query and the
parent, the predicted and observed secondary structure,
and the obligateness of a region to the fold (see the
accompanying article on the Robetta server for more
details).

The ensemble of sequence alignments was converted to
an ensemble of three-dimensional template structures,
and short-to-medium unaligned regions (�17 residues)
were modeled in the context of these templates using an
abbreviated insertion-modeling procedure (described in
the next subsection). Alignments containing insertions
that failed to produce conformations in agreement with the

geometry of the template stems were discarded from the
ensemble. The remaining alignments were ranked by
evaluation of the structural models by several energy
criteria. Human intervention was used to either select one
of the high ranking alignments or to produce a new
alignment by recombining the preferred features of mul-
tiple high ranking alignments.

Template-Based Modeling: Insertion Modeling

Unaligned regions corresponding to gaps in the se-
quence alignment as well as regions judged likely to show
significant structural divergence from the parent struc-
ture were modeled by the Rosetta fragment insertion
protocol in the context of the fixed template.20 For regions
of �17 residues, roughly 300 initial conformations were
selected from a database of known structures using similar-
ity of sequence, secondary structure, and stem geometry.
Initial conformations for longer regions were built from
3-mer and 9-mer fragments. The conformations of all
variable regions were then optimized by using fragment
insertion and random dihedral angle perturbations. A gap
closure term in the potential in combination with conju-
gate gradient minimization was used to ensure continuity
of the peptide backbone. Optimization of variable regions
was accomplished by using the standard Rosetta potential
with centroid representation of side-chains, followed by
optimization with explicit side-chains. All variable regions
were optimized simultaneously, starting from a random
selection of initial conformations. Generally, �1000 inde-
pendent optimizations were conducted. Variable regions
were ranked independently by energy, and low-energy
conformations for each variable region were combined into
a final model.

Domain Assembly and Side-Chain Packing

For targets containing more than one domain, the
separate domain models were combined into one full-
length model. This was accomplished by splicing each
domain together into a single chain, followed by fragment
insertion into the linker region surrounding the splice site.
The last step consisted of packing the side-chains using a
backbone-dependent rotamer library16 with a Monte Carlo
conformational search procedure similar to that used in
the all-atom refinement procedure described above.17

RESULTS AND DISCUSSION

Table I summarizes the results for the Rosetta CASP5
predictions, which used the fragment insertion de novo
modeling procedure to build either the entire model or long
insertions in the context of a fixed template. Targets for
which Rosetta predictions were successful are addressed
individually below. We compare our predictions to the
native structure and discuss the specific methods used for
each target in relation to the standard protocol described
in Materials and Methods (Fig. 1). We address the useful-
ness of these alterations by comparing our submitted
models to those generated with a fully automated version
of the standard protocol. Targets for which the predictions
were unsuccessful are then discussed together in an effort
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to highlight the main sources of problems for the method
at its present stage of development.

The similarity of the true native structure to the best of
the five CASP5 Rosetta predictions, the best of the five
models selected by the fully automated protocol, and the
best prediction in a large set of Rosetta-generated struc-
tures is indicated in Table I. The table includes proteins in
the fold recognition category for which reliable parents
were not identified by PSI-BLAST or Pcons2, as well as all
targets modeled exclusively using the fragment insertion
protocol. T172 and T186 are template-based predictions
and are included in Table I because they provided a
context for a de novo modeled domain insertion. T130 was
also modeled using a template and is included in Table I
because the submissions contained significant regions

modeled by fragment insertion. Figure 2 shows Global
Distance Test (GDT18) plots for select de novo targets of
the five submitted models and the five models generated
by the completely automated standard protocol. Figures 3
and 4 show ribbon diagrams of the best submitted model
and the native structure for selected targets.

T129–170 Residues, All-�-Protein With Two
Subdomains

Straightforward application of the standard Rosetta
protocol yielded excellent results for this all-�-helical
protein. Although most decoys were generally non-native
by C� RMSD (median: 16.1 Å), the density of decoy
clustering correlated well with RMSD, as shown in Figure
5; the near-native decoys are more densely clustered than

TABLE I. Summary of Results for CASP5 Targets Predicted With Fragment Insertion by
the Rosetta Algorithm

Namea classb coc

�/�d

Length

Number of amino acids with an RMSD
below 4 Å/6Åe

[%] Humanf Standardg Besth

129 nf 30.1 64/0 170 108/153 87/116 111/159
149_2 nf 34.6 23/35 116 52/71 44/62 76/92
161 nf 33.7 53/11 154 45/83 57/79 55/95
162_3 nf 24.6 36/38 168 58/79 — 68/95
181 nf 25.1 30/18 111 35/59 52/65 65/103
146_1 fr/nf 31.4 28/25 107 28/51 — 42/54
146_2 fr/nf 29.2 23/26 89 45/60 — 70/76
146_3 fr/nf 21.9 0/10 56 27/31 — 26/39
146_4 fr/nf 9.2 19/0 47 23/30 — 33/40
170 fr/nf 16.3 60/0 69 64/67 60/64 66/68
172_2 fr/nf 24.7 54/0 101 52/62 — 90/101
173 fr/nf 55.1 35/15 287 127/149 60/84 127/149
186_3 fr/nf 5.2 0/33 36 28/32 — —
187_1 fr/nf 42.7 42/19 187 57/85i — 76/114
135 fr/a 31.7 34/30 106 83/98 54/64 94/105
148_1 fr/a 23 38/32 71 62/64 57/62 65/66
148_2 fr/a 23.1 41/27 91 73/74 75/77 80/90
162_1 fr/a 13.1 76/0 56 56/56 — 56/56
162_2 fr/a 16.3 0/25 51 33/43 — 38/40
187_2 fr/a 38 38/14 227 51/85 — 85/120
191_1 fr/a 28.1 45/21 139 80/100 85/98 102/105
174_1 fr/h 47.2 38/26 197 54/64 — 52/67
174_2 fr/h 34.6 36/25 155 44/47 — 47/62
156 fr/h 46.4 18/32 156 59/88j 71/88 81/107
130k fr/cm — 39/20 100 79/90 — —
172_1k cm — 43/23 192 129/159 — —
186_2k cm — 40/18 250 142/186 — —
aCASP identification number.
bAssessor classification (nf, new fold; fr/nf, fold recognition/new fold; fr/a, fold recognition analog; fr/h, fold
recognition homologue).
cContact order.
dFraction of amino acids in �-helix or �-strand conformation.
eThe number of residues (C� atoms) of the model superimposable (using a variant of MaxSub19 which uses
RMSD as the threshold) on the native structure within a 4 Å RMSD cutoff (left) and within a 6 Å cutoff (right).
fBest Rosetta model submitted for CASP5.
gBest fully automated prediction using standard CASP5 protocol.
hBest ROSETTA model in decoy population before filtering.
iThe best submission for T187 was a comparative model based on template 1 vpe with 57 and 116 residues
aligned within 4 Å and 6 Å, respectively.
jThe best submission for T156 was a comparative model based on template 1 dik with 78 and 107 residues
aligned within 4 Å and 6 Å, respectively.
kModeled with a template (130, 1f5aA; 172_1, 1ej0A; 186_2, 1gkpA) and fragment insertion (see text).
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the general population. As a result, the cluster centers
represented the best decoys generated; for example, model
4 ranked second out of 11,075 decoys by C� RMSD to
native. Long-range contacts between the second and fifth
helices were predicted correctly in these models, corre-
sponding to approximately correct assembly of the two
subdomains. Automated predictions for this target are of
comparable quality to the manual submissions (Fig. 2,
Table I), which is not surprising because the manual
submissions were chosen with minimal deviations from
the standard protocol.

T130-H10073 From H. influenzae, Four-Stranded
Sheet Flanked by Three Helices

The parent structure 1fa0B (Yeast Poly-A Polymer-
ase) used by Robetta was detected by Pcons2. For our
human group predictions, we chose instead to use
1fa0B’s close structural relative 1f5aA (Bovine Poly-A

Polymerase) because of what appeared to be slightly
closer sequence homology to the target. The default
K*Sync alignment indicated the loss of a hairpin but
retention of a helix (labeled “liberated helix” in Fig. 4)
that packed against the hairpin in 1f5aA. We elected not
to model this helix as part of the template and, instead,
allowed the fragment-based loop-modeling protocol to
build the helix and connecting turns (residues I52–R77).
This permitted the adjustment of the helix that we
supposed must occur in the absence of the hairpin. In
addition, the parent 1f5aA possessed a much longer
C-terminal helix than T130 appeared to have; therefore,
we allowed the loop-modeling protocol to build the entire
C-terminal portion of the model (residues D82–L114),
unfortunately failing to capture the C-terminal strand.
However, both of the de novo modeled helices were quite
accurate (Fig. 4).

Fig. 1. Flowchart of general Rosetta protocol. Starting with obtaining the target sequence, steps for target
identification, decoy generation, and selection are outlined for both the template-based approach (used for
targets with homologous structures available in the PDB) and for the fragment insertion approach (used for new
fold and difficult fold recognition targets).
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T135-�/� Ferredoxin Fold

Because of substantial variations in the secondary struc-
ture predictions for this target and the failure of conforma-
tions generated with the standard protocol to cluster well
(which can indicate that the true structure has a high
contact order5), as well as weak Pcons2 matches to ferro-
doxin folds, we deviated from the standard protocol. As
suggested by secondary structure predictions for most
homologues, but not the prediction for T135 itself, �-strand
fragments were favored in the region corresponding to the
second strand. During the simulations, nonlocal �-strand
contacts were favored to try to produce higher contact
order structures (J.M., in preparation). The first submitted
model has the correct topology and agrees with the native
structure below 4 Å C� RMSD over 80 amino acids.
However, the fourth �-strand is shifted relative to the
native structure, which prevents the sequence-dependent
superimposition of this part of the model.

T148–162-Residue, Domain-Swapped, Double
Ferredoxin Fold

T148 is a long sequence for Rosetta, but it has a deep
multiple-sequence alignment and confident secondary
structure predictions. Because the predicted ������ signa-
ture indicates the ferredoxin fold, we hypothesized that
T148 was a tandem ferredoxin fold. We parsed the se-

quence and folded the halves separately, generating tight
ferredoxin-fold clusters for the C-terminal domain (retro-
spective analysis shows that some decoys in the ensemble
aligned to the native structure within 2 Å C� RMSD over
70 residues) but dispersed clusters with predominately
local topologies for the the N-terminal domain. We aban-
doned this approach because of the incorporation of signifi-
cant human bias. The domain swap of strand 1 made this a
difficult target and caused difficulties in determining
domain structure.

None of the models submitted for T148 were parsed into
domains, and the standard protocol was followed with the
addition of the strand score/gyration radius filters de-
scribed in Clustering and Model Selection. When assessed
by a variant of MaxSub,19 which uses RMSD as the
threshold, the five submitted models were similar to those
picked by the standard protocol alone (Table I). However,
the filters led to the selection of a model with the correct
fold in the C-terminal domain (but not the correct topology,
due to the strand swap) as our first model. It is of interest
that Rosetta predictions of full-length T148 produced
many models with secondary structure elements segre-
gated into two domains; some models (including the best
decoy generated, Fig. 3) even had the correct segregation,
including the domain swap.

Fig. 2. Global distance test (GDT18) plots for selected targets comparing the CASP5 Rosetta submissions
with predictions made with a fully automated version of the same protocol. Cyan (models 2–5) and dark blue
(model 1) represent the CASP5 submissions, orange (models 2–5) and red (model 1) represent models made
with a fully automated version of the CASP5 protocol (see Materials and Methods). The y axis represents a C�

RMSD cutoff under which to fit the model to the native structure, and the x axis represents the percentage of the
model that will fit below that cutoff value.
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Fig. 3. Ribbon diagrams of predictions made by using the fragment insertion approach. The native
structure and best submitted model are shown colored from the N-terminus (blue) to C-terminus (red). For
T148, the best generated model is also shown, and for T156, both template-based and fragment insertion-
based models are shown. For targets T173, T135, T156, and T191, colored regions deviate from the native
structure by �4 Å, and gray regions deviate by �4 Å. For targets T129 and T156, colored regions deviate from
the native structure by � 6 Å C� RMSD, whereas the gray regions deviate by �6 Å.
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T149_2–116-Residue Quasi-Ferredoxin Fold

The C-terminal domain of T149 was a challenging target
due to the number of nonlocal contacts and the weak
secondary structure prediction for strand 4. In our submit-
ted model 4, strand 4 is not well formed and the C-terminal
helix is on the wrong side of the sheet; nevertheless, the
overall topology is similar to the native protein.

T156–158-Residue Methyltransferase

This target has a contact order of �46 and Rosetta
rarely generates decoys with such high contact orders. The
five models generated by the fully automated protocol
exhibited contact orders between 22 and 30. Because of the
suspected complexity of the fold (a weak Pcons hit was to
the methyltransferase 1dik; one submission was modeled

Fig. 4. Ribbon diagrams of targets predicted by using a combination of template-based and fragment insertion approaches. a: The native structure
and the best model for T130, built by following our template-based protocol. The different shades of blue indicate regions that were modeled as template
using coordinates from the homologue parent structure 1f5aA, whereas red, yellow, and white indicate regions that were modeled as loops with our
modified de novo protocol that takes into account the context of the template. Dark blue and red show those residues that are within 4 Å, light blue and
yellow deviate �8 Å, and ice-blue and white are �8 Å away from one another in the fit. b: T186 domain 2 native-model pair illustrates the good quality of
the alignment for this TIM barrel domain, following the color scheme in (a). The success in the alignment for T186_2, particularly in the stem regions
indicated by (I) and (II), provided the opportunity to build a good model for the minidomain insertion (c), accomplished with our long loop-modeling
protocol. d: T172 possessed a domain insertion between strand 4 and the helix that precedes strand 5 [the stems are indicated by (I) and (II)], which was
long enough to justify modeling following our full de novo domain-modeling protocol. e: The best model for the inserted domain T172_2 captures the
helical elements well and is in quite good agreement with the native over the second half (the green, yellow, orange, and red helices).
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by using this template), we deviated from the standard
protocol during decoy generation by adding a term that
promotes nonlocal strand pairing (as in T135); during
clustering, we also used a contact order filter to enrich the
population for high contact order models. These alter-
ations shifted the range of contact orders to 25–38. Our
first submitted model has 59 amino acids below 4 Å C�

RMSD and has an overall topology similar to the native
structure. However, the best submitted model (model 3)
was built by comparative modeling using 1 dik as template
(Table I).

T161–154 Residues, Novel Fold, Helical Motif
Capped by �-Sheet

T161 is an elongated protein consisting of a helical motif
capped by a three-stranded �-sheet, through which the
protein dimerizes. We were unable to find sequences with
convincing homology to T161, and the secondary structure
predictions were weak over several regions. All of the
submitted models were folded as a single chain, and the
standard protocol was used with the strand score/gyration
radius filters. Models 1–4 correctly predict a helical motif
and a capping sheet, whereas none of the models would
have contained the �-sheet had we not used these filters.
Although our submitted models are generally of low qual-
ity, as assessed by GDT18 and a MaxSub19 variant, the

overall fold of model 2 is in reasonable agreement with the
experimental structure and was perhaps the best model
produced for this protein in CASP5. In general, the models
were more globular and the �-strands less exposed than in
the native structure. These strands form the dimerization
interface in the native structure and are shielded from
solvent in the dimer. Dimerization is clearly difficult to
model during the de novo folding protocol.

T162_1–Domain 1(56 Residues) of F-Actin Capping
Protein a-1 Subunit From Chicken

Owing to uncertainties in the domain parsing for T162,
three variations of the de novo protocol were used to produce
decoys for T162_1. T162_1 was parsed and folded as residues
1–60, as part of a larger segment of the protein (residues
1–109), and as an N-terminal extension of de novo decoys
previously produced for a central segment of the protein
(residues 61–219). The first protocol most frequently pro-
duced decoys with a broken third helix, in disagreement with
consensus secondary structure prediction and probably
caused by our filter on the radius of gyration. Because decoys
from the second and third protocols were in better agreement
with the secondary structure predictions, only those decoys
were submitted. Both the second and third protocols pro-
duced good models (submitted models 2 and 1, respectively).
Model 1 had a C� RMSD of 2.8 Å over the entire 56-residue

Fig. 5. Correlation between clustering density and model accuracy for T129. The 11,075 decoys produced for target T129 (a 182-residue,
all-�-protein) are plotted on the basis of their global C� RMSD to the native structure (y axis) and the density of nearby structures in the population (x
axis). The density is calculated by comparing each decoy to all the others and recording the C� RMSD to the 100th nearest neighbor. This distance is
termed the cluster radius; smaller values indicate a higher density of neighbors. The five submitted models are shown as filled circles.
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domain, and model 2 had a C� RMSD of 2.7 Å over 53
residues (4.0 Å over 56 residues).

T170–69-Residue �-Helical FF Domain

Given the small size of this target, we applied the
full-atom refinement protocol to the initial models gener-
ated by the standard fragment insertion protocol. The five
submitted models were selected by lowest full-atom en-
ergy, after clustering to determine that the models were
not too similar. Model 4 was the best prediction with a C�

RMSD of 4.2 Å. Only 40 models of the 15,000 refined were
significantly better than model 4 (the best generated is 2.9
Å C� RMSD to native), indicating that the energy function
was fairly effective at selecting the best models produced.

T172-Conserved Hypothetical Protein From T.
maritima, Two Domains

Predictions for this target were made by using a hybrid
template-based and de novo modeling approach. The par-
ent, 1ej0 chain A (Ftsj methyltransferase from E. coli), did
not contain coordinates for residues R116–N216, and this
was assumed to be a domain insertion. Because of the
length of the insertion, it was modeled as an independent
domain using the de novo protocol. The models for the
second domain were filtered for the ability of the N-and
C-termini to span the gap in the template-based models for
domain 1 (labeled I and II in Fig. 4).

T173–303 Residue �/� Protein

T173 is difficult because of its length, and we made
several attempts at domain parsing. The MSA over the
first half (roughly 1–165) of the sequence was deep and
showed regions of strong conservation, allowing us to
identify several homologues that had shorter loops and
were more tractable than the target sequence. We gener-
ated models for the target and a nonredundant set of the
10 shortest proteins in this region of the MSA. One of the
homologue sequences folded more successfully than the
others (i.e., produced a greater fraction of decoys that
passed the contact order, gyration radius, and strand score
filters) and gave rise to decoys with a reasonably well-
formed four-stranded sheet surrounded by helices. The
centers of the top clusters were selected, and models of the
target protein were built by using the loop-modeling
protocol (described in Materials and Methods) to map on
the original sequence and fill gaps. These models were
manually inspected, at which point it became clear that
the fourth cluster center brought together two highly
conserved segments at the ends of the first and fourth
strands, via a 3214 strand topology. Based in part on the
extent of clustering of conserved residues,9 this model was
selected as our top submission for the N-terminal half of
the protein. The C-terminal segment, with longer regions
of weak secondary structure prediction, proved more diffi-
cult to fold; however, a domain parse beginning at residue
223 folded consistently to a subdomain in the native
structure consisting of an �-helix and �-meander (42
residues under 4 Å C� RMSD).

T186–N-Acetylglucosamine-6-Phosphate
Deacetylase From T. maritima

Target 186 was modeled by using our template-based
protocol using the parent structure 1gkp chain A (D-
Hydantoinase from Thermus sp.), a parent detected by
PSI-BLAST. T186 possesses a minidomain insertion (resi-
dues I257–T292), classified as domain 3, within the TIM
barrel domain 2. Our alignment for T186 to the TIM barrel
portion of 1gkp was quite good overall and possessed the
correct alignment at the stem portions of the template
adjoining domain 3 (in our model residues S256 and F294,
labeled I and II in Fig. 4) to allow for long loop modeling
using our fragment insertion protocol in the context of the
template. As can be seen in Figure 4, the insertion was
modeled quite well. We believe this is the first example of a
successful long loop modeling in the CASP experiments
and, hence, particularly exciting. In addition, in the TIM
barrel domain, flexible modeling of a helix not fixed to the
starting template resulted in the correct packing register
of the helix against the �-sheet template.

T191_1–Domain 1 of Shikimate 5-Dehydrogenase
From M. Jannaschii

T191 was parsed into two domains (residues 1–105 and
106–282) based on homology to the protein 1gpjA. Because
the sequence alignment between target and parent was
rather poor in the first domain, three of the models
submitted for the first domain were produced by using the
standard de novo protocol (two comparative modeling
models were also submitted). A large number of de novo
decoys were initially produced (76,000). Before clustering,
the decoy population was reduced to 4600 decoys by using
the strand score and radius of gyration filters discussed in
Clustering and Model Selection in Materials and Methods.
Many of the largest cluster centers had one of two defects:
either the third and fourth helices were merged into one, in
disagreement with the consensus secondary structure
prediction or a hairpin was disconnected and packed
poorly with the rest of the protein, a relatively common
Rosetta pathology. The decoys chosen for submission were
the centers of the largest clusters that did not possess
these defects. The best of our five submitted models was de
novo; it has 100 amino acids below 4 Å and an overall C�

RMSD of 5.9 Å. Of all the initial decoys generated, only
1.2% were better by C� RMSD, and only 0.5% had more
aligned residues under 4 Å.

What Went Wrong?

In the new fold and fold recognition categories, our least
accurate predictions were for targets T146, T162, T174,
T181, and T187. Domain parsing was a problem for T146,
T162, T174, and T187. All of these proteins are large (325,
286, 417, and 417 residues, respectively) and contain two
or more domains that were (for the most part) not identi-
fied correctly during CASP5.

T162, T174, and T187 also had complex topologies.
Rosetta produced a single four-stranded sheet for the
second domain of T162, rather than the more complex
native topology of a sandwich of two hairpins, but rela-

466 BRADLEY ET AL.



tively long fragments were correctly predicted for domains
1 and 3 (Table I). A feature of T174 and T187 that presents
a serious challenge for Rosetta is the swapping of second-
ary structural elements between large domains. In T174,
the first domain includes the 176 C-terminal residues
along with a single N-terminal strand, whereas the second
domain is composed of the intervening I60 residues. In
T187, the first domain includes a single N-terminal helix
with 168 residues from the C-terminal, whereas the 227
intervening residues comprise the second domain.

Of the targets for which complex topology and domain
parsing were not issues, the most obvious failure is T181,
which contains a strand that was almost always modeled
as a helix in the Rosetta predictions. This was due to a bias
toward helix in this region in the secondary structure
predictions contributing to fragment selection. It is of
interest that a new 3D structure-based secondary struc-
ture prediction method (JUFO-3D) predicts this region as
a strand because it is spatially close to a �-hairpin and in
the correct position to form hydrogen bonds with an
adjacent strand. Potentially, a second round of Rosetta
models made by using this improved secondary structure
prediction could have been much more accurate. The
JUFO-3D neural network uses the three-dimensional struc-
ture of Rosetta decoys in addition to the sequence informa-
tion. It leads to a 4% increase in the Q3 measure of
secondary structure prediction accuracy with respect to
the sequence-only analog for the CASP targets we modeled
de novo.21

What We Learned

First, the CASP5 results show that Rosetta can produce
models of increasingly complex topologies (i.e., of higher
contact order) that are often roughly correct. Because of
the relatively small number of new fold targets, progress
from CASP4 to CASP5 is difficult to evaluate quantita-
tively; however, several successfully predicted proteins in
CASP5 had higher contact orders than any successful
CASP4 de novo predictions.

Second, the plausible model of the long insertion in T186
using de novo methods suggests that the coupled de
novo/template-based method could be useful for modeling
evolutionary novelties in protein families with a represen-
tative of known structure.

Third, the fully automated standard protocol produced
models for many targets comparable in quality to the
human-assisted Rosetta predictions (Table 1). (As noted
elsewhere in this issue, the implementation errors in the
Robetta server make the Robetta predictions a worse
standard for comparison). This finding suggests that hu-
man intervention did not significantly improve model
quality, at least at the level of the numerical assessment.
However, the human-assisted predictions were clearly
better in three cases: T135, T170, and T173.

What was the critical departure from the automated
protocol for these three targets, and could it be incorpo-
rated into future automated protocols? For T135 and T173,
the key was a more extensive use of the sequences of
homologous proteins. The automated protocol does make

use of homologous sequence information by generating
models for two homologous sequences as well as the native
sequence and subsequently clustering the models for the
sequences together simultaneously. This automatically
imposes distance constraints in regions of large deletions
in one or both homologues (the residues flanking the
deletion must be close in space) and introduces variation in
secondary structure prediction in homologues. However,
for T135 and T173, we made additional use of homologue
information. For T135, it was recognized that the second-
ary structure prediction for the query sequence was likely
to be incorrect because it differed from those of most
homologue. For T173, modeling efforts were focused on a
homologous sequence lacking several large insertions, and
the model for the query was then built from these models.
Both are potentially automatable–for large domains, an
automated procedure could focus on building a good model
of the smallest member of the family, whereas alternative
secondary structure predictions found for most members of
a family could be given more precedence in modeling a
query sequence. The recognition that a model for T135 was
plausible because it resembled a ferrodoxin fold could be
readily automated by using MAMMOTH.10 For T170, the
human-assisted protocol used the full-atom refinement
procedure, which has not yet been incorporated into the
automated protocol. As the refinement protocol matures, it
should be straightforward to incorporate it into a future
automated protocol.

Finally, CASP5 highlights the primary challenges fac-
ing de novo structure prediction. For large proteins, do-
main parsing is a formidable problem. Promising results
for � and �/� proteins suggest that Rosetta itself may be
useful as a domain-parsing tool (David E. Kim, unpub-
lished, and results from T148); however, there is clearly
much still to be done in this area. For single-domain
proteins, two key areas need work: assembling complete
structures for complex domains and full-atom refinement
to improve the accuracy and ranking of models for proteins
below 100 amino acids. A long-term goal of de novo
structure prediction is clearly to produce models of atomic-
level accuracy for small proteins.
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SUPPLEMENTAL INFORMATION
Fragment Selection

For each sequence, two sets of fragments are generated.
The first has 25 fragments of length 9 for every residue
(except for the last 8 residues), and the second contains
200 fragments of length 3. Fragments are selected on the
basis of the agreement of their sequence with the MSA
profile of the target, as well as the agreement between the
predicted secondary structure with the DSSP secondary
structure assigned to the fragment in its PDB file. Chemi-
cal shifts were available for the fold recognition target
T0138 and were used to produce the fragment files for loop
modeling, as has been described previously.

Decoy Generation

The fragment files were used to build models by the
Rosetta protocol,1–4 which has not changed significantly
since CASP4. Briefly, Rosetta is a five-stage, fragment
insertion Metropolis Monte Carlo method. Backbone at-
oms are represented explicitly and their connectivity is
maintained, whereas side-chains are approximated by
centroids. 1) The first stage begins with a fully extended
chain and inserts 9-mer fragments at random positions for
at least 2000 steps, until every backbone dihedral angle
has been altered at least once. The only component of the
potential function considered at this stage is a steric-clash
term that prevents close approaches of backbone atoms
and centroids.1,2 2) The second stage also consists of 2000
9-mer fragment insertions, but the scoring function in-
cludes residue-environment and residue–residue scores
favoring hydrophobic burial and specific pair interactions,
as well as secondary structure-packing scores.1,2 3) The
third stage consists of 10 iterations of 2000 9-mer frag-
ment insertions during which the local strand-pairing
score is cycled on and off to promote formation of nonlocal
�-strand pairing over local strand kinetic traps, whereas
the local atom density is pushed toward that of native
protein structures. 4) In the final stage, three iterations of
4000 3-mer fragment insertions are conducted out; a term
linear in the radius of gyration is added to help condense
the model and a higher resolution model of strand pairing
is used. 5) The final decoy is stored only if it passes several
filters designed to eliminate common Rosetta pathologies,
such as decoys with an overly high radius of gyration or
unpaired �-strands. Between 10,000 and 400,000 indepen-
dent simulations were conducted for each target sequence,
starting from different random number seeds.
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