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Abstract— In this case study, a ligand-based virtual high 
throughput screening suite, bcl::ChemInfo, was applied to 
screen for  activation of the protein target 17-beta 
hydroxysteroid dehydrogenase type 10 (HSD) involved in 
Alzheimer’s Disease. bcl::ChemInfo implements a diverse set 
of machine learning techniques such as  artificial neural 
networks (ANN), support vector machines (SVM) with the 
extension for regression, kappa nearest neighbor (KNN), and 
decision trees (DT).  Molecular structures were converted into 
a distinct collection of descriptor groups involving 2D- and 3D- 
autocorrelation, and radial distribution functions. A 
confirmatory high-throughput screening data set contained 
over 72,000 experimentally validated compounds, available 
through PubChem. Here, the systematical model development 
was achieved through optimization of feature sets and 
algorithmic parameters resulting in a theoretical enrichment of 
11 (44% of maximal enrichment), and an area under the ROC 
curve (AUC) of 0.75 for the best performing machine learning 
technique on an independent data set. In addition, consensus 
combinations of all involved predictors were evaluated and 
achieved the best enrichment of 13 (50%), and AUC of 0.86. 
All models were computed in silico and represent a viable 
option in guiding the drug discovery process through virtual 
library screening and compound prioritization a priori to 
synthesis and biological testing. The best consensus predictor 
will be made accessible for the academic community at 
www.meilerlab.org  
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Alzheimer’s Disease puts a financial burden on society 
with over $150 billion annually, making it the 3rd most 
costly disease after heart disease and cancer [1]. In modern 
drug design, compounds with undesirable biological activity 
can be eliminated from the available chemical space while 
optimizing efficacy. The ability to predict active compounds 
related to cognitive disorders such as Alzheimer’s Disease 
has the potential to reduce the medical cost involved.  

The protein target 17-beta hydroxysteroid dehydrogenase 

type 10 (HSD) has been found in elevated concentrations in 
the hippocampi of Alzheimer’s disease patients. HSD may 
play a role in the degradation of neuroprotective agents. The 
inhibition of HSD has been indicated as a possible mean’s of 
treating Alzheimer's disease. Dysfunctions in human 17 beta-
hydroxysteroid dehydrogenases result in disorders of biology 
of reproduction and neuronal diseases, the enzymes are also 
involved in the pathogenesis of various cancers. HSD has a 
high affinity for amyloid proteins. Thus, it has been proposed 
that HSD may contribute to the amyloid plaques found in 
Alzheimer's patients [2]. Furthermore, HSD degrades 
neuroprotective agents like allopregnanolone which may lead 
to memory loss. Therefore, it has been postulated that 
inhibition of HSD may help lessen the symptoms associated 
with Alzheimer's.  

High-throughput screening (HTS) has become a key 
technology of pharmaceutical research [3], often more than 
one million compounds per biological target are screened [2]. 
At the same time, the number of compounds testable in a 
HTS experiment remains limited and costs increase linearly 
with size of the screen [4]. This challenge motivates the 
development of virtual screening methods which search large 
compound libraries in silico and identify novel chemical 
entities with a desired biological activity [2]. 

Machine learning techniques play a crucial role in 
modeling quantitative structure activity relationships 
(QSAR) by correlating chemical structure with its biological 
activity for a specific biological target [3, 5-7]. In recent 
years the potential of approaches such as Support Vector 
Machines (SVM) and Artificial Neural Networks (ANN) for 
establishing highly non-linear relations has become apparent. 
[18-22]. The algorithms learn to recognize complex patterns 
and make intelligent decisions based on an established 
compound library. Imposing such acquired sets of patterns 
obtained by a learning process, the algorithms are able to 
recognize not yet tested molecules and categorize them 
towards a given outcome. 

In this study, a cheminformatics software suite named 
bcl::ChemInfo, incorporates several predictive models using 
supervised machine learning techniques including artificial 
neural networks [8], support vector machines with the 
extension for regression estimation (SVR) [9],  decision trees 
[10], and unsupervised techniques such as kappa nearest 
neighbors (KNN) [11],  and kohonen networks (Kohonen) 
[12]. 
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I. MACHINE LEARNING TECHNIQUES 

A. Unsupervised Learning 
The kohonen network represents an unsupervised 

learning algorithm [12-14]. It is conceptually derived from 
artificial neural networks consisting of an input layer and a 
two-dimensional grid of neurons, the kohonen network. 

The second unsupervised learning method is the Kappa – 
Nearest Neighbors [15-17]. This method uses a distance 
function to calculate pair-wise distances between query 
points and reference points, where query points are those to 
be classified. 

B. Supervised Learning  
Artificial Neural Networks are successful attempting 

classification and regression problems in chemistry and 
biology. The structure of ANNs resembles the neuron 
structure of a human neural net.  Layers of neurons are 
connected by weighted edges wji. The input data xi are 
summed according to their weights, activation function 
applied, and output used as the input to neurons of the next 
layer (Figure 2).  

Support Vector Machine learning with extension for 
regression estimation [18, 19] represents a supervised 
machine learning approach successfully applied in the past 
[3, 7]. The core principles lay in  linear functions defined in 
high-dimensional hyperspace [20], risk minimization 
according to Vapnik’s   - intensive loss function, and 
structural risk minimization [21] of  a risk function 
consisting of the empirical error and the regularized term. 

The Decision Tree learning algorithm [10, 22] determines 
sets of rules to partition a given training data set. The 
outcome is a tree diagram or dendrogram (Figure 2) that 
describes how a given dataset can be classified by assessing 
a number of predictor variables and a dependent variable. 

 

II. TRAINING DATA 
The protein target 17-beta hydroxysteroid dehydrogenase 

type 10 (HSD) is part of the family of eleven 17-β 
hydroxysteroid dehydrogenases that oxidize or reduce 
steroids at the 17 position [23]. Thus, the biological activity 
of these steroids is modulated. HSD catalyzes the oxidation 
of the positive allosteric modulators of GABA, 
allopregnanolone and allotetrahydrodeoxycorticosterone (3, 
5 -THDOC), to 5α-DHP, 5α-DHDOC, respectively [21]. It 
also inactivates 17β-estradiol [24]. When first identified, 
HSD was known as endoplasmic reticulum-associated 
amyloid binding protein (ERAB) [2].  HSD has since been 
identified as being the only member of the 17β-HSD family 
to be found in mitochondria [24]. HSD has been found in 
increased concentrations in the mitochondria of the 
hippocampi of Alzheimer's disease mice [24] and humans 
[25]. Several possible relationships between HSD and 
Alzheimer’s disease have been proposed in the literature 
[23]. HSD has a high affinity for amyloid proteins. 
Therefore, it has been suggested that HSD may contribute to 
the amyloid plaques found in Alzheimer's patients [2]. 17β-
estradiol is a neuroprotective agent which prevents the 
degradation of existing neurons via its regulation of the β-
amyloid precursor protein metabolism [24]. HSD has been 

 
 

Figure 2: Depictions of Decision Trees (A) , Artificial  Neural 
Networks (B) , and Support Vector Machines (C) are 
presented. In A), the partitioning algorithm determines each 
predictor forecast, the value of the dependent variable. The 
dataset is then successively split into subsets (nodes) by the 
descriptor that produces the greater purity in the resulting 
subsets.  In B), a three-layer feed forward network is shown 
using a sigmoid activation function in each neuron. In C), the 
prediction process of a support vector machine is shown for an 
unknown vector.  

 
 

  

 
 
 

 
Figure 1: The schematic view of three unsupervised machine 
learning techniques is presented. A) A Kohonen network is 
represented by a input layer connected to a grid of nodes, each 
fully connected with its neighbors.  B) The kappa – nearest- 
neighbors represents the predicted value of a query point as the 
weighted average of its kappa nearest reference points.  

 



shown to degrade 17β-estradiol which may lead to neuronal 
degradation and the accumulation of β-amyloid, forming 
characteristic plaques [21]. It was also suggested that 
allopregnanolone reverses memory loss and dementia in the 
mouse model of Alzheimer's disease [26]. HSD is involved 
in the degradation of allopregnanolone which may lead to 
memory loss. Therefore, it has been postulated that 
inhibition of HSD may help lessen the symptoms associated 
with Alzheimer's. 

The data set for the protein target HSD used in this study 
was obtained through PubChem [27] (AID 886) and resulted 
in a final data set of 72,066 molecules. A confirmatory high 
throughput screen revealed 2,463 molecules which activate 
the enzyme, as experimentally determined by dose-response 
curves. Among the actives, 495 compounds with a 
concentration <= 1 µM were identified.  All molecules in 
the data set were numerically encoded using a series of 
transformation-invariant descriptors which serve as unique 
fingerprints. The descriptors (Table I) were calculated using 
in-house code.  

 

III. IMPLEMENTATION / METHOD 
Our in-house developed C++ class library, the 

BioChemistryLibrary (BCL), was employed to implement all 
machine learning algorithms, and descriptor calculations 
used for this study. A third-party 3D conformation generator, 
CORINA [28], was used to calculate 3D coordinates for 
molecules prior to descriptor calculation. The here applied 
ligand-based virtual high throughput screening suite, 
bcl::ChemInfo, is part of the BCL library. 

 

A. Dataset Generation 
During the training of the models, 10% of the data set 

was used for monitoring and 10% were used for independent 
testing of the trained models, leaving 80% for the training 
data set. The independent data set is put aside and not used 
during the training process. Each trained model is evaluated 
by a given quality measure based on this independent data 
set.   

 

B. Quality Measures 
The machine learning approaches are evaluated by 

means of a receiver operating characteristic (ROC) curve 
using cross-validated models. ROC curves plot the rate of  
true positives         ⁄    (     )⁄ , or  
sensitivity versus the rate of false positives         ⁄  
     ⁄    (     )⁄ , or (1 - specificity). The 
diagonal represents performance of a random predictor and 
has an integral or area under the curve (   ) of 0.5. The 
QSAR model progressively improves as the    -value 
increases. Often           is normalized with the 

background fraction of active compounds through 
computation of the enrichment measure:  

 
             (     )⁄

 (   )⁄
           

 (   )⁄
                  (9) 

 The value represents the factor by which the fraction of 
active compounds can be theoretically increased above the 
fraction observed in the original screen through in silico 
ranking. Another introduced measure is the root mean square 
deviation (    ). 
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with                                   and       the 
predicted value. 

 

C. Feature Selection 
A total of 60 descriptor groups resulting in 1,284 

descriptor values were generated using the BCL. These 60 
categories consisted of scalar descriptors, as well as 2D- and 
3D autocorrelation functions, radial distribution functions, 
and van der Waals surface area weighted variations of each 
of the non-scalar descriptors (see Table I). 

Sequential forward feature selection [29] was used for 
feature optimization for each machine learning technique 
individually.  It describes a deterministic greedy search 
algorithm among all features. First, every single feature is 
selected and five-fold cross-validated models are trained 
followed by the evaluation of respective objective functions. 
The top performing feature is elected as the starting subset 
for the next round. Next, each remaining feature is added to 
the current subset in an iterative fashion resulting in N-1 
feature sets. The best performing feature set is chosen again 
as the starting set for the next round. This process is repeated 
until all features are selected and the best descriptor 
combination is determined.  

Additionally, each feature set was trained with 5-fold 
cross-validation evaluated on an independent data set. The 
number of models generated during this process for each 
training method was  ∑  (   )  

   . Upon identification of 
the optimized feature set for each algorithm, any algorithm-
specific parameters were optimized using the entire training 
data set and using 5-fold cross-validation. 

Every cross-validation model was evaluated by its quality 
measure on the independent data set. 

 

IV. RESULTS 
Various machine learning methods were evaluated as 

single predictors, highlighted in Table II. Given the 
independent data set, a perfect predictor would achieve a 
theoretical enrichment of 27.  

 



ANNs were trained applying simple propagation as a weight 
update algorithm each iteration. The      was evaluated as 

the objective function every step during the feature 
optimization process. ANNs as a single predictor achieved a 

theoretical enrichment of 10 (37% of possible maximal 
enrichment) on an independent dataset. An integral under 

the ROC curve of 0.83 was obtained. 
SVMs were trained using an initial cost parameter C of 

1.0 and the kernel parameter γ of 0.5 during the feature 
optimization process. Upon identification of the optimal 
feature set, the cost and γ parameters were optimized to 2 
and 32, respectively. As a single predictor, SVMs achieved a 
theoretical enrichment of  ~12 (44%) and an AUC of 0.75 on 
an independent dataset. 

The KNN algorithm was used to predict the biological 
activity values of the training, monitoring, and independent 
data sets. The value of kappa, the number of neighbors to 
consider, was optimized with the full data set using the 
optimized feature set determined during the feature selection 
process. KNNs, as a single predictor, achieved a theoretical 
enrichment of ~11 (41%), AUC of 0.77 using an optimal 
kappa of 4. 

The Kohonen networks were trained with a network grid 
dimension of 10 x 10 nodes and a neighbor radius of 4 using 
the Gaussian neighbor kernel. The best result achieved by 
Kohonen networks was a theoretical enrichment of ~7 (28%) 
and an area under the ROC curve of 0.74.  

The assessed Decision Trees were cross-validated and 
evaluated resulting in a theoretical enrichment of ~5 (18%) 
and an AUC of 0.70.  

To further evaluate the predictive models, ensemble 
predictors were also created by averaging the predictions 
using all possible combinations of models. The best 
consensus resulted in a      of 0.86 and a theoretical 
enrichment of 13 (50%) achieved by the ensemble predictor 
model ANN/Kohonen/KNN/SVM (Table II) (Figure 3).  

Additionally, Table II lists all possible combinations 
introducing consensus predictors. All entries in Table II are 
sorted by Enrichment in descending order.  

V. DISCUSSION 
Among single predictors, SVM, KNN, and  ANN achieved a 
comparable enrichment performance (37% to 44%). 
Kohonen networks (28%) and DTs (18%) underperformed 

TABLE II 
 SINGLE AND CONSENSUS PREDICTOR RESULTS 

 

Method      Enrichment 
(% max) AUC 

ANN/ Kohonen / KNN / SVM 0.91 13.42 (50) 0.86 
ANN/DT/Kohonen/KNN/SVM 1.17 13.42 (50) 0.86 

ANN / KNN / SVM 0.76 13.27 (49) 0.86 
ANN / DT / KNN / SVM 1.09 13.27 (49) 0.86 

ANN / DT / SVM 1.37 12.87 (48) 0.85 
ANN / SVM 0.95 12.86 (48) 0.85 

Kohonen / KNN / SVM 0.85 12.81 (47) 0.81 
DT / Kohonen / KNN / SVM 1.20 12.81 (47) 0.81 

ANN / Kohonen / KNN 0.98 12.74 (47) 0.85 
ANN / DT / Kohonen / KNN 1.30 12.74 (47) 0.85 

ANN / KNN 0.81 12.55 (47) 0.85 
ANN / DT / KNN 1.23 12.55 (47) 0.85 
DT / KNN / SVM 1.11 12.52 (46) 0.77 

KNN / SVM 0.68 12.44 (46) 0.77 
ANN / Kohonen / SVM 1.10 12.35 (46) 0.85 

ANN / DT / Kohonen / SVM 1.40 12.35 (46) 0.85 
DT / SVM 1.54 12.01 (44) 0.75 

SVM 0.84 11.80 (44) 0.75 
Kohonen / KNN 0.93 11.78 (44) 0.78 

DT / Kohonen / KNN 1.38 11.78 (44) 0.78 
Kohonen / SVM 1.10 11.54 (43) 0.80 

DT / Kohonen / SVM 1.52 11.52 (43) 0.80 
DT / KNN 1.33 11.10 (41) 0.77 

KNN 0.71 11.08 (41) 0.77 
ANN / DT 1.74 10.13 (38) 0.83 

ANN 1.25 10.11 (37) 0.83 
ANN / Kohonen 1.33 10.03 (37) 0.83 

ANN / DT / Kohonen 1.66 10.03 (37) 0.83 
Kohonen 1.55 7.43 (28) 0.74 

DT / Kohonen 1.97 7.42 (27) 0.74 
DT 2.46 4.80 (18) 0.70 

 

TABLE I 
THE MOLECULAR DESCRIPTORS BY NAME AND DESCRIPTION 

 
 Descriptor 

Name 
Description 

Scalar descriptors Weight Molecular weight of compound 
 H-Bond 

donors 
Number of hydrogen bonding 

acceptors derived from the sum of 
nitrogen and oxygen atoms in the 

molecule 
 H-Bond 

acceptors 
Number of hydrogen bonding 

donors derived from the sum of N-
H and O-H groups in the molecule 

 TPSA Topological polar surface area in 
[Å2] of the molecule derived from 

polar 2D fragments 
Vector descriptors Identity  weighted by atom identities 
2D Autocorrelation   

(11 descriptors) 
Sigma 
Charge 

weighted by σ atom charges 

 Pi Charge weighted by π atom charges 
3D Autocorrelation   

(12 descriptors) 
Total 
Charge 

weighted by sum of σ and π 
charges 

 Sigma 
Electro-
negativity 

weighted by σ atom 
electronegativities 

Radial Distribution 
Function 

Pi Electro-
negativity 

weighted by π atom 
electronegativities 

(48 descriptors) Lone Pair  
Electro-
negativity 

weighted by lone pair 
electronegativities 

 Polarizibility weighted by effective atom 
polarizabilities 

 



in comparison. In contrast, consensus models clearly 
outperform single technique predictive models. The 
majority of ensemble models rank above the average (Table 
II). Among the best ensemble predictors, ANNs, SVMs, and 
KNN in combination yield the best enrichment result (50%). 
Adding each one of the mentioned techniques to an 
ensemble increased the predictive accuracy, respectively. 
This implies that each single technique supplies a distinct 
contribution to the predictive accuracy of the final model 
(ANN/Kohonen/KNN/SVM). The inclusion of decision trees 
into the final ensemble did not change the overall 
performance (see ANN/DT/Kohonen/KNN/SVM). Both 
predictors achieved the same enrichment (50%).     , as a 
quality measure, discriminates distinguished predictive 
models by precision rather than accuracy of the predictions. 
Sorting Table II by      indicates that KNNs contribute 
among all top ranking predictors.  

VI. CONCLUSIONS 
In this research, we present a case study application of 

the ligand-based virtual high throughput screening suite, 
bcl::ChemInfo, on the target protein 17-beta hydroxysteroid 
dehydrogenase type 10 (HSD). HSD is involved in 
Alzheimer’s Disease which puts a tremendous financial 
burden on today’s society. QSARs models were developed to 
identify biologically active compounds for the activation of 
HSD. We have shown that the best consensus predictor 
achieved 50% of the maximal enrichment on an independent 
dataset. The best consensus predictor will be made accessible 
for the academic community at www.meilerlab.org. 
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and an area under the curve (AUC) of 0.86. The sub graph 
plots the same ROC curve on a logarithmic scale. 
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