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Abstract Interactions between protein domains and

linear peptides underlie many biological processes.

Among these interactions, the recognition of C-terminal

peptides by PDZ domains is one of the most ubiquitous.

In this work, we present a mathematical model for PDZ

domain–peptide interactions capable of predicting both

affinity and specificity of binding based on X-ray crystal

structures and comparative modeling with ROSETTA. We

developed our mathematical model using a large phage

display dataset describing binding specificity for a wild

type PDZ domain and 91 single mutants, as well as

binding affinity data for a wild type PDZ domain bind-

ing to 28 different peptides. Structural refinement was

carried out through several ROSETTA protocols, the most

accurate of which included flexible peptide docking and

several iterations of side chain repacking and backbone

minimization. Our findings emphasize the importance of

backbone flexibility and the energetic contributions of

side chain-side chain hydrogen bonds in accurately pre-

dicting interactions. We also determined that predicting

PDZ domain–peptide interactions became increasingly

challenging as the length of the peptide increased in the

N-terminal direction. In the training dataset, predicted

binding energies correlated with those derived through

calorimetry and specificity switches introduced through

single mutations at interface positions were recapitulated.

In independent tests, our best performing protocol was

capable of predicting dissociation constants well within

one order of magnitude of the experimental values and

specificity profiles at the level of accuracy of previous

studies. To our knowledge, this approach represents the

first integrated protocol for predicting both affinity and

specificity for PDZ domain–peptide interactions.

Keywords Binding energy prediction � PDZ domain �
Protein design � Protein–peptide interaction � Specificity

prediction

Introduction

Proper organization and regulation of interacting protein

domains is crucial for maintaining normal physiological

function. Mutations which perturb these interactions often

lead to dysfunction and disease [1]. While the evolu-

tionary incorporation of modular protein domains into

larger polypeptide chains has created an extraordinary

amount of functional diversity, individual domains share

common structural and energetic characteristics. Many

contain an exposed binding interface optimized for rec-

ognition of short linear peptides. Such domain–peptide
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interactions are ubiquitous in cellular signal transduction

and regulatory networks [1]. Synthetic and systems

biology strategies have focused on particular domain–

peptide interactions with the goal of detecting or

designing high binding affinity and specificity. Recent

examples include the design of native-like peptide-bind-

ing WW domains at atomic resolution using only infor-

mation contained in multiple sequence alignments [2, 3],

computational design of peptides highly selective for one

of 20 families of bZIP transcription factors [4], and

proteome-wide evaluation of SH3 domain–peptide bind-

ing specificity with subsequent elucidation of the inter-

actions’ roles in endocytosis [5]. These studies, among

many others, have underscored the importance of accu-

rately and efficiently analyzing affinity and selectivity of

domain–peptide binding.

PDZ domains are ideal systems for studying

domain–peptide interactions

In the present study, we focus on interactions between

PDZ (PSD-95, Dlg, ZO-1) domains and linear C-terminal

peptides. PDZ domains have many roles in biological

function and disease and are ubiquitous within human

and model organism proteomes. Notably, as of 2006, 918

and 771 PDZ domains are known to exist in the human

and mouse genomes, respectively [6]. PDZ domain–pep-

tide interactions are also present in plants, yeast, and

bacteria [7]. Many of these interactions have been studied

at atomic detail, as evidenced by the numerous structures

of PDZ domain–peptide complexes elucidated through

X-ray crystallography and nuclear magnetic resonance

(NMR) spectroscopy in the Protein Data Bank (PDB).

Calorimetric, fluorescence, and NMR titration studies,

such as those of Saro et al. [8] and Fuentes et al. [9],

have illustrated the effects of ligand and domain muta-

tions on Gibbs free energy of PDZ domain–peptide

binding. Furthermore, the use of phage-displayed peptide

and domain libraries has revealed intricate sequence–

function relationships, i.e. specificity of different natural

and synthetic PDZ domains for peptides of varying

sequence [10, 11]. Computational efforts to redesign PDZ

domains to modify their specificity have also proven

fruitful [12, 13]. Moreover, the recent design of stable

competitive inhibitors of PDZ domain–peptide interac-

tions has revealed a potential path to therapeutics for

cocaine addiction, neuropathic pain, and ischemic stroke

[14, 15]. This abundance of structural, thermodynamic,

and high-throughput sequence data, alongside numerous

biomedical applications, renders the PDZ domain an

ideal model system for the study of domain–peptide

interactions.

Known determinants of PDZ domain specificity

and promiscuity

All PDZ domains exhibit the same general binding mode

(Fig. 1). The binding groove engages the C-terminal pep-

tide ligand through main chain hydrogen bonds. The

interaction is such that the peptide extends the antiparallel

pairing interaction between b-strand 2 (b2) and b-strand 3

(b3) of the domain. Crucial hydrogen bonds are also found

between the carboxylate of the C-terminal position of the

peptide (position 0 or P0) and the ‘‘carboxylate binding

loop’’ (CBL) immediately preceding b2 [16]. The hydro-

phobic C-terminal side chain of the peptide (UCOO� ) serves

as an anchor in a highly conserved knob-hole interaction.

Additionally, the peptide participates in side chain inter-

actions with a-helix 2 (a2) of the domain.

While PDZ domain interfaces are hardwired to recog-

nize specific C-terminal sequences, they can exhibit

remarkably promiscuous binding. Molecular dynamics

simulations have suggested that nonpolar contributions to

PDZ domain–peptide binding are overwhelmingly favor-

able [17]. In addition, these calculations have suggested

Fig. 1 Stereoview of the DLG4-3 PDZ domain with bound

KKETWV peptide (PDB ID: 1TP5). The canonical hydrophobic C-

terminal side chain (UCOO� ) of the peptide inserts into a hole on the

domain surface. The interaction is further stabilized by backbone–

backbone hydrogen bonds between the C-terminal carboxylate moiety

of the peptide and the ‘‘carboxylate binding loop’’ (CBL) of the

domain. Backbone–backbone hydrogen bonds also allow the peptide

to participate in antiparallel strand pairing interactions with b-strand 2

(b2), which adjoins b-strand 3 (b3). Side chain-side chain hydrogen

bonds are present throughout the PDZ domain–peptide interface and

those involving a-helix 2 (a2) are particularly important for

interaction specificity
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that, while enthalpic contributions must compensate for the

loss of conformational entropy upon binding of the peptide

ligand, this entropic cost of binding is variable across the

PDZ domain family and even varies for the same domain

interacting with different peptides [17]. The extent of high-

energy water release from hydrophobic regions of the PDZ

binding cleft is also highly variable and is likely a deter-

minant of the free energy change at the interface [18]. This

complex combination of thermodynamic factors lends

promiscuity to PDZ domain–peptide interactions and

explains why different domains recognize different por-

tions of peptide sequence space.

Early studies delineated three main PDZ domain classes

based on the four C-terminal positions of recognized pep-

tides (P-3–P0). Class I, II, and III domains bind X-S/T-X-

UCOO� , X-U-X-UCOO� , and X-D/E-X-UCOO� peptides,

respectively, where X is any amino acid and U is hydro-

phobic [19]. This canonical classification system based on

differences at P-2 was extended by Tonikian et al. [11]

through the creation of a specificity map incorporating 82

human and worm PDZ domains. It was found that 73

domains fell into one of 16 specificity classes based on the

properties of positions P-6–P0, while nine had unique

specificities which could not be classified. This diverse

space of preferred binding partners across the PDZ domain

family makes in silico prediction of specificity profiles for

individual domains a challenging yet fitting goal.

Affinity and specificity prediction for PDZ domain–

peptide complexes is a nontrivial problem

Computational techniques for predicting PDZ domain–pep-

tide interactions all depend on experimental data. Statistical

and machine learning methods which rely only on primary

sequence data are known for being highly accurate in pre-

dicting compatible binding partners [20–22]. However, these

methods provide little insight into the structural or energetic

nuances of interactions. Molecular mechanics techniques, on

the other hand, use explicit physics-based calculations and

have been applied to predict three-dimensional structural

and energetic landscapes of PDZ domain–peptide interac-

tions [17, 23, 24]. Although these studies have the power to

reveal experimentally inaccessible information about inter-

actions, large quantities of computational resources are

required, ultimately limiting throughput.

Previous studies have demonstrated that the protein

structure prediction program ROSETTA [25] can accu-

rately predict structural and energetic characteristics

underlying PDZ domain–peptide interactions, often in a

high-throughput manner [26–28]. The goal of the

present study was to develop and test a unified frame-

work for predicting both affinity and specificity of PDZ

domain–peptide interactions using ROSETTA. To this end,

we first utilized a large phage display dataset and

several ROSETTA refinement routines to generate a

mathematical model describing the free energy change

of PDZ domain–peptide binding. This model was tested

and further refined using calorimetric measurements of

PDZ binding events. Finally, since our approach allows

for calculation of free energy in parallel with specific-

ity, we evaluated its predictive capacity through inde-

pendent tests on several PDZ domains with available

crystal structures, dissociation constants, and specificity

profiles.

Methods

Experimental datasets

We made use of single mutant and human PDZ domain

phage display data provided by Tonikian et al. [11]

(http://baderlab.org/Data/PDZ). Data were presented in

the peptide file format, which included the domain

sequence and a list of peptide binders derived through

phage display. For domain–peptide pairing and mea-

surement of area under the receiver operating character-

istic curve (AUC), we included only unique peptides (i.e.

no duplicates) following two manipulations: all peptides

were truncated, leaving the six C-terminal residues; and

any positions labeled as ‘‘X’’, indicating that any amino

acid was accepted at that position, were replaced with

alanine. Any peptide found to bind a particular PDZ via

phage display was considered a binder, while the

remaining peptides that were not listed as binding that

domain were considered non-binders. Prior to structural

refinement, if necessary, domain crystal structures were

also truncated such that they matched the domain

sequence provided in the peptide file.

Calorimetric measurements of DLG4-3 binding energy

were obtained for the 28 hexapeptides listed in Table 5 of

Saro et al. [8]. Data were provided as Gibbs free energy in

kcal/mol and did not require conversion.

We performed a systematic literature search for binding

affinity data to be used in our independent test. First, we

determined which of the human PDZ domains with avail-

able phage display data had bound X-ray crystal structures

in the PDB. For such PDZ domains, we then performed a

search of the Medline database using the official HUGO

Gene Nomenclature Committee name and any alternative

names, along with the search terms PDZ, affinity, binding

energy, calorimetry, surface plasmon resonance, and

fluorescence. Since all affinity data in identified studies

were provided as Kd values, we converted them to DDG

values using the formula
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DDG ¼ RT ln Kd: ð1Þ

Structural refinement

Prior to generating domain–peptide pairs, each original

X-ray crystal structure underwent extensive minimiza-

tion using the ROSETTA Relax application. The native

peptide sequence was kept for this preprocessing step

except in the case of the Erbin PDZ structure (PDB ID:

1MFG) where we utilized the peptide sequence of a

different structure (PDB ID: 1N7T). Furthermore,

because the two N-terminal backbone positions of the

1MFG peptide deviated slightly from those of other

PDZ structures, we used the coordinates of 1TP5 for

these peptide positions. The best scoring of 25 output

structures, as indicated by the default ROSETTA Score12

function, was used as the template onto which peptide

sequences were mapped.

For protocols involving flexible peptide docking (FPD

and FPD ? IRM), the ROSETTA FlexPepDock application

[29] was utilized. For each input structure provided, pep-

tide rigid body and torsion angle degrees of freedom were

optimized, as were side chain angles. Preprocessing steps

available through this application were not performed.

Protocols calling for rigid body docking (RBD and

RBD ? IRM) were performed within the ROSETTASCRIPTS

application [30]. Peptides were subjected to small pertur-

bations with translational and rotational standard devia-

tions of 0.3 Å and 3� from the null. Interface side chain

angles were sampled as well. ROSETTASCRIPTS was also used

for protocols involving iterative repacking and minimiza-

tion (IRM, RBD ? IRM, and FPD ? IRM). Through this

refinement scheme, input structures underwent eight iter-

ative rounds of interface side chain repacking and whole

backbone minimization. Over the eight rounds, the weight

of the repulsive component of the Lennard–Jones potential

(wrep) was increased from 12.5 to 100 % of the default

value. Finally, all protocols ended with calculation of DDE,

which was also a function within ROSETTASCRIPTS. We

generated 25 output structures corresponding to each input

structure for all protocols and the best scoring of these, as

indicated by Score12, was accepted for further analysis.

ROSETTA command lines and xml script are available in

Supplemental Information: Methods.

Weight optimization

We modified the MinimizeScoreWeightSet application

within the BioChemistry Library software suite [31] for

optimization of weights in the binding energy function.

AUC was the objective function for this process. Inputs

included a table containing calculated DDEt values repre-

senting each energy term t for all domain–peptide

combinations, as well as starting weights and maximum

step sizes for each. Optimization proceeded in two rounds.

In the first, all starting weights were 1.00 (i.e. equal to the

Score12 weights) and they were perturbed by at most 0.10

in each Monte Carlo step. This was carried out 100 sepa-

rate times, producing 100 independent weight sets. Since

the best scoring weight sets as indicated by AUC typically

converged, the average of the top five was used as the

starting weight set for the second round. In this round,

starting weights were perturbed by at most 0.02 per step

and the average of the five best scoring weight sets was the

accepted weight set. In both rounds, the repulsive weight

was fixed at 1.00 (i.e. it was not perturbed) while the rest

varied. To arrive at a final weight set, we performed the

aforementioned procedure in the form of a tenfold cross-

validation analysis. The training set consisting of 92 PDZ

domains was partitioned into ten groups (eight groups of

nine and two groups of ten). In a round-robin fashion, one

group was left out while weight optimization proceeded on

the remaining nine. The final weight set was the average of

the ten rounds. Standard deviations were used as measures

of stability.

Analysis of specificity

All sequence logos were made with Weblogo [32]. For the

generation of logos illustrating phage display results, all

peptides listed in the peptide file were included without

modification. For logos illustrating computational results,

the top *2 % of peptides based on calculated DDG were

used (36 peptides for training set predictions and 28 pep-

tides for independent predictions). Sequence logos were

compared using the distance metric dk. At each position k

in a peptide sequence, the distance between a computa-

tional profile C and an experimental profile E was calcu-

lated as

dk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

20

i¼1

ðbC
k vC

ki
� bE

k vE
ki
Þ2

v

u

u

t ð2Þ

where vk is a 20-dimensional vector of amino acid

frequencies at position k and bk is the number of bits of

information at that position, calculated as

bk ¼ log2 20þ
X

20

i¼1

vki
log2 vki

ð3Þ

For this application, the best dk is 0 and the worst is
ffiffiffi

2
p

log2 20 � 6:11. When comparing computational and

experimental specificity profiles via dk, all positions labeled

as ‘‘X’’ were changed to alanine; no further modifications

were made.
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Results and discussion

Developing a mathematical model to predict domain–

peptide interactions

We utilized phage display data generated by Tonikian et al.

[11] to train our model for PDZ domain–peptide interac-

tions. The dataset included sequences of C-terminal peptide

binders for the Erbin PDZ domain and each of 91 single

mutants. Mutations were produced at ten key interface

positions of the Erbin PDZ and correspond to amino acids

found at those particular positions in other PDZ domains.

Although heptapeptide sequences (P-6–P0) were reported

in the dataset, we chose to remove the P-6 position as it

was much less specific than the other six.

Several different protocols within ROSETTA were uti-

lized for the structure-based refinement and evaluation of

PDZ domain–peptide models in our training set (Fig. 2).

This training set consisted of the aforementioned 92

domains and 2,147 phage-derived hexapeptides. Each

possible combination of a domain sequence and a peptide

sequence was threaded onto a high-resolution X-ray

crystal structure of the Erbin PDZ domain with a bound

peptide ligand (PDB ID: 1MFG, resolution: 1.25 Å). In

this fashion, 197,524 unique PDZ domain–peptide com-

plexes were created. Five different refinement protocols

consisting of ROSETTA structural modifications were tested

on each complex. These included: (a) rigid body docking

(RBD); (b) flexible peptide docking (FPD); (c) iterative

repacking and minimization (IRM); (d) rigid body

docking followed by iterative repacking and minimization

(RBD ? IRM); and (e) flexible peptide docking followed

by iterative repacking and minimization (FPD ? IRM).

Each protocol is described in detail in the ‘‘Methods’’

section. Following refinement, the free energy of binding

of each complex was calculated. For each ROSETTA

energy term t, the free energy of binding was computed

as

DDEt ¼ DEbound
t � DEunbound

t ; ð4Þ

where DEbound
t and DEunbound

t are the energy values corre-

sponding to bound and unbound states of the PDZ domain–

peptide complex, respectively.

To derive an energy function optimized for the detection

of compatible and incompatible domain–peptide pairs, the

naı̈ve term-wise binding free energies calculated in Eq. (4)

were re-weighted. Using an adapted version of a Monte

Carlo minimizer within the BioChemistry Library software

suite [31], each energy term was weighted such that AUC

was maximized based on experimentally-determined

specificity profiles of all 92 PDZ domains. In this fashion,

for each refinement protocol applied to this training set, we

derived a linear binding energy function of the form

DDEtotal ¼
X

t

wtDDEt; ð5Þ

where wt is the optimal weight for the energy term t. All

final weights were determined through a tenfold cross-

validation analysis (see ‘‘Methods’’).

The ten ROSETTA energy terms that were not consistently

equal to zero on DDE calculation were considered for

inclusion in the binding energy function. Of these, six were

found to contribute to the optimal detection of domain–

peptide interactions and, as such, were included. Van der

Waals interactions are crucial given the multiple hydro-

phobic contacts at the PDZ domain–peptide interface. They

were accounted for by the atr and rep energy terms cor-

responding to attractive and repulsive portions of the

Lennard–Jones 12–6 potential, respectively. Solvation

(sol), an important effect when considering the environ-

ment of the domain–peptide pair in bound versus unbound

states, was modeled implicitly via the approximation of

Lazaridis and Karplus [33]. Hydrogen bonds, fundamental

to PDZ domain–peptide selectivity, were captured in an

orientation-dependent fashion [34]. Importantly, they were

categorized by the atoms involved: backbone–backbone,

Fig. 2 Schematic overview of the PDZ domain–peptide interaction

prediction protocols tested. All possible combinations of domain and

peptide sequences were threaded onto a structure determined through

X-ray crystallography. Structural refinement was carried out through

one of five schemes involving rigid body docking, flexible docking,

iterative repacking and minimization, or combinations of these. For

protocols with iterative repacking and minimization, there were eight

alternating cycles of repacking of side chains at the interface and

gradient-based minimization of the entire structure. Throughout the

eight iterations, the repulsive weight (wrep) was ramped up. In the

final step of each protocol, the domain and peptide were separated and

the binding energy (DDE) was calculated as the difference between

the total energies of the bound and unbound complexes
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backbone-side chain, and side chain-side chain hydrogen

bonds all had separate energy terms (hbond_bb_bb,

hbond_bb_sc, and hbond_sc_sc, respectively) [35]. The

binding energy function can therefore be written as

DDEtotal ¼ watrDDEatr þ wrepDDErep þ wsolDDEsol

þ whbond bb bbDDEhbond bb bb

þ whbond bb scDDEhbond bb sc

þ whbond sc scDDEhbond sc sc:

ð6Þ

The nonzero terms representing rotamer-based side

chain conformational energy (dun) [36], energy intrinsic

to each amino acid in the unfolded state (ref), an

electrostatic pair-wise potential (pair), and repulsive

interactions among atoms within a single amino acid

(intra_rep) were excluded.

There were several noteworthy differences between the

weights optimized for PDZ domain–peptide interaction

prediction and the default ROSETTA Score12 weights

(Table 1). The largest weight in all five optimized weight

sets was for side chain-side chain hydrogen bonds

(whbond_sc_sc). In contrast, the maximum weights in the

default weight set were those of backbone–backbone and

backbone-side chain hydrogen bonds (whbond_bb_bb and

whbond_bb_sc, respectively), both of which were significantly

smaller in the optimized weight sets. These differences

among the hydrogen bond weights are evidence that side

chain-side chain hydrogen bonds were more influential in

specificity prediction than are hydrogen bonds involving

the backbone, which are more homogeneous across dif-

ferent PDZ domain–peptide pairs. Additionally, atr and

rep, the terms representing van der Waals interactions,

were also substantially down-weighted in the optimized

weight sets relative to the default weight set, indicating

dominance of side chain-side chain hydrogen bonding over

van der Waals interactions in the binding energy function.

We note that there was no major alteration in the balance

between attractive and repulsive components of the Len-

nard–Jones potential (i.e. watr [ wrep in both the default

and optimized weight sets). Finally, the solvation potential

(sol) was upheld as a key factor in the ROSETTA modeling

process as it was only slightly down-weighted through

optimization.

The optimized weights had small standard deviations

derived through a tenfold cross-validation analysis, dem-

onstrating their robustness. Interestingly, the optimal value

of whbond_bb_sc for the FPD protocol was less than zero.

This one instance of a negative weight can be interpreted in

several ways: (a) through FPD, conformations that contain

more favorable backbone-side chain hydrogen bonds ten-

ded to be energetically unfavorable overall; (b) backbone-

side chain hydrogen bonds might not have contributed to

interaction prediction through FPD because the weight is

within one standard deviation of zero (this would apply to

whbond_bb_bb for the IRM protocol as well); (c) whbond_bb_bb

is larger for FPD than for any other optimized weight set—

thus, backbone-side chain hydrogen bonds were accounted

for such that they counterbalanced backbone–backbone

hydrogen bonds.

Based on AUC calculated via the optimization process,

the best performing protocol for predicting PDZ-hexapep-

tide interactions with DDEtotal as a classifier was

FPD ? IRM (AUC = 0.57) followed by RM, FPD,

RBD ? RM, and RBD (AUC = 0.56, 0.56, 0.56, and 0.52,

respectively). While the AUC achieved for each protocol

was modest, it was consistently superior to that of the

Score12 energy function, which is not optimized for the

detection of domain–peptide binding (Fig. S1a for

FPD ? IRM). RBD ? IRM was performed on the same

training set with only the C-terminal four peptide residues

(P-3–P0) present. The resulting AUC derived through

optimization of tetrapeptide binding prediction (0.74) was

markedly higher than the AUC for hexapeptide binding

prediction through all protocols (Fig. S1b); however, the

Table 1 Default ROSETTA weights alongside weights optimized for interaction prediction

Default Optimized

Score12 RBD FPD IRM RBD ? IRM FPD ? IRM

watr 0.68 0.15 ± 0.03 0.33 ± 0.02 0.23 ± 0.05 0.16 ± 0.04 0.20 ± 0.03

wrep 0.38 0.07 ± 0.00 0.13 ± 0.01 0.14 ± 0.02 0.12 ± 0.01 0.17 ± 0.03

wsol 0.56 0.27 ± 0.02 0.38 ± 0.03 0.42 ± 0.05 0.38 ± 0.05 0.40 ± 0.06

whbond_bb_bb 1.00 0.35 ± 0.05 0.46 ± 0.09 0.11 ± 0.11 0.39 ± 0.08 0.18 ± 0.08

whbond_bb_sc 1.00 0.10 ± 0.09 -0.05 ± 0.08 0.12 ± 0.09 0.57 ± 0.08 0.12 ± 0.04

whbond_sc_sc 0.94 1.00 ± 0.04 1.00 ± 0.08 1.00 ± 0.10 1.00 ± 0.08 1.00 ± 0.16

Each set was normalized by dividing by the largest weight. Standard deviations were derived through a tenfold cross-validation analysis

RBD rigid body docking, FPD flexible peptide docking, IRM iterative repacking and minimization, RBD ? IRM rigid body docking followed by

iterative repacking and minimization, FPD ? IRM flexible peptide docking followed by iterative repacking and minimization
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tetrapeptide AUC was improved over the corresponding

Score12 AUC by a similar margin compared to the hexa-

peptide set. As such, predicting PDZ domain–peptide

binding becomes increasingly challenging as the length of

the peptide increases in the N-terminal direction. This is

likely due to noise contributed by the N-terminal peptide

positions for which the PDZ domain tends to be more

promiscuous. The assessment of binder/non-binder pre-

diction via AUC does not necessarily correspond to the

sequence logo comparisons discussed later. Furthermore,

the lower AUCs achieved through this method may be

attributed to false negative phage display results

Fig. 3 Impact of linear

reweighting on prediction of

PDZ domain–peptide

interactions. Charts or graphics

on the left hand side correspond

to prediction using default

ROSETTA Score12 weights and

those on the right hand side

correspond to prediction using

optimized weights. a Through

FPD ? IRM, area under the

receiver operating characteristic

curve for prediction of frequent/

infrequent amino acids

improved by 0.04. b Correlation

of computational binding

energies predicted through

FPD ? IRM and experimental

binding energies (DDEtotal and

DDG, respectively) for the

DLG4-3 PDZ domain and 28

hexapeptides improved by 0.18.

c Sequence logos depicting

computationally predicted and

phage-derived specificity

profiles for interactions between

the wild type Erbin PDZ and

hexapeptides. Following weight

optimization, the average

distance between profiles

predicted through FPD ? IRM

and profiles predicted through

phage display (dAvg) decreased

by 0.20 (i.e. predictive accuracy

increased). d Profiles predicted

through RBD ? IRM and

profiles predicted through phage

display for interactions between

the wild type Erbin PDZ and

tetrapeptides. After weight

optimization, dAvg increased by

0.53 (i.e. predictive accuracy

decreased)
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[i.e. peptides not found to bind a particular PDZ which,

through isothermal titration calorimetry (ITC) for example,

bind with sufficient affinity]. One accepted measurement of

interaction prediction through AUC makes use of the

amino acid frequencies constituting the computationally

derived specificity profiles (i.e. sequence logos) as classi-

fiers. Consistent with the method implemented by Smith

and Kortemme [26], amino acids with frequency C10 % at

a particular peptide position in the experimental profile

were defined as positives. Computational specificity pro-

files (generated as described in ‘‘Methods’’) determined

through FPD ? IRM successfully discriminated between

frequent and infrequent amino acids, as indicated by the

AUC of 0.88. This is comparable to the value achieved by

Smith and Kortemme [26] for the same dataset (0.90).

Although we did not optimize the binding energy function

by maximizing this particular AUC, it did improve by 0.04

relative to Score12 (Fig. 3a).

The aforementioned AUCs were calculated by rank

ordering all values of the classifier (i.e. DDEtotal values for all

197,524 domain–peptide pairs or amino acid frequencies in

all 92 computational specificity profiles). To determine

whether DDEtotal more effectively predicted peptides binding

to a particular PDZ domain or domains binding to a particular

peptide, we calculated AUCs after partitioning the training

dataset by domain or by peptide. While neither partition fared

significantly better than the other, there was more variation in

the predictive accuracy of domains binding to a particular

peptide (Table 2). Both partitioned AUCs were also nearly

equal to the AUC for all domain–peptide pairs (Table 2).

Analogously, with amino acid frequency as a classifier, the

AUC corresponding to data partitioned by domain was

almost identical to that of the entire dataset (Table 2).

Correlation of calorimetric and computational binding

free energies

Although our mathematical model for PDZ domain–pep-

tide interactions was optimized for the prediction of a

dichotomous variable (binding or lack thereof), we also

evaluated and fine-tuned its ability to predict binding free

energies. We leveraged ITC measurements collected by

Saro et al. [8] for 28 hexapeptides binding the DLG4-3

PDZ domain (also known as PDZ3 of PSD-95). Using a

high-resolution X-ray crystal structure of the DLG4-3 PDZ

domain–peptide complex (PDB ID: 1TP5, resolution:

1.54 Å), all five refinement protocols were applied to this

dataset and binding energies (DDEtotal) were predicted with

the optimized weight set of each protocol. We compared

these computational binding energies with Gibbs free

energies of binding (DDG) determined through ITC. For

each of the five sets of 28 data points, we derived a best-fit

line:

DDG ¼ cDDEtotal þ b: ð7Þ

Correlation coefficients (R), scaling factors (c), and

vertical intercepts (b) for each refinement protocol are

presented in Table 3. Binding energies calculated

following FPD had the strongest correlation with the

experimental DDG values (R = 0.60), followed by

FPD ? IRM, RBD ? IRM, RBD, and IRM (R = 0.53,

0.48, 0.45, and 0.44, respectively). Weight optimization

improved the correlation between computational and

experimental binding energies for all five protocols

(Fig. 3b for FPD ? IRM, other protocols not shown).

This analysis makes it possible to approximate DDG

values following any of the five ROSETTA refinement

protocols by substitution of the right hand side of Eq. (6)

into Eq. (7) along with the appropriate values from

Tables 1 and 3.

We performed only FPD ? IRM for the remaining

experiments as this protocol was found to have the highest

AUC value for prediction of binders and non-binders in the

training set. Although FPD ? IRM yielded the second

strongest correlation between computational and experi-

mental binding energies and FPD gave the strongest, we

eliminated the FPD protocol on the basis of the negative

optimal value of whbond_bb_sc.

Table 2 Performance based on area under the receiver operating characteristic curve (AUC)

Classifier Partition Training set Independent test set

n AUC* IQR Range n AUC* IQR Range

DDEtotal Domain 92 0.57 0.51–0.60 0.38–0.76 5 0.63 0.60–0.63 0.52–0.70

Peptide 2,147 0.58 0.37–0.79 0.00–1.00 149 0.50 0.25–0.75 0.00–1.00

None (all domain–peptide pairs) – 0.57 – – – 0.59 – –

Amino acid frequency Domain 92 0.88 0.85–0.92 0.72–0.97 5 0.79 0.78–0.83 0.71–0.88

None (all domains) – 0.88 – – – 0.79 – –

IQR interquartile range

* Represents the median AUC for partitioned data. All results represent the performance of flexible peptide docking followed by iterative

repacking and minimization
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Analyzing specificity prediction in the training set

Specificity profiles predicted by our mathematical model

were compared to those derived through phage display.

Preferred binding partners for all 92 PDZ domains are

conveniently visualized through the creation of a position

weight matrix and subsequent generation of a sequence

logo. Computational and experimental profiles were com-

pared via the information content-based distance metric dk

(see ‘‘Methods’’).

Specificity prediction for 76 out of 92 domains and four

out of six peptide positions was improved by weight

optimization (Fig. 4). Overall, P0 and P-1 were accurately

predicted, likely because of high specificity and homoge-

neity of preferred residues at these positions (valine at P0

and tryptophan at P-1). Preferences at P-2 and P-3 were

generally more challenging to detect due to heterogeneity

of amino acids at these positions across the dataset albeit

high specificity. P-4 and P-5 were usually less specific

overall or ‘‘flatter’’ and were thus not as heavily penalized

due to the information content multiplier in the calculation

of dk. Notably, through FPD ? IRM, the most accurately

predicted profile was that of the wild type Erbin PDZ

binding to hexapeptide ligands (Fig. 4) and it was much

improved relative to the Score12 prediction (Fig. 3c);

however, using RBD ? IRM, prediction of wild type Erbin

PDZ binding to tetrapeptides was in the lower ranking

50 % of predictions (result not shown) and was not

improved on weight optimization (Fig. 3d). Evidently, the

hexapeptide binding prediction model may be finer-grained

for the prediction of wild type and wild type-like specificity

profiles. This result is likely due to the larger percentage of

peptides representing these profiles in the hexapeptide

dataset compared to the tetrapeptide dataset. All 92 spec-

ificity profile comparisons for the PDZ-hexapeptide com-

plexes in our training set are provided in Figure S2.

Independent assessment of affinity and specificity

prediction

We evaluated both binding free energy and specificity for

an independent set of PDZ domain–peptide interactions as

a means of external validation of our protocol. Using a

systematic database search strategy described in

‘‘Methods’’, we found five PDZ domains with available

binding affinity measurements for at least one hexapeptide,

phage display data, and bound X-ray crystal structures

(Table 4). Affinity data presented in the five studies we

identified [37–41] were obtained through ITC, fluorescence

anisotropy, fluorescence resonance energy transfer, and

surface plasmon resonance. Phage display data generated

by Tonikian et al. [11] consisted of peptide binders for a

panel of 54 human PDZ domains. All five X-ray crystal

structures were of good resolution [2.31 Å or better

(Table 4)].

Each PDZ domain was paired with each of the 1,731

peptides in the human PDZ phage display dataset, as well

as peptides for which affinity data were available. We

utilized the FPD ? IRM protocol for structural refinement

of models in this independent assessment. Using the opti-

mized weight set and linear model described previously,

DDG was approximated for each complex. Since all affinity

measurements in our sources were presented as Kd values,

we converted these into DDG values. As a measure of

affinity prediction accuracy, we calculated dDDG—the

absolute value of the difference between computational and

experimental DDG values. As in our assessment of speci-

ficity prediction in the training set, we also generated

sequence logos illustrating and comparing computational

and experimental specificity profiles, and differences

between them were quantified using the distance metric dk.

Affinity and specificity prediction performance for the

five PDZ domains is illustrated in Fig. 5. The average dDDG

was 0.81 kcal/mol (range 0.23–1.81); when this average

dDDG was converted to a ratio of computational versus

experimental Kd values, we obtained a result of 3.93 (range

1.47–21.26), where computational affinities were greater

than experimental affinities for four out of five domains.

Visual inspection of sequence logos comparing predicted

and experimental specificity profiles (Fig. 5 for two

selected domains and Fig. S3 for all five domains) reveals

that amino acid preferences were well predicted overall. In

contrast with specificity prediction in the training set,

independent predictions were inferior, as expected. Rela-

tive to training set performance measured through dk,

predictions at P-1 and P0 were much less accurate. P-3 was

Table 3 Correlation of experimental (DDG) and computational (DDE) values for DLG4-3 PDZ domain–peptide affinity

RBD FPD IRM RBD ? IRM FPD ? IRM

R 0.45 0.60 0.44 0.48 0.53

c 0.42 0.76 1.06 0.90 0.89

b -5.71 -2.52 -5.99 -5.37 -6.51

R correlation coefficient, c scaling factor, b vertical intercept, RBD rigid body docking, FPD flexible peptide docking, IRM iterative repacking

and minimization, RBD ? IRM rigid body docking followed by iterative repacking and minimization, FPD ? IRM flexible peptide docking

followed by iterative repacking and minimization
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Fig. 4 Specificity prediction

performance using flexible

peptide docking followed by

iterative repacking and

minimization (FPD ? IRM) on

the training set of Erbin PDZ

single mutants. Distance values

(dk) are represented for all 92

domains at each peptide

position k in the heat map.

Domains and peptide positions

marked with an asterisk

performed worse (i.e. had a

greater dk) with optimized

weights than with default

ROSETTA Score12 weights.

Example sequence logo

comparisons are provided,

which have numerous notable

features. Q51M Prediction of

preferred amino acids and

degree of specificity was close

to ideal. H79R Preference for an

aromatic residue at P-2 and

aspartate at P-3 was detected.

V83K The preferred aspartate

residues at P-2 and P-3 were

not predicted; however, dAvg

was relatively low for this

mutant because predicted amino

acid frequencies were accurate

even though rank ordering was

not. R49A P-3–P0 were well

predicted but the slight

preference for phenylalanine at

P-4 was missed. T48K

Aspartate/glutamate specificity

at P-3 was detected albeit in

reverse order. S26N Glycine at

P-3 was not predicted and

overall specificity at P-4 and

P-5 was under-predicted

although preference for an

aromatic residue at P-5 was

detected. S28K Glycine at P-3

was predicted but specificity for

phenylalanine at P-4 was

dramatically over-predicted.

L23V This was among the worst

performing mutants due to lack

of detection of isoleucine

preference at P0, under-

prediction of specificity for

threonine at P-2, and failure to

predict the strong preference for

acidic residues at P-3
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the only position more accurately predicted in the inde-

pendent set than in the training set. AUCs according to

DDEtotal were roughly equivalent to those of the training

set (Table 2). However, AUCs according to amino acid

frequency were considerably lower than those of the

training set, albeit still strong (Table 2). Overall, the

reduction in accuracy is likely due to diverse amino acid

preferences in the independent set compared to the training

set.

Although the same calculations yielded predictions of

both affinity and specificity, we found no correlation

between accuracy of binding energy prediction measured

through dDDG and specificity prediction measured through

dk. We believe this may be due to discordance between

peptides used for affinity prediction and peptides in the

phage display dataset. To explore this difference, for each

of the five peptides with known affinities for SNTA1-1, we

calculated dPep—a distance metric corresponding to dk for

a single peptide compared to a set of peptides representing

a specificity profile. Figure 5 illustrates agreement of dDDG

with dPep for individual peptides binding to this domain.

Thus, accurate prediction of binding affinity may depend

on the extent to which the peptide is represented in the

specificity profile of the domain.

It is important to note that these results are contingent

upon qualities of the five PDZ domains tested. All five are

classified as canonical Class I domains which have serine/

threonine preferences at P-2. Moreover, all peptides utilized

Table 4 Human PDZ domain structures and affinity data used for independent predictions

PDZ

domain

PDB

ID

X-ray resolution

(Å)

PDZ

chain

Peptide

chain

Affinity data sources Peptide sequences Experimental

methods

DLG1-1 3RL7 2.30 A G Wang et al. [37] YKETDV FA

DLG1-2 2I0L 2.31 A C Wang et al. [37] YKETDV FA

MPDZ-10 2OPG 1.50 A B Sharma et al. [38] ERISSV ITC

PTPN13-2 3LNY 1.30 A B Gianni et al. [39] EQVSAV, EQVTAV FRET

SNTA1-1 1QAV 1.90 A B* Wiedemann et al.

[40];

Harris et al. [41]

IRETIV, LEGIFV,

WLETWV;

SIESDV, VKESLV

SPR;

FA

* Residues 1106–1111 were used

FA fluorescence anisotropy, ITC isothermal titration calorimetry, FRET fluorescence resonance energy transfer, SPR surface plasmon resonance

Fig. 5 Prediction of affinity and specificity using flexible peptide

docking followed by iterative repacking and minimization

(FPD ? IRM) for an independent set of five PDZ domains. Compar-

ison of predicted and experimental DDG values was performed using

the dDDG metric; comparison of predicted and experimental specificity

profiles was performed using the dk metric at each peptide position

k. Both are illustrated in the heat map at the center of the figure. The

ratio of the average dk in the independent set to that of the training set

is provided in the last row of the heat map. The correlation of dPep (a

measure of the extent to which a peptide is represented in the

experimentally determined specificity profile) and dDDG for five

peptides interacting with the SNTA1-1 PDZ domain is shown at left.

Two example sequence logo comparisons are provided at right, which

have several notable features. DLG1-1 This was the best performing

domain due to nearly ideal predictions at P-5–P-2, though the

preference for a hydrophobic residue at P-1 and the strong preference

for valine at P0 were not captured. MPDZ-10 This was the worst

performing domain because strong specificities for arginine, serine,

and aspartate were missed at P-4, P-2, and P-1, respectively;

however, another basic residue (lysine) was predicted in place of

arginine, another polar residue (threonine) was predicted in place of

serine, and the prediction at P-5 was very accurate
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for affinity prediction had a C-terminal valine. Finally, the

number of available peptides with known affinities, the

experimental techniques utilized to measure affinity, and the

resolution of the X-ray crystal structures used as templates

varied by domain. Overall, we believe this was the most

rigorous possible test of our method, and it demonstrated

that both binding energy and specificity could be accurately

predicted through one integrated approach.

Successes, challenges, and caveats of PDZ interaction

prediction

To our knowledge, this work represents the only attempt to

predict both binding free energies and specificity profiles

for PDZ domain–peptide interactions using one protocol.

We began by training a mathematical model to discrimi-

nate between binders and non-binders for the Erbin PDZ

domain and 91 single mutants. Optimization of ROSETTA

weights for this task yielded a modest AUC. We attribute

this to the challenge of predicting interactions using sets of

longer peptides where the domain is considerably less

specific for the N-terminal residues than for the C-terminal

residues. However, the AUC reflecting classification of

frequent/infrequent amino acids in specificity profiles

indicated a high level of accuracy consistent with a pre-

vious study [26]. The optimization process yielded an

energy function in which side chain-side chain hydrogen

bonds had considerable weight compared to the default

ROSETTA energy function, an indicator of their importance

in PDZ domain specificity. While the weight of the sol-

vation potential was similar to its weight in the default

energy function, weights corresponding to van der Waals

interactions as well as backbone-side chain and backbone–

backbone hydrogen bonds were reduced. Kaufmann et al.

[28] utilized a different ROSETTA protocol and optimized the

correlation of predicted binding energies with those

determined by Saro et al. [8] through ITC. Their energy

function consisted of a generalized hydrogen bonding term,

the attractive component of the Lennard–Jones potential

representing van der Waals interactions, and the solvation

potential, where the hydrogen bonding term had the highest

weight. Although Kaufmann et al. successfully discrimi-

nated between Class I and Class II PDZ domains using

their energy function, the inclusion of different hydrogen

bonding terms and the repulsive component of the Len-

nard–Jones potential in our model may help capture finer-

grained features in specificity profiles.

One of our goals was to determine the best protocol within

ROSETTA for the structural refinement of PDZ domain–peptide

complexes. We found that routines involving flexible peptide

docking performed better than those involving rigid body

docking or iterative repacking and minimization alone.

Moreover, our best performing protocol (FPD ? IRM)

included both flexible peptide docking and gradient-based

minimization of the backbone, emphasizing the need for

backbone flexibility in attaining the best possible predictions

of affinity and specificity. Smith and Kortemme [26] and

King and Bradley [27] both found that introducing backbone

flexibility by using conformational ensembles as inputs

improved specificity prediction. This can be achieved through

ensemble generators such as backrub [42] or the use of NMR

structures. Although we utilized X-ray crystal structures and

did not generate ensembles, we likewise conclude that

backbone flexibility is essential.

In developing our model for prediction of PDZ domain–

peptide interactions, we attained a linear fit by correlating

computational binding free energies from all of our tested

protocols with those determined through ITC by Saro et al.

[8]. Although we only obtained a scaling factor and a vertical

intercept through this procedure (i.e. the optimized weights

before and after this procedure were linearly dependent), the

resulting correlations were nearly as strong as those of pre-

vious studies. Our two best performing protocols in this area

achieved correlation coefficients of 0.60 (FPD) and 0.53

(FPD ? IRM), while Kaufmann et al. [28] achieved a cor-

relation coefficient of 0.66 through a multi-linear regression

analysis using the same dataset. Also using the same dataset,

Tian et al. [24] acquired a correlation coefficient of 0.65

through a multi-linear regression analysis containing the

quantum mechanics/molecular mechanics, Poisson–Boltz-

mann/surface area, and conformational free energy analysis

components of their model. In addition, through regression

analysis applied to a large set of PDZ domain microarray and

fluorescence data, Shao et al. [43] predicted binding affinities

based on primary sequence data, achieving an average cor-

relation coefficient of 0.65. While our method yielded cor-

relation coefficients that were slightly lower than those of

several previous studies, we note that our optimization

method did not maximize the correlation coefficient; rather, it

optimized the prediction of binders and non-binders based

only on single mutant specificity data. Had we performed a

multi-linear regression analysis to maximize the correlation,

accuracy of specificity prediction likely would have suffered.

There were several interesting results arising from the

comparison of specificity profiles in our training set of

Erbin PDZ single mutants. Smith and Kortemme [26] uti-

lized the same dataset for specificity prediction via a

ROSETTA protocol involving backrub ensemble generation

and genetic algorithm prediction of peptide sequences

recognized by each domain. Similar to their findings, we

determined that our model recapitulated the loss of aspar-

tate/glutamate at P-3 and serine/threonine at P-2, though

not 100 % of the time. For example, while specificity for

an aromatic residue at P-2 was captured in a number of

cases, aspartate/glutamate at this position was not captured

for the one mutant where it was preferred. Interestingly,
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our model was capable of detecting specificity for glycine

at P-3 in certain cases, whereas Smith and Kortemme

consistently missed this. While these results reveal

strengths and weaknesses of the algorithm underlying our

predictions, our model was optimized for the prediction of

binders contributing to these profiles, as well as non-

binders; as such, a test on an independent dataset is the best

indicator of the predictive accuracy of our model.

We conducted independent tests of affinity and speci-

ficity on a set of five PDZ domains with available binding

affinities for at least one hexapeptide and phage display

specificity data, as well as bound X-ray crystal structures.

Affinity predictions were accurate, as most computation-

ally derived Kd values were well within one order of

magnitude of the experimental value. However, these

predictions were not uniformly accurate. We found that the

extent to which a peptide was represented in the specificity

profile of the domain may have governed accuracy, pos-

sibly explaining this inconsistency. Not surprisingly,

compared to the training set of PDZ domain single

mutants, prediction of specificity profiles in this indepen-

dent dataset was less accurate. However, visual comparison

of the specificity profiles suggests that our predictions were

actually quite accurate. In fact, the average Frobenius

distance between computational and experimental profiles

in this dataset was 0.52, which is consistent with the value

obtained by Smith and Kortemme (0.59) [26]. AUCs based

on classification of frequent/infrequent amino acids in

specificity profiles were also similar. Overall, these results

indicate that our approach successfully predicted both

affinity and specificity of PDZ domain–peptide interac-

tions. This integrated method offers the benefit of simul-

taneous calculation of a dissociation constant and

generation of a sequence logo, both based on the predicted

free energy change at the interface.

Methods for predicting domain–peptide interactions

such as ours are not devoid of limitations. Similar to pre-

vious computational studies of PDZ domain–peptide

interactions, we developed and tested our model based on

the effects of amino acid variation in and around the

binding interface. However, a recent study demonstrated

that removal of a distal structural element in a PDZ domain

(a-helix 3 of DLG4-3) resulted in a 21-fold decrease in

binding affinity [44]. Therefore, there are likely crucial

contributions to binding affinity and specificity beyond

those of the binding interface that computational methods

may not capture. Additionally, we utilized a linear model

for binding energy prediction; this likely describes some,

but not all, contributions to PDZ domain–peptide interac-

tions [24]. Also, as there is little consensus on a single best

scoring metric for comparing specificity profiles [26], we

utilized a custom metric accounting for both amino acid

frequencies and information content. Had we used a

different scoring metric, our results likely would have

differed, albeit not dramatically. As with all work in

computational structural biology, predictions are limited by

the quality of the experimental data on which they are

based. While our approach could also be applied to other

protein–peptide interactions (e.g. SH3 and TPR domains),

this is contingent upon availability of high-quality experi-

mental data for model development. Furthermore, bio-

physical data are not necessarily representative of in vitro

or in vivo patterns. In general, to determine the extent to

which in silico findings are biologically accurate, one must

validate them experimentally. Therefore, we believe that

our method could serve as a springboard for improving

binding affinity for a particular ligand, the identification of

new ligands, and the redesign of specificity.

Conclusions

Our method for modeling PDZ domain–peptide interactions

predicts both free energy and specificity of binding through

one unified protocol. In the development of our mathe-

matical model, we determined that incorporating backbone

flexibility and placing considerable weight on side chain-

side chain hydrogen bonds were essential for achieving

accurate predictions. It was also evident that specificity

prediction became increasingly challenging as peptide

length increased in the N-terminal direction. In independent

tests, our model predicted dissociation constants well within

one order of magnitude and specificity at a level of accuracy

consistent with previous studies. We believe that this gen-

eral approach can be applied to other protein–peptide

interactions and has the potential to enhance experimental

investigation and manipulation of these systems.
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