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The computational design of proteins that bind small molecule ligands is one of the unsolved challenges
in protein engineering. It is complicated by the relatively small size of the ligand which limits the number
of intermolecular interactions. Furthermore, near-perfect geometries between interacting partners are
required to achieve high binding affinities. For apolar, rigid small molecules the interactions are domi-
nated by short-range van der Waals forces. As the number of polar groups in the ligand increases, hydro-
gen bonds, salt bridges, cation–p, and p–p interactions gain importance. These partial covalent
interactions are longer ranged, and additionally, their strength depends on the environment (e.g. solvent
exposure). To assess the current state of protein-small molecule interface design, we benchmark the pop-
ular computer algorithm Rosetta on a diverse set of 43 protein–ligand complexes. On average, we achieve
sequence recoveries in the binding site of 59% when the ligand is allowed limited reorientation, and 48%
when the ligand is allowed full reorientation. When simulating the redesign of a protein binding site,
sequence recovery among residues that contribute most to binding was 52% when slight ligand reorien-
tation was allowed, and 27% when full ligand reorientation was allowed. As expected, sequence recovery
correlates with ligand displacement.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

Engineering protein-small molecule interactions is key for
advancement of several grand challenges in computational biol-
ogy. Protein-small molecule interactions are the basis for enzy-
matic catalysis, receptor–small molecule signaling, and
transporter selectivity and are thus essential for carrying out bio-
logical processes and maintaining overall homeostasis in the body.
Designed proteins that bind small molecule targets can act as ther-
apeutics by sequestering ligands, stimulating or extinguishing sig-
naling pathways, delivering other molecules to sites of action, and
serving as in vivo diagnostics (Golan et al., 2008). For example,
small molecule depletion has been suggested as a strategy for
treatment of prostate cancer (Knudsen and Scher, 2009), cocaine
abuse (Zhu et al., 2006), and bacterial infection (Clifton et al.,
2009). Proteins that bind small molecules also have applications
in environmental chemistry and food chemistry as biosensors
(Baeumner, 2003). Thus, the ability to engineer highly precise
and specific interactions at protein interfaces can serve in many
capacities.

Computational design of protein-small molecule interfaces con-
tinues to present challenges. Although the creation of new en-
zymes is a landmark achievement in protein design (Baker et al.,
2008a,b, 2010; Zanghellini et al., 2006), the success rate is low
and the designed proteins are poor catalysts compared to natu-
rally-occurring enzymes. To help pinpoint the causes, a systematic
study was conducted introducing mutations into the active site of
three designed retro-aldolases (RA34, RA45, and RA95) derived
from the TIM-barrel scaffold IGPS. In RA34 and RA95, mutations
that increase substrate binding affinity and thereby enzymatic
activity involve increases in side chain volume and hydrophobicity,
including G233F/I/V/Y in RA34 (Wang et al., 2012) and T51Y, T83K,
S110H, M180F and R182M in RA95 (Althoff et al., 2012). In con-
trast, many improvements to the RA45 design arose from large-
to-small mutations including W8A/T/V, F133L, V159C, and
R182V/I (Althoff et al., 2012). In all cases, key functional groups
that engage the ligand are introduced or removed. These observa-
tions indicate that neither the hydrophobic packing nor the
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Fig.1. Flowchart of small molecule docking with design. The RosettaLigand protocol
was modified to include interface design (dotted line box). From the input
coordinates, the small molecule is allowed to rotate and translate before sequence
optimization of nearby residues. After 6 cycles of small molecule perturbation, side
chain rotamer sampling, and Monte Carlo (MC) minimization, a final gradient-based
minimization of the protein is performed to resolve any clashes.
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positioning of substrate within the binding pocket were optimal in
the initial designs. Similarly, a previously reported successful com-
putational design of a protein-small molecule interface (Allert
et al., 2004) did not withstand close examination (Hayden, 2009;
Schreier et al., 2009).

Rosetta, a protein modeling software suite for protein structure
prediction and design (Schueler-Furman et al., 2005), has been suc-
cessfully used to tackle a number of interface design problems.
Some of these successes include creating novel enzymes (Baker
et al., 2008a,b, 2010), altering the specificity of protein-peptide
(Sood and Baker, 2006), protein–DNA (Ashworth et al., 2010) and
protein–protein interfaces (Kortemme et al., 2003), and designing
proteins that bind a selected surface of a virus (Fleishman et al.,
2011). Rosetta seeks to find the lowest energy conformation for a
design by combining discrete side chain conformation (rotamer)
optimization with Monte Carlo minimization (Schueler-Furman
et al., 2005). This includes sampling random perturbations of the
backbone torsion angles, rigid body degrees of freedom, and rot-
amer conformations, followed by an all-over local minimization
to resolve clashes (Schueler-Furman et al., 2005). These methods
enable much faster and larger exploration of sequence and confor-
mational space compared to experimental methods such as phage
display (Weng and DeLisi, 2002).

The energy function that Rosetta uses to discriminate between
native-like and non-native-like atom arrangements includes a van
der Waals-like attractive and repulsive potential, solvation term,
hydrogen bonding potential, electrostatics potential, rotamer prob-
ability, and (u, w) angle probabilities in the protein backbone
(Meiler and Baker, 2006). The total energy of the system is com-
puted as a weighted sum of all interactions with weights optimized
through a series of benchmarks. All energy functions are pairwise
decomposable (i.e. they depend on no more than two interacting
partners). This design of the energy function maximizes algorithm
speed since interaction energies can be pre-computed and stored.
However, it also limits the accuracy of the energy function, partic-
ularly electrostatic and partial covalent interactions which vary
greatly in strength depending on the environment of the interact-
ing partners. Experimental characterization of some of the best
scoring designs is used to validate and improve the computational
protocols. In this way, both design successes and failures help test
and expand our understanding of the fundamental forces involved
in molecular recognition.

RosettaLigand is an application within Rosetta that was origi-
nally developed to dock small molecules into a protein with full pro-
tein and ligand flexibility (Baker and Davis, 2009; Meiler and Baker,
2006). In these studies, we expand RosettaLigand to include amino
acid optimization (design) at the protein-small molecule interface.
Using the full-atom energy function and Monte Carlo minimization
procedure, RosettaLigand optimizes the small molecule position
and protein side chain rotamers simultaneously (Meiler and Baker,
2006). RosettaLigand allows for protein backbone flexibility, side
chain rotamer searching, and full ligand flexibility, all of which
are necessary for accurately modeling the interface (Baker and
Davis, 2009; Meiler and Baker, 2006). Fig.1 details each step of the
ligand docking protocol. For each model, RosettaLigand calculates
an ‘interface energy’ as the total score of the protein–ligand com-
plex minus the total score of the apo-protein (Meiler et al., 2009).
The accuracy of models in terms of ligand placement is determined
by computing the root-mean-square distance (RMSD) over all li-
gand atoms between model and co-crystal structure. RosettaLigand
is the foundation (Zanghellini et al., 2006) of a number of the suc-
cessfully design enzymes (Jiang et al., 2008; Rothlisberger et al.,
2008; Siegel et al., 2010) with the before-mentioned caveat that
the computationally predicted residues are often sub-optimal even
in the first shell surrounding the ligand. In order to understand its
capabilities and limitations, the present work systematically
assesses RosettaLigand’s ability to design protein-small molecule
interfaces. This analysis is an important, and so far omitted, bench-
mark to identify design challenges that can currently be solved and
to work towards improvements needed to achieve consistent
success.

Recovering native protein-small molecule interfaces in se-
quence and conformation is a benchmark for designing novel inter-
faces. Creating new interfaces or even modifying existing ones
requires computational tools that sample and select native-like
interactions. In this study, we examine how RosettaLigand per-
forms in sequence recovery within protein-small molecule inter-
faces while allowing for small molecule reorientation and side
chain conformational changes. The benchmark consists of two
parts. Part one tests overall sequence recovery when all residues
within the protein-small molecule interface are allowed to change
identity. Part two simulates a protein-smallmolecule design more
closely by mutating up to five residues that contribute most to
the interaction with the small molecule to alanine. This effectively
removes the binding site’s memory of the native ligand. In the de-
sign experiment a scoring bonus is given to the starting sequence.
These experiments test RosettaLigand’s ability to distinguish be-
tween native and non-native binding interaction and whether
RosettaLigand can identify key mutations needed to bind the small
molecule while limiting the total number of mutations. The results
illustrate the types of ligands that Rosetta handles best and provide
insights into weaknesses where continued method development is
required.

2. Results and discussion

The setup of the experiments allows us to determine overall
protein–ligand interface sequence recovery as well as an optimal
strategy for re-designing proteins to recognize different small mol-
ecules using a minimal set of mutations. For this purpose separate
measures for sequence recovery among the residues critical for li-
gand binding are determined. We investigate how sequence recov-
ery varies with ligand size, binding affinity, and RosettaLigand
interface energy. We appreciate that sequence recovery measures
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have one critical limitation: they assume that the native protein-
small molecule interface is optimal for tight small molecule
binding, which is certainly incorrect. In result, if a position fails
to recover to the native amino acid it can be because of an actual
failure of the design algorithm or because the alternate amino acid
is tolerated or even favorable in an actual protein-small molecule
interface – a distinction that only the experiment can make. There-
fore, we do not expect a 100% success rate for sequence recovery.
This poses a dilemma for the development of protein design algo-
rithms: at what point can we stop optimizing for increased se-
quence recovery? Ideally, one wants to capture native-like
designs and interactions that would be seen in nature, but not to
a point where the algorithm over-fits the designs. To circumvent
part of this problem, we developed a Position-Specific Scoring
Matrix (PSSM) recovery measure (DeLuca et al., 2011) which com-
putes the fraction of residues that revert to an amino acid observed
in evolution. PSSM recovery is a more robust measure of design
success as it tolerates mutations that have been observed in
evolution.

2.1. Experimental setup

A set of 43 high resolution protein-small molecule crystal struc-
tures were selected from the Community Structure-Activity Re-
source (CSAR) database and used directly in testing. In practice,
however, the task is often to redesign a binding site to recognize
a (different) specific small molecule. In this setting, one is inter-
ested in identifying the minimal number of mutations needed to
achieve the desired functionality and avoiding additional muta-
tions that provide little or no benefit. This can be achieved by
including a ‘favor native’ residue bonus (FNRB) energy that must
be overcome before a mutation is accepted.

The starting sequences in the CSAR benchmark set are already
(close to) optimal for binding the target small molecule. Therefore,
we created mutant proteins that are expected to have reduced or
no binding to the target small molecule. First, the five residues that
contribute most to small molecule binding according to the Roset-
taLigand energy function were determined and then sequentially
mutated to alanine. Next, these artificial mutants were employed
to test RosettaLigand’s ability to recognize sub-optimal interac-
tions and replace them with those that are optimal for binding.

A total of four experiments were conducted: (1) re-designing
the protein-small molecule interface in the native protein without
reorienting the ligand (design native), (2) re-designing the protein-
small molecule interface in the native protein with ligand reorien-
tation (dock/design native), (3) re-designing the protein-small
molecule interface in the alanine mutants using a FNRB without
reorienting the ligand (design alanine mutants), and (4) re-design-
ing the protein-small molecule interface in the alanine mutants
using a FNRB and ligand reorientation (dock/design alanine mu-
tants). The latter experiment tests if RosettaLigand can identify
critical mutations and distinguish them from arbitrary sequence
changes. For each experiment, 1000 models were generated, fil-
tered by RosettaLigand interface energy, and the top 50 were se-
lected for analysis.
Table 2
Recovery of wild type (WT) residue from the alanine mutants experiments.

Design

Ligand RMSD (Å) 0.7 ±
Sequence recovery (%) 58.9 ±
Alanine mutations recovered to WT (%) 51.7 ±
Alanine mutations designed to other amino acids (%) 26.5 ±
Alanine mutations remaining alanine (%) 21.8 ±

a The slight differences in values compared to Table 1 are due to exclusion of data fro
2.2. Trends for sequence recovery across all four experiments

The ligand RMSD, sequence recovery, number of mutations, and
interface energy from each experiment were averaged to identify
trends across experiments (Table 1). As expected, comparison of
the Design (1, 3) vs. Dock/Design (2, 4) experiments shows that
lower RMSDs and better interface scores are observed when an
optimal ligand pose is inputted and allowed to move only slightly
(0.1 Å translation, 2� rotation) versus when the ligand pose needs
to be identified (2 Å translation, 360� rotation). The conformational
space increases if the ligand is allowed to reorient and other bind-
ing poses with different sequences achieve favorable interface
scores. Large changes in ligand position alter the interactions with
the protein and encourage mutations. Unfortunately, other than
extensive experimental studies, there is no way to test the plausi-
bility of these alternative protein-small molecule interfaces. Apply-
ing a FNRB that favors retention of the native amino acid (3, 4)
yields fewer mutations and higher sequence recovery only when
the ligand is allowed full reorientation. The highest sequence
recovery, lowest number of mutations, and best interface energy
is observed in experiment (1) where the ligand is held in its
approximate initial pose and no alanine mutations are introduced
into the sequence. However, in the design of novel protein-small
molecule interfaces, full ligand reorientation must be allowed in
order for the ligand to search the entire binding pocket for optimal
placement (4).

2.3. Trends in recovery of wild type (WT) residues across alanine
mutants experiments

Similar results occur when introducing alanine mutations in the
binding site. To maximize sequence recovery, these had to be con-
verted to the native amino acid overcoming the FNRB. For each
experiment, the ligand RMSD, sequence recovery, recovery of WT
residue, retention of alanine, and mutation to another residue were
determined for each model and averaged (Table 2). Since both of
these experiments include a FNRB, the only variable is whether
or not the ligand was allowed full reorientation. The penalty for
allowing full ligand movement is larger in recovering the specific
WT residue (51.7% vs. 26.8%) than the penalty in overall sequence
recovery (58.9% vs. 47.6%). This result was not surprising because
in cases where the ligand position is not recovered there is a min-
imal chance that the correct residue will be selected. Considering
that the chance of randomly selecting the correct residue is 5% (1
out of 20), RosettaLigand’s ability to recover 26.8% of WT residues
under the most stringent conditions represents a significant
improvement. Some designs have been selected to show the diver-
sity of ligands that have high sequence and wild type recovery ver-
sus ones that have low recoveries (Fig.2).

2.4. Detailed analysis of the dock/design alanine mutants experiment
(4)

Since the ultimate goal is to use RosettaLigand to design novel
protein-small molecule interfaces, we took an in-depth look at
alanine mutants (3) Dock/design alanine mutants (4)

0.6a 2.5 ± 1.0a

14.4a 47.6 ± 11.8a

32.8 26.8 ± 20.5
25.1 36.8 ± 17.1
25.2 36.3 ± 22.4

m the native complexes.



Table 1
Varying parameters of experiments and sequence recovery results.

Design native (1) Dock/design native (2) Design alanine mutants (3) Dock/design alanine mutants (4)

Ligand translation (Å)a 0.1 2.0 0.1 2.0
Ligand rotation (deg)a 2 360 2 360
Ligand RMSD (Å) 0.5 ± 0.4 2.2 ± 1.0 0.7 ± 0.6 2.4 ± 1.0
Sequence recovery (%) 64.0 ± 12.4 36.6 ± 11.9 59.8 ± 14.2 48.7 ± 11.9
Number of mutations 6.5 ± 2.5 11.5 ± 3.4 7.2 ± 2.6 9.3 ± 2.7
Interface energy (REU)b �19.0 ± 5.4 �15.1 ± 3.5 �17.5 ± 5.2 �14.1 ± 3.5

a Reorientation allowed from initial pose during docking.
b REU – Rosetta energy units.
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the results from the experiment that most closely resembles this
scenario. Sequence recovery was plotted against a number of vari-
ables to see if RosettaLigand performs better with different types of
ligand and/or protein properties (Fig.3, Fig.S1). As seen in previous
results, sequence recovery decreases with increasing RMSD
(Fig.3A). Binding pocket crowdedness measures how tightly
packed the ligand is in binding pocket, calculated as the number
protein/ligand atom pairs within 3 Å of each other, divided by
the total number of ligand atoms. A high crowdedness indicates
a ligand surrounded by protein contacts, whereas low crowded-
ness indicates that only a portion of the ligand is in contact with
the protein. Sequence recovery was best when the ligand had 2–
3 protein contacts per atom (Fig.3B). As crowdedness deviated
from this range, recovery decreased, implying that RosettaLigand
has difficulties in tightly packed as well as under-packed protein/
small molecule interfaces. For the number of ligand hydrogen bond
donors and acceptors, WT recovery remained consistent until there
is a drop at 13+ donors/acceptors (Fig.3C). A complex hydrogen
bonding network would be more difficult to recover than a simple
network, so this was expected. For number of ligand rotatable
bonds, ligands with 1, 2, or 3 rotatable bonds have the best recov-
eries (Fig.3D). A decrease in sequence recovery is observed with
increasing ligand flexibility. Accordingly, also ligands with rigid
ring systems have increased sequence recovery values (Fig.3E).
(A) (B) (

(E) (F) (

Fig.2. Examples of the best and worst designs from each experiment. Best designs from
experiment (Panels E, F, G, H). For experiment 1 design native, a best design model had a s
58% (E). For experiment 2 dock/design native, a best design model had a sequence recov
experiment 3 design alanine mutants, a best design model had a wild type recovery of 94
dock/design alanine mutants, a best design model had a wild type recovery of 55% (D),
This was expected, since rings provide the ligand a more defined
shape, making it easier for RosettaLigand to identify the correct
binding pose. LogP, a measure of lipophilicity comparing the con-
centration of ligand in octanol vs. water, shows the best recoveries
for ligands with a logP around zero (between ��2.5 and 2.5,
Fig.3F). As the ligand becomes more hydrophilic, sequence recov-
ery decreases. Aside from a few outliers, as the number of ligand
atoms increases, recovery decreases (Fig.S1A). Our interpretation
is that larger ligands have fewer well-defined contacts that are
more difficult to recover. Surprisingly, the number of residues con-
sidered for design has little impact on sequence recovery; one may
expect that more residues in the binding pocket would decrease
recovery, but this was not the case (Fig.S1B). Binding affinity
showed little effect on recovering the interface (Fig.S1C). There ap-
pears to be a drop in recovery for very tight binders, however there
are few of these complexes to begin with. Binding affinity normal-
ized by ligand molecular weight does not influence recovery
(Fig.S1D). Topological polar surface area (Fig.S1E) and van der
Waals surface area (Fig.S1F) both show the same trend; as surface
area increases, maximum recovery decreases. This was not surpris-
ing, considering that surface area and number of ligand atoms cor-
relate with each other. Ligand interface energy correlates little
with sequence recovery (Fig.S1G) even if the interface energies
were normalized by small molecule molecular weight (Fig.S1H).
C) (D)

G) (H)

each experiment (A, B, C, D) are shown in contrast to the worst designs from each
equence recovery of 90% (A), while a worst design model had a sequence recovery of
ery of 80% (B), while a worst design model had a sequence recovery of 51% (F). For
% (C), while a worst design model had a wild type recovery 8% (G). For experiment 4
while a worst design model had a wild type recovery 10% (H).
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Fig.3. Sequence recovery from dock/design alanine mutants experiment. Increasing RMSD decreases the sequence recovery (A). Ligand atoms in contact with �2–3 protein
atoms show the best recoveries (B). Ligands having very many hydrogen bond donors and acceptors show a decrease in recovery (C). Ligands containing 1–3 rotatable bonds
achieve the best recoveries (D). The number of rings in a ligand has slight correlation with recovery; having at least one ring decreases the range of recoveries (E).
Amphipathic ligands have better recoveries than more hydrophilic and hydrophobic ligands (F). These results imply that RosettaLigand best recovers the protein–ligand
interface when the ligand has a moderate number of hydrogen bond donors and acceptors, contains fewer rotatable bonds, is amphipathic, and when the binding pocket is not
too loose or too crowded.
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Taken together, these results suggest that RosettaLigand is biased
towards non-polar, rigid ligands for achieving maximum recovery.
For moderately sized ligands, the interface was recovered better
than larger ligands. Interfaces with many hydrogen bond donors
and acceptors were difficult to recover. Overall, there seems to
be a preference for ligands that are moderately sized and not too
polar, because interfaces containing ligands with these properties
are recovered the best. However, correlations were generally weak
with many outliers confirming that there is no single parameter
that identifies an interface that is easier to design.
The same parameters were analyzed for recovery of alanine
mutants to the wild type residue (Fig.4 and Fig.S2). Trends are
more difficult to discern because in sequence recovery varies in a
larger range. Not surprisingly, most of the complexes with high
RMSDs had low recovery rates, while those with low RMSDs dis-
played a wider range of recovery rates, from very high to very
low (Fig.4A). Similar to sequence recovery, ligands with 2–3 pro-
tein contacts per atom showed the best WT recoveries (Fig.4B).
The number of ligand hydrogen bond donors and acceptors shows
a trend, where recovery drops with 9+ donors/acceptors (Fig.4C). It
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Fig.4. Alanine mutant to wild type recovery from dock/design alanine mutants experiment. Most complexes with high RMSDs had low alanine to WT recovery, whereas
complexes with low RMSDs had a range of WT recovery (A). Ligand atoms in contact with �2–3 protein atoms show the best recoveries (B). WT recovery drops when the
ligand has 9 or more hydrogen bond donors and acceptors (C). As the number of ligand rotatable bonds increases, the maximum WT recovery decreases (D). Ligands with zero
rings have the lowest recoveries; ligands with 3 rings, although they do not reach maximum recovery, the average is the highest (E). Amphipathic ligands have better
recoveries than more hydrophilic ligands (F). Positive correlation seen between sequence recovery and the recovery of the alanine mutants to WT (G). These results imply that
RosettaLigand best recovers the WT residues when the ligand has less than 8 hydrogen bond donors and acceptors, contains fewer rotatable bonds, contains more rings, is
amphipathic, and when the binding pocket is not too loose or too crowded.

198 B. Allison et al. / Journal of Structural Biology 185 (2014) 193–202
is expected that under the more stringent condition of only mea-
suring alanine to WT recovery, a simpler hydrogen bonding net-
work is easier to recover, also compared with overall sequence
recovery which dropped after 13+ donors/acceptors. As the num-
ber of ligand rotatable bond increases, the maximum recovery de-
creases (Fig.4D). Ligands containing at least one ring have better
recovery than ligands without rings (Fig.4E). Ligands with 1 or 2
rings reach the highest maximum, while ligands with 3 rings have
the best average. This confirms that protein/ligand interfaces for ri-
gid ligands are easier to design for RosettaLigand. As seen with se-
quence recovery, amphipathic ligands with a logP between �2.5
and 2.5 have the highest WT recoveries (Fig.4F). Hydrophobic li-
gands perform well, and hydrophilic ligands worst. Comparing
overall sequence recovery to WT sequence recovery shows a posi-
tive correlation (Fig.4G), which demonstrates as expected that the
complexes that recovered the most of the interface had the best
chance of recovering the specific WT residues; instances where
interface sequence recovery was very low resulted in very low
WT recovery as well. This implies that Rosetta is able to discern
which protein residues are most critical for ligand binding when
most of the non-critical residues are correct as well. Other than a
few outliers, increasing the number of ligand atoms decreases
the maximum recovery (Fig.S2A). The number of residues consid-
ered for design (Fig.S2B) and the binding affinity (Fig.S2C) had little
impact on WT recovery. Lower normalized binding affinities had a
better chance of recovering the WT residues (Fig.S2D). As seen with
sequence recovery, ligands with a high topological polar surface
area have decreased recoveries (Fig.S2E). Van der Waals surface
area (Fig.S2F), Rosetta interface energy (Fig.S2G), and normalized
Rosetta interface energy (Fig.S2H) show no effect on WT recovery.
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Overall, the trends for WT recovery correlate with sequence recov-
ery, which is expected. Rosetta performed best when the ligand
contains a small/moderate number of hydrogen bond donors and
acceptors, at least one ring, low number of rotatable bonds, moder-
ately sized, and amphipathic.

2.5. PSSM recovery results

The Position-Specific Scoring Matrix (PSSM) identifies amino
acid mutations that are tolerated in homologous proteins. Thus,
evaluating protein designs based on PSSM score provides a more
robust assessment of favorable mutations than sequence recovery
alone (DeLuca et al., 2011). By tolerating amino acids seen in evo-
lution a more robust judgment of RosettaLigand’s ability to capture
biological sequences is made. Evolutionarily advantageous muta-
tions may contribute to the interface in ways other than stability
or low energy, and it is important to consider these mutations as
well. In addition to designing in residues that contribute to binding
and promote strong interactions, we also want to design an inter-
face that is native-like. Is the most optimal protein–ligand inter-
face, one that could be seen in nature, the lowest in energy? This
is a fair question to consider, and one that can be assessed with
PSSM recovery. PSSM recovery is expected to be higher than se-
quence recovery. However, it also has its limitations: (1) not all
amino acids tolerated or beneficial will have been sampled in evo-
lution, (2) the space of known related protein sequences might be
incomplete, and (3) some mutation seen in other proteins might al-
ter specificity and are not tolerated for the particular small mole-
cule in the benchmark. The average sequence recovery and
average PSSM recovery of every structure in each dataset are plot-
ted in Fig.5. As noted earlier, applying a FNRB improves the se-
quence recovery, which is helpful because recovery is more
difficult in the experiments that include mutated alanine residues.
It was expected that allowing full ligand movement would
Fig.5. Sequence and PSSM recovery of the experiments. The sequence recovery for each e
For both plots, error bars are 1 standard deviation from the mean. Sequence recovery, alth
recovery. Applying a bonus to the native sequence improves the sequence when the liga
sequence recovery when compared to its similar experiment that only allows slight liga
decrease the sequence recovery compared to allowing slight ligand
movement. Because PSSM views a mutation favorably if the new
amino acid is frequently seen at that position, PSSM recovery will
always be higher than sequence recovery, where all mutations are
counted as incorrect. The percentage of PSSM recovery was also
computed on a per residue basis (Fig.6A). Glycine, Alanine, Leucine,
Valine, and Threonine were frequently recovered, while Trypto-
phan and Glutamine were often mutated. Cysteine was omitted
as it was not included during design. All four data sets exhibit sim-
ilar biases in terms of PSSM recovery.

The change in sequence composition provides information
about overall biases in sequence design. Sequence composition
change is calculated as (design_count–native_count)/(design_-
count). The sequence composition difference per residue is plotted
in Fig.6B and Table S1. Sequence composition remains consistent
for Glutamine, Isoleucine, Methionine, Proline, Threonine, and Va-
line. There are large negative biases to design out Phenylalanine
and Tryptophan. While some degree of unfavorable mutation can
be tolerated or even desired at certain positions in a ligand binding
pocket, one would not expect to see such a significant loss of aro-
matic residues. Poor recovery of aromatic amino acids may reflect
the absence of p–p and cation–p interaction scoring terms in the
Rosetta energy function.

Sequence recovery, alanine to wild-type recovery, and PSSM
recovery provide feedback to evaluate RosettaLigand’s perfor-
mance in designing protein-small molecule interfaces. The results
demonstrate that by recovering native-like interactions, RosettaLi-
gand showspromise as a tool for designing novel protein-small
molecule interfaces. In silico, the best assessment of accuracy is
to compare designs to the sequences of the protein–ligand com-
plexes in the benchmark set. Other algorithms that seek to compu-
tationally design protein-small molecule interfaces include
OSPREY (Gainza and Donald, 2012) and PocketOptimizer (Malisi
et al., 2012). In a number of studies computationally designed
xperiment was calculated (A). The PSSM recovery for experiment was calculated (B).
ough reported earlier, is included in this form for a side-by-side comparison to PSSM
nd is allowed full reorientation. Allowing the ligand full reorientation decreases the
nd reorientation.



Fig.6. Heatmap of PSSM recovery per residue for each experiment (A). Dark blue indicates that these residues are mutated to residues with good PSSM scores, while light blue
indicates a mutation to a residue seldom seen at that particular position. Heatmap of change in sequence composition for each experiment (B). Sequence composition change
is calculated as (design_count-native_count)/(design_count). White indicates a residue that remains consistent in composition, red indicates a residue that is designed out of
the sequences, blue indicates a residue that is designed into the sequences. Cys was omitted as it was not involved in design.
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mutations in protein-small molecule interfaces were experimen-
tally verified. For example when redesigning an enzyme for target
substrates (Chen et al., 2009), design of a peptide inhibitor which
rescues regulatory activity (Roberts et al., 2012), and to predict
mutations that arise from drug resistance (Frey et al., 2010). Some
methodological improvements that can be considered to improve
RosettaLigand performance further include: continuous flexibility
of rotamers (Gainza and Donald, 2012; Gainza et al., 2013), contin-
uous backbone flexibility (Hallen et al., 2013), local backrub mo-
tions (Keedy et al., 2012), and computing partition functions over
molecular ensembles (Georgiev et al., 2008). However, the
first critical step is to perform an experimental verification of
RosettaLigand designed protein-small molecule interfaces.
3. Conclusions

RosettaLigand has been used previously to dock small mole-
cules into proteins, allowing full ligand and protein flexibility
and recovering small molecule position and most interface side
chain conformations within 2 Å of the experimental structure.
The results described here have expanded the methods further to
include sequence optimization and performed stringent tests on
them following the protocol typically used when designing novel
protein-small molecule interfaces. We designed experiments to
test RosettaLigand’s ability to recover the sequence and ligand po-
sition while reorienting the small molecule and applying a native
sequence bonus. In addition to sequence recovery, we tested Roset-
taLigand’s ability to recover WT residues from those that were
intentionally mutated. Most of the trends we saw were expected,
such as lower sequence recovery with higher ligand RMSD and
higher sequence recovery with fewer rotatable bonds. As overall
sequence recovery increased, recovery of WT residues increased
as well. This implies that RosettaLigand can recognize residues
necessary for binding and not over-design the interface. Recogniz-
ing ligand properties that maximize the recovery of native-like
interactions and also recognizing the ligand properties that Rosetta
struggled with is twofold: (1) it gives us crucial feedback for
improving the algorithm, and (2) it gives us an advantage in
designing novel interfaces, by starting out with designs for ligands
that have shown good results.

Many factors contribute to the difficulty in computationally
designing protein-small molecule interfaces. The design algorithm
must sample the correct ligand and side chain identity and confor-
mation and also have a comprehensive energy function that can
distinguish between interactions that promote binding and those
that abolish it. One may naively assume that because the binding
pocket is significantly smaller than the entire protein, interface de-
sign is less challenging than complete protein design. However,
there are several arguments why this is not the case: (1) as the pro-
tein-small molecule interface is small compared to the core of a
protein, there is less tolerance for error, (2) varying 10 positions
with all 20 amino acids yields 2010 = 1013 sequences which is near
the limit of the sequence space that can be screened experimen-
tally (Sidhu and Koide, 2007; Sidhu et al., 2000), and (3) designing
protein-small molecule interfaces requires often precise position-
ing of interacting functional groups which is more challenging than
optimizing apolar van der Waals interactions. RosettaLigand can
more successfully design sites for apolar small molecules whose
binding is dominated by van der Waals interactions. This was seen
in many of the sequence recovery plots, where recoveries were the
worst for ligands that were very hydrophilic, contained many
hydrogen bond donors and acceptors, and had high topological po-
lar surface areas. An in-depth analysis of recovery by polar vs. apo-
lar amino acids reveals that for all experiments, sequence recovery
and PSSM recovery for apolar resides was higher than for polar res-
idues (Table S2). For example, in the Dock/design alanine mutants
experiment, apolar residues at the protein–ligand interface had se-
quence recovery of 62.4% while, polar residues were recovered
32.8%. Also, PSSM recovery shows that apolar residues were recov-
ered 78.7%, while polar residues recovered 63.1%. Additional en-
ergy terms will likely be needed for accurate design of interfaces
that rely primarily on partial covalent interactions.
4. Materials and methods

4.1. Compilation of a benchmark of 43 protein–ligand complexes

The Community Structure-Activity Resource (CSAR) database
(Dunbar et al., 2011) contains a diverse set of protein-small mole-
cule crystal structures and includes information on binding affini-
ties. The full dataset of 343 complexes was filtered to obtain a
suitable subset for the present study. First, complexes where metal
ions or water molecules were deemed critical for the interaction
were excluded since design of interfaces that contain more than
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two interaction partners requires further modification of the de-
sign algorithms. From the remaining set, proteins containing more
than 800 amino acids were excluded to limit the time needed in
the protein minimization step, leaving 102 complexes. Half of
these contained ligands with more than 3 rotatable bonds, and
these were excluded to limit the degrees of freedom of the ligand.
Lastly, complexes where the ligand was at the interface of two pro-
tein chains were excluded. The final benchmark set contained 43
protein–ligand crystal structures, with resolutions better than
2.50 Å and ligand molecular weights varying between 70 and
400 g/mol.
4.2. Preparing the benchmark set

Files from the Community Structure-Activity Resource (CSAR)
dataset (Dunbar et al., 2011) were prepared as described previ-
ously (Lemmon and Meiler unpublished results). The ligand atom
coordinates were extracted from the input files, and the script
‘mol_file_to_params.py’ was used to create .params files that de-
scribe chemical properties of each ligand and assign each ligand
a Rosetta atom type. BioPython was used to align residue names,
and convert non-canonical residues to their canonical base resi-
dues. Neutralizing caps were removed from the N- and C-termini
of the protein chain. Protein chains were relabeled alphabetically,
and the ligand was given the chain identifier ‘X’ and residue code
‘INH’ in each file. This dataset was filtered to exclude protein
chains longer than 800 amino acids, ligands with more than 3
rotatable bonds, metal ions and water molecules tightly bound at
the interface (within 3.0 Å of protein or ligand), leaving 43 com-
plexes that were used for the native complexes datasets (Table S3).
4.3. Determining critical residues in the protein–ligand interface

For each of the 43 protein-small molecule complexes,
RosettaLigand was used to generate 100 ‘relaxed’ models,
employing a Rosetta protocol that relies on gradient minimization
and side chain repacking. The contribution of each residue to the
interface energy was determined as the difference in per-residue
energy in the free and bound forms of the protein, and averaged
among the 100 models generated. The residues with the highest
contributions to ligand binding were mutated sequentially to ala-
nine to create five new complexes (e.g. in the first complex only
the residue contributing most to the stability of the interface was
mutated, in the second complex the two highest contributors
were mutated, etc.). The final alanine-modified benchmark set
contained 5 � 43 = 215 complexes.
4.4. Determining residues in the design sphere

Interface residues were selected for design and repacking based
on four distances measured between the Ca of a protein residue
and the closest non-hydrogen atom of the ligand. Residues within
6 Å were designed (i.e. side chains can change to anyother amino
acid, excluding cysteine). Residues within 6–8 Å were considered
for design only if the residue was pointing towards the ligand
(i.e. the distance between Cb and any non-hydrogen ligand atom
was less than the distance between Ca and the same ligand atom).
Residues within 8–10 Å were repacked (i.e. side chain rotamers
were sampled but residues were not mutated). Residues within
10–12 Å were repacked only if the residue was pointing towards
the ligand. The cutoff values were chosen to ensure that the design
sphere was small enough to allow for mutations close to the ligand,
yet large enough to include the longest residue, Arginine, in the
sphere as well.
4.5. Determining the optimal favor native residue bonus (FNRB)

In interface design, only the protein residues within the known
or putative ligand binding site are allowed to mutate. Designs with
the lowest number of mutations are preferred to minimize pertur-
bation of the protein fold. In order to achieve this, a small energy
bonus is added to keep the original residue unless introducing an
alternate amino acid results in a significant energetic gain. The ‘fa-
vor native’ residue bonus (FNRB) is typically chosen in the range of
the per residue standard deviation of the RosettaLigand score. The
optimal FNRB cannot be determined by simply redesigning pro-
tein–ligand complexes with their native sequence since an in-
creased bonus will always result in increased sequence recovery.
Instead, we first determine the five most critical binding residues
and mutate these amino acids to alanine. These mutants are then
redesigned using RosettaLigand to test whether the alanine reverts
to the correct residue.

Of the 43 complexes in the benchmark, a subset was randomly
selected to establish the optimal FNRB. This subset contained no
duplicate proteins or ligands. For each experiment, the ligand
was allowed full reorientation (2 Å translation, 360� rotation) with
FNRB values between 0.5 and 1.5. One thousand designs were gen-
erated for each alanine mutant with each bonus and then the mod-
els with the top 50 interface scores were selected for analysis
(Table S4). As expected, when the FNRB is increased, the sequence
recovery increases (number of mutations decreases). However, the
percent reversion of alanine to WT residue increases until
FNRB = 1.0 and then decreases as FNRB is increased further. Based
on these results, FNRB = 1.0 was applied for the subsequent
experiments.
4.6. Description of each experiment

Four sequence recovery experiments (percentage of designed
residues that are identical to native residues) were conducted on
the full dataset of 43 complexes. Design native (1) probed se-
quence recovery of the native complexes when there was no FNRB
and the ligand was allowed limited reorientation (0.1 Å translation,
2� rotation). Dock/design native (2) probed sequence recovery of
the native complexes when there was no FNRB and the ligand
was allowed full reorientation (2 Å translation, 360� rotation). De-
sign with alanine mutants (3) probed sequence recovery and ala-
nine-to-WT recovery of the native and alanine mutant complexes
when there was a FNRB and the ligand was allowed slight reorien-
tation. Lastly, dock/design with alanine mutants (4) probed se-
quence recovery and alanine-to-WT recovery of the native and
alanine mutant complexes when there was a FNRB and the ligand
was allowed full reorientation.
4.7. Determining the number of residues considered for design to
compute sequence recovery

In the experiments that allowed full ligand movement, the total
number of residues that interact with the ligand is a moving target.
To report overall sequence recovery as a percentage, the number of
residues at the interface was chosen as the average number of res-
idues considered for design. This is still somewhat problematic as
not all residues were necessarily allowed to change in each of
the docking/design trajectories. We counterbalance this limitation
by also reporting the absolute number of mutations (Table S5).
However, these numbers are not comparable from complex to
complex because the number of residues at the interface varies
depending on the ligand size and the shape of the binding pocket.
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4.8. Individual ligand parameters determined by the BCL

The BioChemistryLibrary (BCL) is a software suite tailored for
small molecule modeling, and contains a variety of small molecule
descriptors (Butkiewicz et al., 2013). The ligand parameters calcu-
lated by the BCL include: number of hydrogen bond donors and
acceptors, number of ligand rings, number of atoms, topological
polar surface area (Ertl et al., 2000), van der Waals surface area
(computed using the BCL’s algorithm, which considers the overlap-
ping spheres of neighboring atoms), and logP (Xing and Glen,
2002).

4.9. Evaluating RosettaLigand design performance using position
specific scoring matrices (PSSMs)

PSSM data provide a more quantitative insight into specific res-
idues that are successes/failures when subjected to design. PSSMs
were generated from the native protein sequences using BLAST
(Altschul et al., 1990). The designed residues were then scored
using the PSSM. Thus, a residue of a type frequently seen at that
position would have a positive PSSM score, while a residue seldom
seen at that position would have a negative PSSM score. The per-
cent PSSM recovery is a measure of the percentage of residues with
favorable mutations.

Acknowledgment

Work in the Meiler laboratory is supported through NIH (R01
GM099842). B.A. is supported through the National Science Foun-
dation Graduate Research Fellowship Program, under grant num-
ber DGE-0909667.

References

Allert, M.; Rizk, S. S.; Looger, L. L.; Hellinga, H. W., 2004. Computational design of
receptors for an organophosphate surrogate of the nerve agent soman.
Proceedings of the National Academy of Sciences of the United States of
America 101, 7907–12. Epub 2004 May 17.

Althoff, E.A., Wang, L., Jiang, L., Giger, L., Lassila, J.K., et al., 2012. Robust design and
optimization of retroaldol enzymes. Protein Sci. 21, 717–726.

Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J., 1990. Basic local
alignment search tool. J. Mol. Biol. 215, 403–410.

Ashworth, J., Taylor, G.K., Havranek, J.J., Quadri, S.A., Stoddard, B.L., et al., 2010.
Computational reprogramming of homing endonuclease specificity at multiple
adjacent base pairs. Nucleic Acids Res. 38, 5601–5608.

Baeumner, A.J., 2003. Biosensors for environmental pollutants and food
contaminants. Anal. Bioanal. Chem. 377, 434–445.

Baker, D., Davis, I.W., 2009. RosettaLigand docking with full ligand and receptor
flexibility. J. Mol. Biol. 385, 381–392.

Baker, D., Jiang, L., Althoff, E.A., Clemente, F.R., Doyle, L., et al., 2008a. De novo
computational design of retro-aldol enzymes. Science 319, 1387–1391.

Baker, D., Rothlisberger, D., Khersonsky, O., Wollacott, A.M., Jiang, L., et al., 2008b.
Kemp elimination catalysts by computational enzyme design. Nature 453, 190–
195.

Baker, D., Siegel, J.B., Zanghellini, A., Lovick, H.M., Kiss, G., et al., 2010.
Computational design of an enzyme catalyst for a stereoselective bimolecular
Diels-Alder reaction. Science 329, 309–313.

Butkiewicz, M., Lowe Jr., E.W., Mueller, R., Mendenhall, J.L., Teixeira, P.L., et al., 2013.
Benchmarking ligand-based virtual high-throughput screening with the
pubchem database. Molecules 18, 735–756.

Chen, C.Y., Georgiev, I., Anderson, A.C., Donald, B.R., 2009. Computational structure-
based redesign of enzyme activity. Proc. Natl. Acad. Sci. USA 106, 3764–3769.

Clifton, M.C., Corrent, C., Strong, R.K., 2009. Siderocalins: siderophore-binding
proteins of the innate immune system. Biometals 22, 557–564.

DeLuca, S., Dorr, B., Meiler, J., 2011. Design of native-like proteins through an
exposure-dependent environment potential. Biochemistry-US 50, 8521–8528.

Dunbar, J.B., Smith, R.D., Yang, C.Y., Ung, P.M.U., Lexa, K.W., et al., 2011. CSAR
benchmark exercise of 2010: selection of the protein-ligand complexes. J. Chem.
Inf. Model. 51, 2036–2046.
Ertl, P., Rohde, B., Selzer, P., 2000. Fast calculation of molecular polar surface area as
a sum of fragment-based contributions and its application to the prediction of
drug transport properties. J. Med. Chem. 43, 3714–3717.

Fleishman, S.J., Whitehead, T.A., Ekiert, D.C., Dreyfus, C., Corn, J.E., et al., 2011.
Computational design of proteins targeting the conserved stem region of
influenza hemagglutinin. Science 332, 816–821.

Frey, K.M., Georgiev, I., Donald, B.R., Anderson, A.C., 2010. Predicting resistance
mutations using protein design algorithms. Proc. Natl. Acad. Sci. USA 107,
13707–13712.

Gainza, P., Roberts, K.E., Donald, B.R., 2012. In: Protein design using continuous
rotamers. Plos Comput. Biol. 8.

Gainza, P., Roberts, K.E., Georgiev, I., Lilien, R.H., Keedy, D.A., et al., 2013. OSPREY:
protein design with ensembles, flexibility, and provable algorithms. Methods
Enzymol. 523, 87–107.

Georgiev, I., Lilien, R.H., Donald, B.R., 2008. The minimized dead-end elimination
criterion and its application to protein redesign in a hybrid scoring and search
algorithm for computing partition functions over molecular ensembles. J.
Comput. Chem. 29, 1527–1542.

Golan, D.E., Leader, B., Baca, Q.J., 2008. Protein therapeutics: a summary and
pharmacological classification. Nat. Rev. Drug Discovery 7, 21–39.

Hallen, M.A., Keedy, D.A., Donald, B.R., 2013. Dead-end elimination with
perturbations (DEEPer): a provable protein design algorithm with continuous
sidechain and backbone flexibility. Proteins 81, 18–39.

Hayden, E.C., 2009. In: Key protein–design papers challenged. Nature 461, 859.
Jiang, L., Althoff, E.A., Clemente, F.R., Doyle, L., Rothlisberger, D., et al., 2008. De novo

computational design of retro-aldol enzymes. Science 319, 1387–1391.
Keedy, D.A., Georgiev, I., Triplett, E.B., Donald, B.R., Richardson, D.C., et al., 2012. The

role of local backrub motions in evolved and designed mutations. PLoS Comput.
Biol. 8, e1002629.

Knudsen, K.E., Scher, H.I., 2009. Starving the addiction: new opportunities for
durable suppression of AR signaling in prostate cancer. Clin. Cancer Res. 15,
4792–4798.

Kortemme, T., Morozov, A.V., Baker, D., 2003. An orientation-dependent hydrogen
bonding potential improves prediction of specificity and structure for proteins
and protein–protein complexes. J. Mol. Biol. 326, 1239–1259.

Malisi, C., Schumann, M., Toussaint, N.C., Kageyama, J., Kohlbacher, O., et al., 2012.
Binding pocket optimization by computational protein design. PLoS ONE 7,
e52505.

Meiler, J., Baker, D., 2006. RosettaLigand: protein-small molecule docking with full
side-chain flexibility. Proteins 65, 538–548.

Meiler, J., Kaufmann, K.W., Dawson, E.S., Henry, L.K., Field, J.R., et al., 2009.
Structural determinants of species-selective substrate recognition in human
and Drosaphila serotonin transporters revealed through computational docking
studies. Proteins 74, 630–642.

Roberts, K.E., Cushing, P.R., Boisguerin, P., Madden, D.R., Donald, B.R., 2012.
Computational design of a PDZ domain peptide inhibitor that rescues CFTR
activity. Plos Comput. Biol. 8.

Rothlisberger, D., Khersonsky, O., Wollacott, A.M., Jiang, L., DeChancie, J., et al., 2008.
Kemp elimination catalysts by computational enzyme design. Nature 453, 190–
195.

Schreier, B., Stumpp, C., Wiesner, S., Hocker, B., 2009. Computational design of
ligand binding is not a solved problem. Proc. Nat. Acad. Sci. USA 106, 18491–
18496.

Schueler-Furman, O., Wang, C., Bradley, P., Misura, K., Baker, D., 2005. Progress on
modeling of protein structures and interactions. Science 310, 638–642.

Sidhu, S.S., Koide, S., 2007. Phage display for engineering and analyzing protein
interaction interfaces. Curr. Opin. Struct. Biol. 17, 481–487.

Sidhu, S.S., Lowman, H.B., Cunningham, B.C., Wells, J.A., 2000. Phage display for
selection of novel binding peptides. Methods Enzymol. 328, 333–363.

Siegel, J.B., Zanghellini, A., Lovick, H.M., Kiss, G., Lambert, A.R., et al., 2010.
Computational design of an enzyme catalyst for a stereoselective bimolecular
Diels-Alder reaction. Science 329, 309–313.

Sood, V.D., Baker, D., 2006. Recapitulation and design of protein binding peptide
structures and sequences. J. Mol. Biol. 357, 917–927.

Wang, L., Althoff, E.A., Bolduc, J., Jiang, L., Moody, J., et al., 2012. Structural analyses
of covalent enzyme-substrate analog complexes reveal strengths and
limitations of de novo enzyme design. J. Mol. Biol. 415, 615–625.

Weng, Z.P., DeLisi, C., 2002. Protein therapeutics: promises and challenges for the
21st century. Trends Biotechnol. 20, 29–35.

Xing, L., Glen, R.C., 2002. Novel methods for the prediction of log P, pK(a), and log D.
J. Chem. Inf. Comput. Sci. 42, 796–805.

Zanghellini, A., Jiang, L., Wollacott, A.M., Cheng, G., Meiler, J., et al., 2006. New
algorithms and an in silico benchmark for computational enzyme design.
Protein Sci.: Publ. Protein Soc. 15, 2785–2794.

Zhu, X., Dickerson, T.J., Rogers, C.J., Kaufmann, G.F., Mee, J.M., et al., 2006. Complete
reaction cycle of a cocaine catalytic antibody at atomic resolution. Structure 14,
205–216.

http://refhub.elsevier.com/S1047-8477(13)00209-8/h0005
http://refhub.elsevier.com/S1047-8477(13)00209-8/h0005
http://refhub.elsevier.com/S1047-8477(13)00209-8/h0010
http://refhub.elsevier.com/S1047-8477(13)00209-8/h0010
http://refhub.elsevier.com/S1047-8477(13)00209-8/h0015
http://refhub.elsevier.com/S1047-8477(13)00209-8/h0015
http://refhub.elsevier.com/S1047-8477(13)00209-8/h0015
http://refhub.elsevier.com/S1047-8477(13)00209-8/h0020
http://refhub.elsevier.com/S1047-8477(13)00209-8/h0020
http://refhub.elsevier.com/S1047-8477(13)00209-8/h0025
http://refhub.elsevier.com/S1047-8477(13)00209-8/h0025
http://refhub.elsevier.com/S1047-8477(13)00209-8/h0030
http://refhub.elsevier.com/S1047-8477(13)00209-8/h0030
http://refhub.elsevier.com/S1047-8477(13)00209-8/h0035
http://refhub.elsevier.com/S1047-8477(13)00209-8/h0035
http://refhub.elsevier.com/S1047-8477(13)00209-8/h0035
http://refhub.elsevier.com/S1047-8477(13)00209-8/h0040
http://refhub.elsevier.com/S1047-8477(13)00209-8/h0040
http://refhub.elsevier.com/S1047-8477(13)00209-8/h0040
http://refhub.elsevier.com/S1047-8477(13)00209-8/h0045
http://refhub.elsevier.com/S1047-8477(13)00209-8/h0045
http://refhub.elsevier.com/S1047-8477(13)00209-8/h0045
http://refhub.elsevier.com/S1047-8477(13)00209-8/h0050
http://refhub.elsevier.com/S1047-8477(13)00209-8/h0050
http://refhub.elsevier.com/S1047-8477(13)00209-8/h0055
http://refhub.elsevier.com/S1047-8477(13)00209-8/h0055
http://refhub.elsevier.com/S1047-8477(13)00209-8/h0060
http://refhub.elsevier.com/S1047-8477(13)00209-8/h0060
http://refhub.elsevier.com/S1047-8477(13)00209-8/h0065
http://refhub.elsevier.com/S1047-8477(13)00209-8/h0065
http://refhub.elsevier.com/S1047-8477(13)00209-8/h0065
http://refhub.elsevier.com/S1047-8477(13)00209-8/h0070
http://refhub.elsevier.com/S1047-8477(13)00209-8/h0070
http://refhub.elsevier.com/S1047-8477(13)00209-8/h0070
http://refhub.elsevier.com/S1047-8477(13)00209-8/h0075
http://refhub.elsevier.com/S1047-8477(13)00209-8/h0075
http://refhub.elsevier.com/S1047-8477(13)00209-8/h0075
http://refhub.elsevier.com/S1047-8477(13)00209-8/h0080
http://refhub.elsevier.com/S1047-8477(13)00209-8/h0080
http://refhub.elsevier.com/S1047-8477(13)00209-8/h0080
http://refhub.elsevier.com/S1047-8477(13)00209-8/h0085
http://refhub.elsevier.com/S1047-8477(13)00209-8/h0085
http://refhub.elsevier.com/S1047-8477(13)00209-8/h0090
http://refhub.elsevier.com/S1047-8477(13)00209-8/h0090
http://refhub.elsevier.com/S1047-8477(13)00209-8/h0090
http://refhub.elsevier.com/S1047-8477(13)00209-8/h0095
http://refhub.elsevier.com/S1047-8477(13)00209-8/h0095
http://refhub.elsevier.com/S1047-8477(13)00209-8/h0095
http://refhub.elsevier.com/S1047-8477(13)00209-8/h0095
http://refhub.elsevier.com/S1047-8477(13)00209-8/h0100
http://refhub.elsevier.com/S1047-8477(13)00209-8/h0100
http://refhub.elsevier.com/S1047-8477(13)00209-8/h0105
http://refhub.elsevier.com/S1047-8477(13)00209-8/h0105
http://refhub.elsevier.com/S1047-8477(13)00209-8/h0105
http://refhub.elsevier.com/S1047-8477(13)00209-8/h0110
http://refhub.elsevier.com/S1047-8477(13)00209-8/h0115
http://refhub.elsevier.com/S1047-8477(13)00209-8/h0115
http://refhub.elsevier.com/S1047-8477(13)00209-8/h0120
http://refhub.elsevier.com/S1047-8477(13)00209-8/h0120
http://refhub.elsevier.com/S1047-8477(13)00209-8/h0120
http://refhub.elsevier.com/S1047-8477(13)00209-8/h0125
http://refhub.elsevier.com/S1047-8477(13)00209-8/h0125
http://refhub.elsevier.com/S1047-8477(13)00209-8/h0125
http://refhub.elsevier.com/S1047-8477(13)00209-8/h0130
http://refhub.elsevier.com/S1047-8477(13)00209-8/h0130
http://refhub.elsevier.com/S1047-8477(13)00209-8/h0130
http://refhub.elsevier.com/S1047-8477(13)00209-8/h0135
http://refhub.elsevier.com/S1047-8477(13)00209-8/h0135
http://refhub.elsevier.com/S1047-8477(13)00209-8/h0135
http://refhub.elsevier.com/S1047-8477(13)00209-8/h0140
http://refhub.elsevier.com/S1047-8477(13)00209-8/h0140
http://refhub.elsevier.com/S1047-8477(13)00209-8/h0145
http://refhub.elsevier.com/S1047-8477(13)00209-8/h0145
http://refhub.elsevier.com/S1047-8477(13)00209-8/h0145
http://refhub.elsevier.com/S1047-8477(13)00209-8/h0145
http://refhub.elsevier.com/S1047-8477(13)00209-8/h0150
http://refhub.elsevier.com/S1047-8477(13)00209-8/h0150
http://refhub.elsevier.com/S1047-8477(13)00209-8/h0150
http://refhub.elsevier.com/S1047-8477(13)00209-8/h0155
http://refhub.elsevier.com/S1047-8477(13)00209-8/h0155
http://refhub.elsevier.com/S1047-8477(13)00209-8/h0155
http://refhub.elsevier.com/S1047-8477(13)00209-8/h0160
http://refhub.elsevier.com/S1047-8477(13)00209-8/h0160
http://refhub.elsevier.com/S1047-8477(13)00209-8/h0160
http://refhub.elsevier.com/S1047-8477(13)00209-8/h0165
http://refhub.elsevier.com/S1047-8477(13)00209-8/h0165
http://refhub.elsevier.com/S1047-8477(13)00209-8/h0170
http://refhub.elsevier.com/S1047-8477(13)00209-8/h0170
http://refhub.elsevier.com/S1047-8477(13)00209-8/h0175
http://refhub.elsevier.com/S1047-8477(13)00209-8/h0175
http://refhub.elsevier.com/S1047-8477(13)00209-8/h0180
http://refhub.elsevier.com/S1047-8477(13)00209-8/h0180
http://refhub.elsevier.com/S1047-8477(13)00209-8/h0180
http://refhub.elsevier.com/S1047-8477(13)00209-8/h0185
http://refhub.elsevier.com/S1047-8477(13)00209-8/h0185
http://refhub.elsevier.com/S1047-8477(13)00209-8/h0190
http://refhub.elsevier.com/S1047-8477(13)00209-8/h0190
http://refhub.elsevier.com/S1047-8477(13)00209-8/h0190
http://refhub.elsevier.com/S1047-8477(13)00209-8/h0195
http://refhub.elsevier.com/S1047-8477(13)00209-8/h0195
http://refhub.elsevier.com/S1047-8477(13)00209-8/h0200
http://refhub.elsevier.com/S1047-8477(13)00209-8/h0200
http://refhub.elsevier.com/S1047-8477(13)00209-8/h0205
http://refhub.elsevier.com/S1047-8477(13)00209-8/h0205
http://refhub.elsevier.com/S1047-8477(13)00209-8/h0205
http://refhub.elsevier.com/S1047-8477(13)00209-8/h0210
http://refhub.elsevier.com/S1047-8477(13)00209-8/h0210
http://refhub.elsevier.com/S1047-8477(13)00209-8/h0210

	Computational design of protein-small molecule interfaces
	1 Introduction
	2 Results and discussion
	2.1 Experimental setup
	2.2 Trends for sequence recovery across all four experiments
	2.3 Trends in recovery of wild type (WT) residues across alanine mutants experiments
	2.4 Detailed analysis of the dock/design alanine mutants experiment (4)
	2.5 PSSM recovery results

	3 Conclusions
	4 Materials and methods
	4.1 Compilation of a benchmark of 43 protein–ligand complexes
	4.2 Preparing the benchmark set
	4.3 Determining critical residues in the protein–ligand interface
	4.4 Determining residues in the design sphere
	4.5 Determining the optimal favor native residue bonus (FNRB)
	4.6 Description of each experiment
	4.7 Determining the number of residues considered for design to compute sequence recovery
	4.8 Individual ligand parameters determined by the BCL
	4.9 Evaluating RosettaLigand design performance using position specific scoring matrices (PSSMs)

	Acknowledgment
	References


