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ABSTRACT: Rosetta is one of the prime tools for high
resolution protein structure refinement. While its scoring func-
tion can distinguish native-like from non-native-like conforma-
tions in many cases, the method is limited by conformational
sampling for larger proteins, that is, leaving a local energy
minimum in which the search algorithm may get stuck. Here, we
test the hypothesis that iteration of Rosetta with an orthogonal
sampling and scoring strategy might facilitate exploration of
conformational space. Specifically, we run short molecular
dynamics (MD) simulations on models created by de novo
folding of large proteins into cryoEM density maps to enable
sampling of conformational space not directly accessible to
Rosetta and thus provide an escape route from the conforma-
tional traps. We present a combined MD−Rosetta protein structure refinement protocol that can overcome some of these sampling
limitations. Two of four benchmark proteins showed incremental improvement through all three rounds of the iterative refinement
protocol. Molecular dynamics is most efficient in applying subtle but important rearrangements within secondary structure elements
and is thus highly complementary to the Rosetta refinement, which focuses on side chains and loop regions.

■ INTRODUCTION

The last 20 years have seen an unprecedented increase in
computational power available to biomedical research. One area
that these vast resources have been focused on is the computa-
tional prediction and refinement of protein tertiary structures.
To completely understand a protein’s function and mode of
action, as well as to design small molecule binders to it, knowing
the protein’s structure is of huge value. Also within the past few
decades, experimental methods such as X-ray crystallography,
nuclear magnetic resonance (NMR), or electron microscopy
(EM) have helped to elucidate a large number of protein
structures.1 Despite the breathtaking achievements of exper-
imental protein structure elucidation, there remain a consid-
erable number of proteins for which no structure is known and
also no template for comparative modeling is available. De novo
protein structure prediction aims to elucidate the structure of
such proteins. Predicting the structure of a protein from only its
primary amino acid sequence is a formidable challenge, but
lately, progress toward this goal has been undeniable: Protein
energy landscape theory has been applied to obtain optimal
energy functions for protein structure prediction.2 Massively
distributed computing has been used to simulate protein folding
on a scale not accessible before.3 Molecular dynamics

simulations were able to probe folding pathways of very small
proteins within simulation times upward of 100 μs.4 The
fragment replacement-based method Rosetta has become one of
the prime tools to predict and refine the structures of proteins.5

Particular success has been demonstrated whenever the folding
is aided by sparse experimental restraints. Restraints from
NMR,6 electron paramagnetic resonance (EPR) spectroscopy7

as well as EM8 have been shown to considerably improve
model quality or extend the scope of the method to much
larger systems. The most recent installments of CASP (Critical
Assessment of protein Structure Prediction), a biyearly
community-wide blind protein structure prediction experiment,
have seen Rosetta rank among the best performing programs for
de novo protein structure prediction (free modeling category).9

However, despite all recent improvements, only recently
algorithms became available that can sample the topology space
of proteins with more than 150 residues10 without a template
structure or experimental restraints.11

In addition to de novo protein folding, Rosetta has also
been shown to be able to refine small proteins to near atomic
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resolution in favorable cases.12 Such refinement requires the
starting structures to have low root-mean-square distances
(RMSDs) to the native conformation already. The Rosetta
scoring function is generally able to distinguish native-like from
non-native-like conformations. The biggest obstacle to
successful refinement is the vast conformational space that has
to be sampled to find the near-native energy minimum. If the
starting structure differs substantially from the native structure, it
is possible that the fragment replacement search algorithm
within Rosetta will not be able to sample conformations closer
to the native structure. Not only the amplitude of the difference
as determined by RMSD is important but also the type of
conformation change required to bridge this distance or if
such a change can be achieved with fragment replacement and
side chain repacking. We observed this scenario in one of our
recent works, where we used Rosetta to refine models built
into medium resolution cryoEM density maps.13 Despite
reaching low RMSD values for many of the benchmark proteins,
improvement stalled after two rounds of iterative loop
rebuilding and refinement in Rosetta. The search algorithm
became stuck in “conformational traps” from which no escape
was possible using the sampling provided by Rosetta. Here, we
investigate the possibility of using molecular dynamics (MD)
to overcome some of these conformational traps and sample
conformations from which Rosetta can more easily refine the
structure. A protocol that goes through multiple iterative rounds
of MD and Rosetta refinement is presented.

■ MATERIAL AND METHODS
System Preparation. Four different proteins were chosen

for which low-RMSD models had been built de novo with
EM-Fold and Rosetta:13 1X91, 2A6B, 1ICX, 1OZ9, two of which
are α-helical proteins while the other two are α-β-proteins. The
proteins have between 150 and 234 residues. The best scoring
model after the third round of Rosetta refinement in ref 13 for
each protein was taken as input model for the iterative MD−
Rosetta protocol. These systems were then prepared for
molecular dynamics simulations. Tleap14 was used to neutralize
the systems by adding Na+ or Cl− counterions (1 Na+,15 Na+,7
Na+, and 4 Cl− for the 1X91, 2A6B, 1ICX, and 1OZ9 systems
respectively) and solvating using a TIP3P water box. The fully
solvated systems contained between 25 000 and 32 000 atoms.
Minimization using SANDER14 was carried out in two stages:
1000 steps of minimization of solvent and ions with the protein
restrained using a force constant of 500 kcal/mol/Å2, followed
by a 2500 step minimization of the entire system. A short initial
20 ps MD simulation with weak restraints (10 kcal/mol·Å2)
on the protein residues was used to heat the system to a
temperature of 300 K.
Molecular Dynamics Simulations. All MD simulations

were performed under the NPT ensemble at 300 K using
AMBER14 and the ff99SBildn force field.15 Periodic boundary
conditions were used, along with a nonbonded interaction cutoff
of 10 Å. Bonds involving hydrogen atoms were constrained
using the SHAKE algorithm,16 allowing for a time step of 2 fs.
Each MD simulation during the iterative MD−Rosetta protocol
was run for 2 ns.
Rosetta All Atom Refinement in Density Map. The

models identified from the MD simulations were subjected
to loop rebuilding and refinement within Rosetta5,8a guided by
the cryoEM density map. The Rosetta refinement protocol is
identical to the protocol described in ref 13. In summary, regions
of the models that agree least with the density map of the protein

are identified (loops_from_density.linuxgccrelease) and rebuilt
(loopmodel.linuxgccrelease). Each round performs a full atom
relaxation of the entire structure.

Iterative MD−Rosetta Protocol. Three rounds of iterative
MD and Rosetta were run for all four benchmark proteins.
The starting model for the protocol is the best scoring model
after the third round of Rosetta refinement from ref 13. The
protocol starts with an MD run, followed by a Rosetta run:
MD1−Rosetta1−MD2−Rosetta2−MD3−Rosetta3. The MD
runs are short (2 ns). After each MD run two models are
picked to transition into the following Rosetta round. For this
work we picked the two best models observed during the MD
simulation: (a) the model with the overall lowest RMSD with
respect to the native protein structure and (b) the model with
the lowest RMSD over secondary structure elements (SSEs).
For both these models the regions that agree least with the
density map are identified and rebuilt using Rosetta, followed by
an all atom refinement of the models. The Rosetta models are
then sorted by score. The best scoring model is picked as input
into the next MD round. Before each MD round counterions
and TIP3P waters are added to the model and a short minimiza-
tion and equilibration is run. All RMSDs reported are over the
backbone atoms N, Cα, C, and O. All RMSD calculations were
done using the BCL::Quality application.11b

■ RESULTS AND DISCUSSION
Two of the Benchmark Proteins Show Improvement

through All Three Iterative MD-Rosetta Rounds. The
ability of an iterative MD−Rosetta refinement protocol to
minimize the models’ deviation from the native protein structure
was tested on four benchmark proteins. The best scoring Rosetta

Figure 1. Model quality evolution of 1X91 during the three rounds of
MD. The RMSD of the MD structure with respect to the native model
is shown for all protein residues (blue) and for residues in secondary
structure elements (green). RMSDs of reference models are displayed
by vertical lines: the full length RMSD of the starting model (black
line), the RMSD over SSEs of the starting model (dashed black line),
the full length RMSD of the best scoring model from the previous
Rosetta round (red line) and the RMSD over SSEs of the best scoring
model from the previous Rosetta round (dashed red line). For the first
round of MD, the red and black lines coincide. A successful protocol
would be characterized by the blue line breaking through the red line
(corresponding to MD sampling lower RMSD models than the best
scoring model seen in the last Rosetta round) and the green line
breaking through the dashed red line.
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structure from a previous Rosetta-only density-map-guided
refinement13 was chosen as input model for all four proteins.
Three rounds of iterative molecular dynamics followed by
Rosetta refinement were performed. After each MD simulation,
the two lowest RMSD models (with respect to RMSD over the
entire sequence and RMSD over residues in secondary structure
elements) were picked as input into a Rosetta loop rebuilding
and refinement run guided by the cryoEM density map.
Information from the density maps was not used during the
MD simulations. Finally, the best scoring model after Rosetta
refinement was used as starting model in the subsequent MD
simulation. As an example, Figure 1 shows the evolution of the
model quality of 1X91 during the all three rounds of MD.
Frequently, the MD starting structures have slightly higher
RMSDs than those of the previous-round Rosetta model. For
example, the first round MD starting structure has an RMSD of
2.00 Å, compared to the RMSD of the previous round Rosetta
model of 1.82 Å. These discrepancies are due to minimization/
equilibration before the start of the MD, which consistently

increases the RMSD with respect to the native structure. In all
three rounds of MD, models were built that surpass the previous-
round best-scoring Rosetta model with respect to RMSD over
secondary structure elements (the green line breaking through
the dashed red line). Only during the first round of MD, models
are built that also have lower full length RMSDs than the
previous-round best-scoring Rosetta model. RMSDs as low as
1.34 Å over the entire protein and 0.84 Å over secondary
structure elements are sampled during the third round of MD
simulations.
Table 1 summarizes the quality of the generated models for

all four proteins throughout all three rounds of the iterative
protocol. For two of the proteins (1X91, 2A6B), there was
improvement to the very end. For example, the RMSD for
2A6B improved from 3.17 Å to 2.87 Å over all protein residues
and from 2.56 Å to 2.12 Å measured over residues in secondary
structure elements. The improvement for 1X91 is even more
considerable. Over the three rounds the RMSD over all
residues improved from 1.82 Å to 1.33 Å and from 1.19 Å to

Table 1. Quality of the Generated Models for All Four Proteins Throughout Three Rounds of the Iterative Protocola

protein startb MD1c Rosetta1d MD2e Rosetta2f MD3g Rosetta3h besti

1X91 1.82(1.19) 1.76(0.93) 1.58(0.94) 1.58(0.89) 1.33(0.97) 1.34(0.84) 1.33(1.00) 0.88(0.60)
2A6B 3.17(2.56) 3.12(2.46) 3.08(2.38) 2.92(2.31) 2.86(2.22) 2.86(2.13) 2.87(2.12) 2.56(1.90)
1ICX 2.65(2.14) 2.55(1.93) 2.35(1.92) 2.35(1.67) 2.80(2.67) 2.35(1.67)
1OZ9 2.63(2.23) 2.51(2.18) 4.54(3.38) 2.51(2.18)

aRMSDs of the models built with respect to native structure over all residues and over all residues in secondary structure elements (in parentheses).
All RMSDs shown are in Ångstrom. bRMSDs of the starting models. cRMSDs of the best models seen in 2 ns of the first round of MD. dRMSDs of
the top scoring model after the first round of Rosetta refinement. eRMSDs of the best models seen in 2 ns of the second round of MD. fRMSDs of
the top scoring model after the second round of Rosetta refinement. gRMSDs of the best models seen in 2 ns of the third round of MD. hRMSDs of
the top scoring model after the third round of Rosetta refinement. iRMSDs of the best models ever built during the iterative MD−Rosetta
refinement protocol.

Figure 2. Lowest RMSD models after three rounds of iterative MD/Rosetta refinement for (A) 1X91 and (B) 2A6B. The native structure is shown
in turquoise, while the model is shown in gold. The overall structure within secondary structure elements has been recovered in the models. Most
side chain conformations within the interface of secondary structure elements have been built correctly.
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1.00 Å measured over residues in secondary structure elements.
The potential for model quality improvement is even more
apparent when looking at the best model in the Rosetta runs of
the third round of the protocol. The best 2A6B model built by
Rosetta in the third round has an RMSD of 2.56 Å (with 1.90 Å
RMSD over SSEs), while the best 1X91 model has an RMSD of
0.88 Å (with 0.60 Å RMSD over SSEs). While these models
scored worse than the models reported, this still demonstrates
the combined power of the MD−Rosetta protocol to build
models of excellent quality. Figure 2 shows the best 1X91 and
2A6B models overlaid with their native structure. The prediction
within the protein core is virtually perfect. For the other two
proteins improvement stopped either in the first or second
round. Interestingly, those proteins represented the α-β-proteins
in the benchmark, while the two successful proteins were
α-helical proteins. However, even for these two α-β-proteins
some initial model improvement was observed. These results
demonstrate that an iterative MD−Rosetta refinement protocol
can improve model quality in some cases, with considerable
improvement seen in selected cases.

Figure 3 shows the RMSD vs score plots of the two most
successful proteins, 1X91 and 2A6B. Plots for the last round of
Rosetta refinement from ref 13, alongside the three Rosetta
rounds of the iterative MD−Rosetta protocol, are shown. The
native structure is shown for reference in all plots. The native
structure has nonzero RMSD values since it was relaxed in the
Rosetta force field before being scored. Both for 1X91 and
2A6B the general distribution of RMSDs shifts to lower values
with each round of the iterative MD−Rosetta protocol, sug-
gesting incremental model quality improvement. Not surpris-
ingly this effect is most pronounced with 1X91 due to the
overall better model quality.

Molecular Dynamics is Most Efficient in Improving
RMSDs over Residues in Secondary Structure Elements.
Molecular dynamics and Rosetta prove to be most efficient in
improving the model quality in different parts of the proteins.
From the data presented in Figure 1 and Table 1, it can be seen
that the Rosetta stages of the protocol are most efficient in
improving the RMSD over residues in loop regions. This is not
unexpected since the Rosetta protocol includes targeted
rebuilding of the loop regions guided by the cryoEM density
map. However, encouragingly, MD was best at improving the
RMSDs over residues in secondary structure elements. This
means that MD has its strength in an area where improvement
with Rosetta is more challenging. MD can thus contribute
constructively to overcome some of the sampling limitations of
Rosetta.

■ CONCLUSIONS
Here, we presented the results of a novel iterative MD−Rosetta
protocol to computationally refine protein structures guided
by medium resolution cryoEM density maps. It was shown
that a combination of MD and Rosetta can indeed help to
overcome some of the “conformational traps” in which Rosetta
refinement gets trapped frequently. Molecular dynamics seems
particularly helpful for improvement of model quality within
secondary structure elements, thus complementing Rosetta
whose strength is rebuilding and refining loop regions. The
benchmark proteins all had between 150 and 234 residues.
Observing models with sub-Angstrom RMSDs in a computa-
tional structure refinement protocol for proteins of that size is
novel and reason for optimism. While these results are
promising and demonstrate that there is the possibility of a
combined MD−Rosetta protocol being more powerful than
Rosetta alone, much potential for improvement remains. While
full success for two out of four test cases is encouraging, future
work will focus on ways of improving the success rate of the
protocol. Furthermore, in the current implementation, the MD
simulations were not guided by the cryoEM density map.
Restraining the molecular dynamics runs with the density map
may improve model quality during the MD sections of the
protocol. Finally, the biggest shortcoming of the current
implementation of the protocol is that, while the Rosetta
models are picked based solely on score, the models from the
MD rounds were picked based on low RMSD to the native
structure. Clearly, outside of a benchmark scenario, this is not
possible and thus currently serves more as a proof of principle.
So, at this point, these calculations rely on the assumption that
the best native conformation in an ensemble can be selected.
Follow-up studies will focus on identifying these low RMSD
models by some other metric, such as, for example, Rosetta
score. Addressing these issues is the focus of ongoing research
and will be discussed in subsequent publications.

Figure 3. RMSD vs score plots for 1X91 and 2A6B. The first panel
(blue, labeled round 3) shows the results of the last round of Rosetta
refinement in ref 13. The other three panels show the results for the
first (green), second (green), and third (red) Rosetta round of the
iterative MD−Rosetta. The native structure, relaxed in the Rosetta
force field, is shown in all panels (black).
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