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MTSL  Methanethiosulfonate spin label 

MP  Membrane Protein 

ANN  Artificial Neural Network  
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Abstract 

Prediction of trans-membrane spans and secondary structure from the protein 

sequence is generally the first step in the structural characterization of (membrane) 

proteins. Preference of a stretch of amino acids in a protein to form secondary structure 

and being placed in the membrane are correlated. Nevertheless, current methods predict 

either secondary structure or individual trans-membrane states. We introduce a method 

that simultaneously predicts the secondary structure and trans-membrane spans from the 

protein sequence. This approach not only eliminates the necessity to create a consensus 

prediction from possibly contradicting outputs of several predictors but bears the 

potential to predict conformational switches, i.e. sequence regions that have a high 

probability to change for example from a coil conformation in solution to an α-helical 

trans-membrane state. An Artificial Neural Network was trained on databases of 177 

membrane proteins and 6048 soluble proteins. The output is a 3x3-dimensional 

probability matrix for each residue in the sequence that combines three secondary 

structure types (helix, strand, coil) and three environment types (membrane core, 

interface, solution). The prediction accuracies are 70.3% for nine possible states, 73.2% 

for three-state secondary structure prediction and 94.8% for three-state trans-membrane 

span prediction. These accuracies are comparable to state-of-the art predictors of 

secondary structure (e.g. Psipred) or trans-membrane placement (e.g. OCTOPUS). The 

method is available as web-server and for download at www.meilerlab.org. 

 

Page 3 of 43

John Wiley & Sons, Inc.

PROTEINS: Structure, Function, and Bioinformatics



 4

Introduction 

The prediction of secondary structure (SS) and trans-membrane (TM) segments 

from sequence is the first step towards structural characterization of proteins. It is 

typically applied before more laborious experimental methods are employed: CD 

spectroscopy only yields an overall SS composition of the protein – no amino acid 

specific values. The chemical shift index (CSI) derived from NMR experiments requires 

signal assignment of the protein backbone which is a time-consuming task. Moreover, 

identification of SS and TM spans is the first step of computational modeling of 

(membrane) proteins. The output of SS and TM prediction tools are therefore a basic 

requirement for algorithms performing sequence alignment, fold recognition, and de novo 

protein structure prediction. Furthermore, it facilitates the design of EPR experiments to 

find an optimal position for MTSL spin labels 1 or to select detergents to screen for 

membrane protein NMR experiments based on the thickness of the hydrophobic region of 

the membrane protein.   

The identification of SS and TM spans is typically accomplished using a variety 

of SS and TM prediction methods in parallel (see below). However, the formation of SS 

and TM spans is interrelated because the occurrence of SS is greatly increased in the TM 

region. Peptides or proteins can exist in a disordered state in a polar solution because 

backbone carbonyls and amide protons form hydrogen bonds with the surrounding water 

molecules. When these peptides are inserted into the membrane the hydrophobic 

environment drives the same polar groups to form intra-molecular hydrogen bonds – SS 

is formed. BCL::Jufo9D leverages this interrelation by simultaneously predicting SS and 

TM segments, i.e. predicting SS propensity in polar and apolar environments. It thereby 
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enables the prediction of conformational switches, i.e. sequence regions that are stable in 

two different conformations, for example, as coil in solution or an α-helix in the 

membrane. This is an important achievement as isolated prediction of secondary structure 

might recognize a high helix and coil probability, and isolated prediction of trans-

membrane spans might recognize the ability to exist in solution or as a TM span, 

however, the correlation between these probabilities is missing. 

 

Machine learning techniques are widely used for prediction of SS and TM 

placement 

Most recent methods for SS prediction use machine learning techniques (see 2) 

such as Artificial Neural Networks (ANNs), Hidden Markov Models (HMMs), or 

Support Vector Machines (SVMs). These algorithms are pattern recognition techniques 

that associate a given input (e.g. the sequence information of a protein) to an output (e.g. 

the structural information such as SS or TM spans). For supervised learning the output is 

provided during the training process using structural information of proteins with known 

structure. When training is complete, the algorithms predict i.e. the SS for a target 

sequence. The use of machine learning approaches in SS prediction has been pioneered 

by Rost and co-workers through the development of their PhD program 3-4.  

For soluble proteins SS prediction tools usually provide a three-state probability 

for each residue being either in helix, strand, or coil. Accuracy is often reported as a Q3 

value which is the percentage of correctly predicted SS if the state with the highest 

predicted probability is compared to the experimentally determined SS. Accuracies of up 

to 80% are achieved 5 with Psipred 6-7 being one of the most accurate SS prediction tools 
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available 5. Psipred is a two-stage feed-forward ANN that was trained on a sequence 

database of soluble proteins with position-specific scoring matrices (PSSM) from 

PSIBLAST 8 as an input. JUFO 9-10 is an ANN that uses dimension-reduced amino acid 

representations to predict the SS of soluble proteins. It is trained on a database of 430 

soluble peptides from the FSSP database 11 using an input window of 31 residues. JUFO 

was applied to the simultaneous prediction of secondary and tertiary structures probing 

their interrelation 9. The SS prediction tool PROFPHD 4,12-13 as part of the PredictProtein 

server is also based on ANNs. It is a three-layer feed-forward ANN trained on sequence-

to-structure and structure-to-structure context that uses a multiple sequence alignment 

and global amino acid composition as inputs. The developers state a three-state accuracy 

of 76%.  

 

TM span prediction methods are specialized to either α-helical proteins or β-

barrels 

Early attempts to predict the location of TM spans in membrane proteins (MPs) 

involve averaging hydrophobicity values over a sequence window. Many different 

hydrophobicity scales have been developed using a variety of experimental 14-20, 

theoretical 21-25, and consensus approaches 26-28, some of them are reviewed in 25. Most of 

the scales consider the two states membrane bilayer and solution. The scales of Wimley 

& White 16,29 as well as a recently developed knowledge-based unified hydrophobicity 

scale (UHS) 25 take a third interface region into account. Considering an interface region 

is important since the dielectric environment characterized by the polar lipid head-groups 

is distinctly different from the aqueous solution as well as from the membrane core 
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region. Aromatic residues like Tyr or Trp as well as amphipathic α-helices usually reside 

there 16,25. Predicting the location of TM-spans using averaging schemes for 

hydrophobicity values achieves accuracies up to 73% in the two-state scenario 

(membrane bilayer and solution) and up to 60% in the three-state scenario (with interface 

region) 25.  

Considerable improvement is achieved by the application of machine learning 

approaches; however, these methods are specialized to either TM α-helical bundles or β-

barrels: For identification of TM spans in α-helical MPs OCTOPUS 30 is one of the best 

methods available. It uses four separately trained ANNs to identify one of the four states 

(membrane, interface, loop, globular) at the residue level and combines the predictions 

globally using a Hidden Markov Model (HMM). It is designed as a topology predictor 

and is able to model reentrant/membrane dipping regions and TM hairpins. The 

prediction accuracies on an independent benchmark dataset were reported to be as high as 

94% for identification of the correct topology. Other available methods use HMMs (such 

as TMHMM 31 and TMMOD 32), SVMs (such as MEMSAT-SVM 
33) or a consensus of 

multiple SS prediction servers, such as ConPredII 34-35. 

For identification of TM β-barrels, TMbeta-Net 36 is one of few methods 

available. It consists of an ANN that was trained on 13 outer membrane proteins with a 

jack-knife approach for cross-validation. Other methods, mostly HMMs, include 

ProfTMB 37-38 as part of the PredictProtein server 39 and TMBHMM 
40. 

The method presented here seeks to simultaneously predict SS and TM regions 

leveraging their interrelation. It alleviates the necessity to combine multiple contradicting 

outputs into a single prediction. Moreover, it overcomes the specialization of TM span 
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prediction tools for either α-helical bundles or β-barrels and the specialization of SS 

methods to soluble proteins. BCL::Jufo9D is a set of ANNs that predicts a nine-state 

probability distribution combining three SS states (helix, strand, coil) and three protein 

environment states (membrane, interface, solution) for each residue in the protein 

sequence. The ANNs were trained on databases of 226 MP chains in 177 MPs and 6223 

soluble protein chains in 6048 soluble proteins. The approach achieves per residue 

accuracies of 70.3% in a nine state prediction scenario for the independent dataset 

compared to an accuracy of a random prediction of 11.1%.  

 

Methods 

Establishing the membrane protein database 

A list of all membrane protein chains, for which a structure has been determined, 

was downloaded from the PDBTM 41-42 website (Nov. 2011). Similar sequences were 

excluded by culling this list with the PISCES server 43-44. The parameters included a 

percent sequence identity ≤ 30%, resolution 0 – 3 Å, R-factor 0.25, sequence length 40 – 

10,000 residues, non X-ray entries as well as CA-only chains were included. 

BCL::PDBConvert (Woetzel, N. submitted) was used to convert non-natural amino acids 

into their natural counterparts and to transform the protein into the membrane coordinate 

frame using the membrane definitions provided by the PDBTM website. The membrane 

normal aligns with the z-coordinate in the PDB file with the membrane center being at z 

= 0. We assume a constant thickness of 20 Å for the membrane core and 10 Å for the 

transition region on either side of the membrane (Figure 1A). Residues in the 2.5 Å gap 

regions between membrane core and transition region or transition region and solution 
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were disregarded to obtain more distinct regions for the ANN to identify. DSSP 45 

(version of 2011) was used for all PDB structures to obtain a consistent SS identification. 

Helices with less than five residues and strands with less than three residues were 

disregarded to focus the prediction on long SS elements. This procedure resulted in a list 

of 226 chains in 177 membrane proteins.  

 

Establishing the database of soluble proteins  

A pre-compiled list of PDB chains was downloaded from the PISCES protein 

sequence culling server (date 12/02/2011) 43-44. The list contained sequences with a 

percentage sequence identity ≤ 30%, resolution 0 – 2 Å, R-factor 0.25, sequence length 

40 – 10,000 residues, non X-ray entries as well as CA-only chains were excluded. 

Membrane proteins were excluded from this list. BCL::PDBConvert (Woetzel, N. 

submitted) was used to convert non-natural amino acids into their natural counterparts 

and DSSP 45 was used to identify SS elements. Helices shorter than five residues and 

strands shorter than three residues were disregarded. The result was a list of 6,223 chains 

in 6,048 soluble proteins.  

The residue counts for all regions both for MPs as well as soluble proteins are 

shown in Supplementary Figure 2. The counts for soluble proteins are much higher and 

there are almost twice as many soluble helix residues present in the database (~113,000) 

than soluble strand residues (~66,000). The counts range from 1852 for coil residues in 

the membrane core to ~137,000 for coil residues in solution. 
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Experimental design allows for cross-validation 

The databases were split into five subsets for cross-validation. For the membrane 

proteins α-helical bundles as well as β-barrels were distributed as equally as possible. The 

soluble proteins were distributed randomly.  

To train a single ANN, three of the five subsets were used for training (see Figure 

1B) and one subset was used for monitoring the training process to avoid overtraining. 

The fifth subset was used as an independent test set for computing the prediction 

accuracies. 20 networks were trained such that the independent as well as the monitoring 

permuted through the five datasets (Figure 1B).  

 

Evolutionary and property profiles are used as ANN input 

Figure 2 shows the input parameters used (see Supplementary Table S1): (a) five 

amino acid properties including steric parameter, volume, polarizability, iso-electric 

point, solvent-accessible surface area 10; (b) six free energies for SS type (helix, strand, 

coil), residue environment (membrane bilayer, interface, solution) 25 and the nine 

combinations of both; (c) the position-specific scoring matrices (PSSM) from PSIBLAST 
8 

after six iterations (see 46). For each residue all of these parameters were collected over a 

sequence window of 31 residues. The optimal size of the input window was determined 

by testing all odd window sizes between 15 and 39 residues. 

In addition, "global" parameters were considered for each protein: (a) the number 

of residues in the protein chain; (b) the oligomeric state (monomer vs. oligomer); (c) the 

average of all amino acid specific parameters over the entire protein chain including their 

properties, free energies, and the PSSM values. This resulted in (31 residues x (20 
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numbers from PSSM + 20 amino acid properties)) + (2 parameters: oligomeric state, 

length) + (40 averages) = 1282 input parameters that represent the residue at the center of 

the window.  

 

Balanced training avoids prediction bias towards over-represented states 

The datasets (the term "dataset" corresponds to the input and output parameters 

for each residue in a protein sequence) were randomized and balanced for each protein 

subset independently. For balancing, an over-sampling procedure was used to represent 

each of the nine states equally often and avoid a bias in the predictions towards the more 

abundant states. This approach also increases the entropy in the input data and maximizes 

the information gain the ANN can achieve.  

The ANNs were three-layer feed-forward networks with a sigmoidal activation 

function and trained through back-propagation of errors. The hidden layer contained 32 

neurons – a number that was optimized by testing 4, 8, 16, 32, 64, and 128 neurons. The 

three subsets used for training contained a total of 270,000 instances, 90,000 instances 

were in the monitoring dataset, and 90,000 instances in the independent dataset. The 

training protocol consisted of three consecutive steps using a simple propagation 

algorithm: (1) 50 steps with weight update after each step with momentum α = 0.0 and 

the learning rate η = 10-3; (2) 10 steps with batch update with momentum α = 0.5 and the 

learning rate η = 5•10-6; (3) 100 steps with weight update after each step with momentum 

α = 1.0 and the learning rate η = 5•10-6. As a post-processing step the outputs of the four 

ANNs were averaged that used the same independent subset.  
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Prediction accuracies are calculated on a per-residue basis on independent 

datasets as an average over four ANNs used for cross-validation 

To report the prediction accuracies as well as the confidence measure, an average 

of four network outputs was computed only considering ANNs belonging to a single set 

that share the same independent dataset (Figure 1B). This setup (a) ensures that the 

reported accuracies originate from ANNs that were not trained on the test set, and (b) 

prediction accuracies can be reported for each protein in the dataset as always four ANNs 

exist that were trained with this particular protein in the independent dataset. The final 

output from the web-server is the average over all 20 ANNs and computes a confidence 

measure that constitutes the difference between the highest and second highest output 

probability for each residue. 

To calculate the per-residue prediction accuracies, the outputs of the four ANNs 

in a single set were averaged. The outputs per set were compared to the actual state on a 

per-residue basis: if the predicted state was a TM helix and the actual state was a TR 

helix, the counts in this particular 9x9 matrix element (see Figure 3) was increased by 

one. After obtaining all counts for the 9x9 matrix over a single set, the counts were 

divided by the number of residues in this region (sum over each row) to arrive at the 

percentage of predicted residues in each matrix element. The percentages of predicted 

residues were then averaged over the five sets of ANNs. This cross-validation and 

averaging procedure circumvents that a “bad choice” of proteins in an independent 

dataset biases the prediction accuracies.  

The counts for the three-state SS prediction, three-state TM span prediction, or 

two-state TM helix/TM strand prediction were calculated as described in Supplementary 
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Figure S1. The counts were divided by the total number of counts per row to arrive at the 

percentages of predicted residues and these percentages were later averaged over the five 

sets of ANNs.  

 

Consolidating per-residue predictions into two-state prediction of complete TM 

spans increases accuracy 

To directly compare the nine-state output of BCL::Jufo9D to the two-state output 

of, for instance OCTOPUS, we summed the non-TM helix probabilities to arrive at a two-

state prediction (Supplementary Figure S1). To remove the resulting bias towards non-

TM states from adding background probabilities of 11.1%, the result needs to be 

corrected by adding or subtracting ½•(8•11.1%-11.1%)=38.9% from the two states, 

respectively. This procedure ensures that the total of all prediction probabilities remains 

100%. The identical correction was applied to the TM strand prediction.  

Furthermore, a post-processing step has been applied for noise reduction. Lengths 

of SS elements were calculated where kinks of one or two residues were regarded as TM 

helix residues but were retained in the final prediction. Since the topology prediction 

output considers only long SS elements that can span the membrane, helices shorter than 

11 residues (including kinks) and strands shorter than 5 residues were removed. Including 

this post-processing step resulted in an increase in prediction accuracy of ~3% over all 

residues in the dataset.  
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Results and Discussion 

BCL::Jufo9D achieves nine-state per-residue accuracies of 70.3% 

Figure 3 shows the percentage of predicted residues for all nine states whereas the 

percentages are averages over all independent datasets. The rows correspond to the “true” 

state as represented in the structure and the columns correspond to the predicted state. 

Ideally, highest percentages should be seen in the matrix diagonal.  

Overall, in the nine-state scenario BCL::Jufo9D predicts the correct state for 

70.3% of the residues in the independent dataset.  

As seen from Figure 3, “true” soluble states are distinguished most accurately 

from the membrane core or the interface region because their characteristics are distinctly 

different. Furthermore, helices and strands in solution and the membrane core have 

highest prediction accuracies (up to 74%), whereas the states in the transition region have 

lower accuracies ranging up to 60%.  We attribute the reduced prediction accuracy in the 

transition region to two causes: First, the transition region borders to soluble and 

membrane core regions allowing for two types of errors – prediction as membrane core 

residues or prediction in the soluble region. In contrast, membrane core and soluble 

region border only to the transition region eliminating one source of error for these 

regions. Secondly, membrane proteins cover a range of thicknesses of the membrane core 

region. Choosing a constant membrane thickness of 20 Å for training BCL::Jufo9D 

introduces some error in classifying amino acids as membrane core, transition region, or 

solution. This effect is partly offset through the introduction of the 2.5 Å gaps between 

the regions. Excluding the gap regions for the predictions results in on average 0.3% 

improved prediction accuracies where largest improvements up to 4% are seen for the 
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membrane core and the transition region (Supplementary Figures S3 and S4). 

Nevertheless, the transition region continues to contain most misclassified residues. 

 

Variable membrane thickness does not improve prediction accuracy 

Membrane thicknesses can be computed from experimental MP structures using 

specific algorithms. We tested the TMDET algorithm provided by the PDBTM 
42,47 to 

compute membrane thickness (data not shown). The performance was overall comparable 

to usage of a constant membrane thickness. A constant membrane thickness was chosen 

to circumvent a potentially circular influence of the TMDET algorithm onto BCL::Jufo9D.  

 

Common mistakes include swapping of coil regions with helix or strand and 

membrane core with transition regions 

Whereas helices and strands in solution and the membrane core have highest 

prediction accuracies, the prediction accuracies of coil states are lower, irrespective of 

their environment (Figure 3). This is expected, since the coil regions are more diverse in 

sequence lacking some of the characteristic properties than enable the identification of 

patterns. Coil states in TM spans are under-represented complicating their reliable 

identification. Additionally, helix and strand states were rarely mixed irrespective of their 

environment. This is expected because the properties characteristic for helices with a 

periodicity of 3.6 are distinctly different than for strands with a periodicity of 2. The 

trends for swapping predictions between membrane core and transition region (but not 

solution) and helix/coil and strand/coil is observed most readily when considering the 

three-state SS and TM prediction as seen in Figure 3.  
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Three-state secondary structure predictions or TM span predictions achieve 

accuracies of 73.2% and 94.8% 

The ANN output can be analyzed by summing the three probabilities for each of 

the SS states helix, strand, and coil. The resulting three-state SS prediction accuracies are 

shown in Figure 4A. On average, in the three-state scenario the SS is correctly identified 

for 73.2% of the residues. Similar accuracies are obtained for helix and strand states for 

each of the different environments (Figure 3), however the accuracies in the transition 

region are lower than for membrane core or solution for reasons discussed above.  

Figure 4A also shows the prediction accuracies for the other SS prediction 

methods Psipred, ProfPhD, and JUFO. Even though accuracies of BCL::Jufo9D are 

marginally lower than for Psipred or JUFO, accuracies of competing methods are likely 

somewhat inflated as the testing dataset is not independent from their training set. As 

discussed below, Psipred has very high accuracies at the termini of SS elements which is 

presumably one reason for the differences in overall prediction accuracies. However, we 

believe that BCL::Jufo9D’s ability to predict the protein environment in addition to the 

SS more than compensates for these minimal differences in prediction accuracy.  

The ANN output can also be analyzed by summing the three probabilities for each 

of the TM states membrane core, transition region, solution to arrive at a three state TM 

span prediction. The accuracies are given in Figure 3. Overall, the environment of 94.8% 

of the residues in the independent datasets is correctly identified, a number that reflects 

the bias towards soluble proteins in the datasets. For training, the oversampling procedure 

guarantees that this bias does not impact the weights in the ANNs.  
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Nine output states contain more information than both SS prediction and TM span 

prediction combined 

As stated above, BCL::Jufo9D overall classifies 70.3% of the residues correctly 

into the nine possible states. This compares to an expected accuracy of 11.1% for a 

random predictor. We wanted to explore how the 70.3% in nine possible states compare 

to the typical ~73% prediction accuracy of a three-state SS prediction and whether it 

contains more information. As a direct measure, we computed the information gain for 

the three-state SS prediction, which is 0.173 ± 0.003, and for the three-state TM 

prediction, which is 0.294 ± 0.004. Therefore, the sum of the information gain for both 

SS and TM prediction is with 0.467 ± 0.005 lower than the information gain of the nine-

state prediction which is 0.527 ± 0.004. This supports the hypothesis that the nine-state 

prediction generally contains more information than both of the three-state predictions 

combined, possibly because the influence of residue environment onto the formation of 

hydrogen bonds and therefore SS.  

 

Two-state TM span identification yields accuracies of up to 98.0% 

Available TM span prediction tools predict their output in two states: OCTOPUS, 

for instance, identifies whether a residue is located in a TM helix or not. To directly 

compare BCL::Jufo9D to OCTOPUS we summed the non-TM helix probabilities to arrive 

at a two-state prediction and applied a post-processing step as described in the Methods 

section. Using the described consolidation of per-residue predictions, BCL::Jufo9D 

correctly predicts 97.9% of the residues in the independent datasets (Figure 4B). 
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OCTOPUS correctly predicts the states of 97.3% of the residues in our dataset. Note that 

the accuracies of alternative methods tend to be somewhat inflated as these might have 

been trained on membrane proteins from our independent dataset. 

For the TM strand prediction BCL::Jufo9D correctly predicts 94.6% of the 

residues, whereas TMBetaNet correctly identifies 50.9% of the residues. This number is 

rather low due to the high over-prediction rate that this method achieves (see Figure 4B).  

We want to point out that our method is not set up to directly distinguish TM β-

barrels from other proteins. However, we do believe that the high accuracy in TM strand 

prediction is useful to identify proteins that could be TM β-barrels solely from sequence 

information. A difference of BCL::Jufo9D to other TM strand prediction methods is that 

most other methods are trained solely on TM β-barrels and do not include barrels that are 

formed by multiple chains in the protein. For example, TMBetaNet extensively over-

predicts TM β-barrels. BCL::Jufo9D, on the other hand, is trained on these proteins and 

higher prediction accuracies may be expected.   

The ultimate goal would be the establishment of a topology prediction method 

that distinguishes different protein orientations in the membrane. Currently, the 

challenges with establishing such a method are the small number of β-barrel MPs 

resulting in small residue counts in the membrane and interface regions. Training of 

BCL::Jufo9D splits these few counts into nine output states multiplied by five datasets 

for cross-validation; further separation would ultimately result in lower prediction 

accuracies and more noise in the predictions.  
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Over- and under prediction 

In addition to the two-state predictions Figure 4B also shows the over- and under- 

predictions of TM spans for complete datasets. For TM helix prediction methods, the 

percentage of over-predicted residues is 2.0% for BCL::Jufo9D and 2.6% for OCTOPUS, 

for under-prediction 9.1% for BCL::Jufo9D, and 9.8% for OCTOPUS. Similar trends are 

seen for TM strand prediction methods, where the percentage of over-predicted residues 

is 5.4% for BCL::Jufo9D and 49.2% for TMBetaNet, for under-prediction 9.3% for 

BCL::Jufo9D and 24.6% for TMBetaNET. The tendencies to over-/or under-predict 

certain states are a result of the training procedure and post-processing steps and 

represent advantages/disadvantages of certain methods for certain applications.  

The BCL::Jufo9D server available at www.meilerlab.org provides the two-state 

outputs in addition to nine-state and three-state outputs. If, for instance, it is known that a 

particular protein is an α-helical MP, the two-state output more accurately defines the 

membrane boundaries compared to a nine-state output which, on the other hand, is more 

useful to describe the overall architecture of the protein without a priori knowledge. 

 

Examples demonstrate high prediction accuracies 

Figure 5 shows some example cases where the protein sequence was used to 

predict the SS and TM regions with BCL::Jufo9D. These predictions were mapped onto 

the known protein structures. The examples are the outer membrane protein OmpX 

(PDB: 1qj8), the TolC receptor (PDB: 1yc9), the photosynthetic reaction center of 

cyanobacteria (PDB: 1jb0), and the E.coli quinol fumarate reductase (PDB: 1kf6). The 

prediction accuracies are reported in the figure. For these examples, the SS prediction 
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accuracy ranges from about 70-90% correctly predicted residues and the TM span 

prediction accuracy ranges from 68-90%.  

 

Challenges and limitations 

Panel B in Figure 5 shows challenges of our method where some of the residues 

are incorrectly identified. The first example is the human mitochondrial ABC transporter 

(PDB: 4ayt) with 76.8% of the residues correctly identified in terms of SS, and 54.8% of 

the residues for TM span prediction. Whereas the TM region in 4ayt is accurately 

identified, a number of residues in solution are predicted to be in the transition region or 

even in the membrane. Interestingly, the SS prediction does not suffer from the 

inaccurate identification of TM regions. 

For the main porin of mycobacteria smegmatis (PDB: 1uun) the SS is correctly 

predicted for 76.9% and the TM spans are correctly identified for 44.6% of the residues. 

In this example, stretches of residues in the membrane are predicted to be soluble. In 

addition, a large number of residues in solution are identified as transition region or 

membrane states. Again, the SS prediction does not suffer from this incorrect 

identification. We point out that overall the percentage of incorrectly classified amino 

acids remains low and the examples presented here are extreme outliers of a generally 

very accurate method. 

Inevitably, prediction of SS and TM spans from the sequence only is affiliated 

with some error margin as formation of secondary and tertiary structure is coupled 9. 

Specific mistakes made by BCL::Jufo9D, especially for β-barrel MPs do not uniformly 

correlate with β-barrel diameter, number of charged residues in the TM region, or 
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orientation of an amino acid side chain towards a polar interior cavity within a membrane 

protein (data not shown). We tested an ANN architecture with additional output states for 

residues that point towards polar interior cavities in the membrane region and observed 

no improved prediction accuracy. We further tested if the limited space of MP sequences 

could be supplemented with sequence information from homologous MPs, however, no 

improvement in prediction accuracy was observed.  

 

Secondary structure prediction accuracies are higher for soluble proteins than for 

soluble parts of membrane proteins  

Supplementary Figure 6 shows the prediction accuracies for soluble parts of MPs. 

It can be seen that in panel A) that the prediction accuracies for soluble states (columns - 

predicted) in solution (rows - actual) seem with up to 40% very low. The major cause for 

this is the difficulty of the method to distinguish residues in solution from the interface 

region. Conversely, SS prediction for soluble proteins is very accurate (panel B), i.e. 

BCL::Jufo9D recognizes soluble proteins well. The lower prediction accuracies for 

soluble parts of MPs are primarily explained by a few MP examples with large soluble 

domains which bias these prediction accuracies, as shown in the examples in Figure 5B. 

We found that training solely on MPs would alleviate these errors and increase the 

prediction accuracies for the soluble domains of MPs. Currently, this procedure also 

decreases the accuracies for some membrane and transition states (up to 5%) as well as 

for the SS prediction of soluble proteins (up to 9%) at the same time. This result 

repeatedly demonstrates the interrelation between SS and protein environment, and 
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suggests that the establishment of a “perfect” prediction method remains challenging 

since optimizing one aspect is only achieved at the expense of another.  

At the current stage one possible reason for the reduced prediction accuracy might 

be the conditions under which MP structures were determined. Artificial membrane-

mimicking environments used in crystallography and NMR spectroscopy perturb the 

structure from its native state to an unknown degree. Domains outside the membrane 

might be pushed into a non-native location by the artificial conditions imposed by a 

three-dimensional crystal lattice or by detergent environments, such as micelles, typically 

used for NMR spectroscopy. This leads to misclassification of residues in particular in 

the non-membrane regions of membrane proteins when training the method, ultimately 

reducing its prediction accuracy.  

One example is the cholera cytolysin heptamer (PDB: 3o44) whose cytolysin 

domain contains many aromatic residues which are expected to reside in the transition 

region. In the crystal structure, which was determined in detergent, the cytolysin domain 

is most likely placed on the micelle surface 48. However, if considered in a membrane 

bilayer, this domain incorrectly protrudes deep into the membrane. Another example is 

the recently determined crystal structure of the β2 adrenergic receptor-Gs protein 

complex (PDB: 3sn6) where a helical domain that resides in the soluble region is 

incorrectly placed in the transition region 49, 50. It is currently difficult to account for such 

structural perturbations and since a flat membrane bilayer is defined for training 

BCL::Jufo9D few examples of incorrect predictions in these regions may be the result.  

To obtain a three-state SS prediction accuracy, the accuracies from all predicted 

regions need to be added together (Supplementary Figure 6C). This is a feature of our 
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nine-state prediction and does not apply to other SS prediction methods. Therefore, panel 

C as the sum of three regions should be compared to panel D which displays the 

prediction accuracies of the soluble parts of MPs for the old JUFO (version from 2003), 

Psipred, and ProfPhD.  

For BCL::Jufo9D the accuracy for helix and strand states (panel C) are 

comparable to the old JUFO which is more accurate for helices and coil states in solution 

than in the membrane. Psipred has much higher accuracies in the membrane (up to 16% 

higher - data not shown). ProfPhD has similar accuracies in both the membrane as well as 

solution, except the accuracy for coil regions which is higher for soluble states (data not 

shown).  

 

Prediction percentages level off after five residues from the termini 

The percentages of per-residue predictions at the beginnings and ends of SS 

elements and TM spans have been investigated (Figure 6) and compared to Psipred and 

OCTOPUS. As described in the figure legend, the N- and C-termini were not distinguished. 

Generally, the prediction percentages for both SS and TM span prediction increase at the 

termini and level off after the fifth residue where further increase is only marginal. In the 

figure, an ideal prediction is denoted by the dotted line with the black dot as the inversion 

point. Psipred has about 70% prediction accuracy for the first residue and remains at 

higher accuracies for the SS prediction than BCL::Jufo9D.  

For the TM span prediction the percentages for BCL::Jufo9D were determined 

using the two-state ‘topology prediction’ discussed above. This is necessary to not distort 

the prediction percentages by comparing the three SS states from BCL::Jufo9D to the 
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two-state output of OCTOPUS. Furthermore, a distinction between shorter and longer TM 

helices is needed since OCTOPUS does not predict short TM helices, i.e. is unable to 

predict half-helices or re-entrant helices; it only predicts TM helix lengths of 15, 21, and 

31 residues. When averaging over TM helices of length 8 – 19 residues OCTOPUS has 

accuracies up to 40% lower than BCL::Jufo9D. When considering helices of length 14 – 

19 residues only, OCTOPUS’ accuracies are between 3 – 8% lower than for BCL::Jufo9D.  

Both BCL::Jufo9D and OCTOPUS do not match the 50% inversion point very well. 

This is due to the fact that for the true states only residues in the membrane core were 

considered whereas residues in the transition region were counted towards “solution”. 

This means that the membrane core by itself is too thin to represent the full membrane 

and the two-state prediction methods predict the membrane longer than just the core. This 

should not be considered as an error since the transition region is not predicted by two-

state TM span prediction methods. In contrast, if the transition region was considered as 

belonging to the membrane, the prediction percentages for both BCL::Jufo9D as well as 

OCTOPUS would be substantially lower (data not shown) since the termini of the predicted 

spans are located closer to the center of the transition region.  

 

BCL::Jufo9D correctly predicts more than one third of kinks in TM helices 

We defined a kink as one or two coil residues in TM helices longer than 11 

residues. We considered the kink as accurately identified if it was predicted within five 

residues in either direction (N- or C-terminal of the actual kink). Out of 115 kinks in the 

database, 41 (36%) were correctly predicted by BCL::Jufo9D, whereas Psipred correctly 

predicted 19 (17%). Though Psipred is extremely good at predicting exact lengths of TM 
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spans as discussed above, the prediction of kinks is lacking behind BCL::Jufo9D. It is 

possible that the second layer ANN from Psipred reduces noise and smoothes out these 

features. We omit this step but use a simple averaging procedure as a post-processing 

step which does not remove features such as kinks. OCTOPUS correctly predicted 4 kinks 

corresponding to a prediction of 3% of the total number of kinks. However, this result is 

expected since OCTOPUS is designed to predict long TM spanning helices, not kinks. 

TMkink, a method recently developed in the Bowie lab specifically designed to 

predict kinks in TM helices, predicted 59 out of 115 kinks which corresponds to an 

accuracy of 51%. A direct comparison of the results of BCL::Jufo9D with TMkink 

remains difficult for several reasons: Both methods were trained on MPs so the datasets 

are overlapping. Many of the proteins that were used for training TMkink were in our 

database, others had a high sequence similarity. To report accuracies for BCL::Jufo9D 

the proteins were in the independent dataset. For TMkink these proteins were in the 

training set which inflates its prediction accuracy. Furthermore, the definition of a kink is 

completely different in our work compared to Bowie’s work. Whereas we use a very 

simplified method of considering one or two coil residues in TM helices which is not 

necessarily an indication of an actual kink, Bowie et al. defines a kink by the bend angle 

and uses a much more sophisticated definition. Our definition also results in rather low 

prediction accuracies for all tested methods, even for TMkink. In contrast, the bend angle 

definition results in the identification of several “kinks” in a single helix which is 

frequently observed in the TMkink output. This is likely to be the observation of a bent 

helix rather than a single kink.  
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Reentrant helices are correctly predicted for three examples 

Reentrant helices were identified by considering helices that dipped into the 

membrane to a distance of 5-7 Å away from the membrane center but not entering the 

opposite leaflet of the membrane. This definition systematically excluded amphipathic 

helices that reside in the transition region. Using this definition three examples of 

reentrant helices were found in our database. The examples are MHP1, a nucleobase-

cation transport protein (PDB: 2jln), the photosynthetic reaction center of cyanobacteria 

(1jb0), and the potassium channel MthK (3ldc). The SS and TM span predictions are 

presented in Figure 7. For MHP1 the two half-helices are clearly identified as sitting in 

the membrane. For the photosynthetic reaction center the reentrant helix is partially 

identified as in the membrane core, the other half is predicted to be in the transition 

region. For MthK, the part dipping deepest into the membrane is predicted to be in the 

membrane core, the other half “sticking out” is predicted to be in the transition region. 

Based on these examples we consider the prediction of reentrant helices successful, 

however, better statistics are needed to fully support this conclusion.  

 

BCL::Jufo9D has the potential to predict protein conformational switches 

Since BCL::Jufo9D is designed to produce a high probability in one of the nine 

output states representing the most likely combination of SS and TM state it maps the 

correlation between both states and can therefore potentially identify protein 

conformational switches. We expect that regions of the protein chain that can adopt two 

different states in terms of SS or TM placement will have a predicted high probability for 

these two states out of nine states. We investigated on four examples whether 
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BCL::Jufo9D identifies such switches: (a) the 40 residue form of the amyloid β peptide 

(PDB: 1iyt) which forms either a TM helix or can exist as a two-stranded β-sheet fibril in 

solution (PDB: 2beg); (b) the pore-forming toxin perfringolysin where a soluble helix 

unwinds and inserts into the membrane as a β-sheet conformation 51-52; (c) the pore-

forming toxin α-hemolysin where a soluble β-sheet detaches from the rest of the protein 

to insert into the membrane – the β-sheet remains intact during that process 53-54; (d) 

elongation factor thermo unstable (EF-TU) which contains two switch regions switching 

from a soluble helix to soluble strand (switch I) or to soluble coil (switch II) 55-56.  

Table I details the specific switch regions with states and summarizes the 

prediction of four different prediction methods for these examples. The BCL::Jufo9D 

outputs are shown in Supplementary Figure S8. For the Aβ peptide (1iyt) BCL::Jufo9D 

unambiguously identifies the correct switch regions and states. OCTOPUS identifies a 

single TM helix which is correct for one state, whereas Psipred predicts two soluble 

strands, which represents the correct identification of the second conformational state. 

TMBetaNet incorrectly predicts two TM strands.  

For perfringolysin (1pfo) BCL::Jufo9D identifies the switch regions and states, 

although the probabilities are somewhat reduced. OCTOPUS identifies a signal peptide and 

‘outside’ topology whereas Psipred predicts a single, unambiguous state for the first 

switch region, and two helices for the second switch region representing one 

conformation. TMBetaNet predicts 20 TM spans over the whole protein the correct 

switch regions are included, representing the second conformation.  

BCL::Jufo9D also identifies the switch region and states for α-hemolysin (7ahl) 

where OCTOPUS predicts a globular protein. This is expected since OCTOPUS is not able to 
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identify TM strands. Psipred identifies three strands, even though only two are truly 

observed. TMBetaNet predicts 12 TM spans, again distributed over the whole protein but 

also including the correct strand locations. 

Even though these results seem encouraging, BCL::Jufo9D does not always 

correctly identify conformational switches. The elongation factor thermo unstable EF-TU 

(1eft) contains two switch regions which are both incorrectly identified by BCL::Jufo9D. 

OCTOPUS correctly predicts this protein to be globular and Psipred does not recognize the 

helix-strand conversion either. TMBetaNet incorrectly identifies 22 TM spans over the 

entire protein which is a soluble protein.  

In summary, specific examples show that BCL::Jufo9D is potentially able to 

predict protein conformational switches. However, there are examples where 

BCL::Jufo9D does not identify the switch region and/or switch states. This is expected 

since BCL::Jufo9D was not optimized to predict switch regions. We expect an increase in 

prediction accuracy for conformational switches once a sufficient number of 

conformational switches is represented in the PDB with both states so that the method 

can be optimized for recognizing conformational switches.  

 

Conclusions 

BCL::Jufo9D integrates the prediction of SS with the identification of TM spans. 

An Artificial Neural Network was trained on a database containing soluble proteins and 

membrane proteins. The output is a combination of the three SS states (helix, strand, coil) 

with the three environment states (membrane core, transition region, solution) into a nine-

state probability vector for each residue in the sequence. It was shown that the per-
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residue accuracy in nine states is 70.3%. When combined into a three-state prediction, 

BCL::Jufo9D achieves accuracies for SS prediction of 73.2% and TM span prediction of 

94.8%. These results are comparable to or higher than current SS and TM span prediction 

tools and BCL::Jufo9D integrates both at the same time. We demonstrated that our 

method has higher accuracies than other SS prediction methods to predict kinks in helical 

TM spans and that it has the capability to predict re-entrant TM helices. We have shown 

that a potential advancement of our method would be the prediction of conformational 

switches where preliminary results on a few examples seem encouraging.  
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Figure 1  

(A) Definition of membrane thicknesses in our MP database. For training, residues in the 

gap region of 2.5 A between membrane core/transition region and transition 

region/solution were disregarded. To report prediction accuracies the gap region was 

removed, i.e. all residues were taken into account, and the thicknesses of the regions were 

adjusted as shown. (B) Each ANN is trained on three subsets for training, one for 

monitoring the training process, and one as an independent test set. To avoid a bias in 

neither the independent test set, nor the monitoring set, both of these sets are permuted 

through all five subsets. This results in 20 ANNs that were trained. To report prediction 

accuracies, the outputs of the four ANNs in one set were summed, the prediction 

accuracies calculated, and then averages over all five sets were computed. This procedure 

boosts prediction accuracies in the three state outputs by 1-2% compared to the individual 

networks. It was tested whether post-processing the output with a second ANN further 

reduces the noise, but no significant improvements were obtained (data not shown). 

  

Figure 2 

Setup for a single ANN.  The residue at the center of the window is described by 1282 

inputs. For this residue, a normalized nine-state prediction vector is the output. In this 

example, the predicted state for this residue is a helix in the membrane core (MC). 

  

Figure 3 

Averages of percent predicted residues over all independent datasets. The rows represent 

the “true” state, the columns represent the predicted state. Desired are large percentages 

in the matrix diagonals and low percentages in the off-diagonal elements. The overall 
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nine-state accuracy is 70.3%, for SS prediction 73.2%, and for TM span identification 

94.8%. The nine-state accuracies are summed to yield three-state SS predictions and 

three-state TM span predictions shown at the bottom.  

 

Figure 4 

(A) Three-state secondary structure prediction comparing to methods trained on soluble 

proteins. (B) Performance of other two-state TM span prediction methods compared to 

BCL::Jufo9D that outperforms both of them. Since all other methods are limited to 

predicting either TM helices or TM strands, a separate comparison is required.  

 

Figure 5 

The sequences of these examples are used to predict the SS and TM state for each 

residue. These predictions are mapped onto the known structure. On the right panels the 

membrane core and transition regions on either side of the membrane are indicated by 

gray planes. H = prediction for helix, E = strand, C = coil, MC = membrane core, TR = 

transition region, SO = solution.  

 

Figure 6  

Percent of predicted residues vs. residue position of actual SS elements or TM spans. The 

residue position denotes the position from either side (N-terminal or C-terminal) of the 

SS element/TM span where position -1 is outside the SS element or TM span and 

position one is the first residue within. The dotted line denotes a perfect prediction with 

the black dot at the inversion point. The percent predictions for each position are 

averages over SS elements/TM spans between (2*residue position – 1) residues up to 19 
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residues corresponding to position 10. As an example, the TM state accuracy at position 4 

is the average percentage at that position over TM spans of length 7 to 19. For the TM 

span percentages the 8-19 denotes the length of TM spans considered: 8 to 19 residues. 

Similarly, 14-19 only considers TM spans between 14 and 19 residues. This distinction 

was necessary since OCTOPUS only predicts TM helices with the length of 15, 21, or 31 

residues.  

 

Figure 7 

Prediction of reentrant helices into the membrane. The reentrant helices are highlighted 

with the rest of the protein shown transparent.  
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Table I: 

Protein conformational switches with residues of known switch regions and predicted switches. 

PDBID/ 

Protein 

Switch region BCL::Jufo9D Octopus 

MC-H / 

else 

PsiPred 

H / E / C 

TMbetanet 

MC-E / else 

1iyt 

Abeta 40 

7-25 MC-H/SO-E 

27-40 MC-H/SO-E 
switch seen 

1 TM 

helix: 

21-41 

2 strands: 

11-20 E 

31-41 E 

2 TM strands: 

10-22 

29-41 

1pfo 

Perfringo 

lysin 

190-217 SO-H/MC-E 

288-311 SO-H/MC-E 
switch seen 

signal 

peptide/ 

outside 

3 helices: 

184-195 H 

287-298 H 

305-314 H 

20 TM strands in 

whole protein; 

182-192 

197-206 

294-301 

7ahl 

α-hemo 

lysin 

108-149 SO-E/MC-E switch seen globular 

3 strands: 

110-120 E 

123-126 E 

136-148 E 

12 TM strands in 

whole protein; 

110-119 

131-137 

139-150 

1eft 

EF-TU 

40-62 SO-H/SO-E 

80-100 SO-H/SO-C 

incorrect 

switch: 

SO-C/SO-H 

ambiguous 

globular 

1 strand, 4 helices: 

44-46 E 

47-50 H 

55-58 H 

85-93 H 

96-98 H 

22 TM strands in 

whole protein; 

89-96 

 

Bold font represents an identified switch (BCL::Jufo9D) where predicted outputs are shown in 

Supplementary Figure 8. Bold italic font indicates that one of the two conformations is identified 

(methods other than BCL::Jufo9D). Horizontal lines in the predicted cells separate different switches, if 

two are known. If at all possible, BCL::Jufo9D is the only method that is able to identify switches since it 

has the ability to output probabilities for secondary structure coupled with membrane environment. For 

helix-strand switches, Psipred may theoretically be able to detect them if the probabilities of both states 

are similar. However, in these examples Psipred unambiguously identified a single state with prediction 

probabilities above 0.75.  
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Figure 1  
(A) Definition of membrane thicknesses in our MP database. For training, residues in the gap region of 2.5 A 

between membrane core/transition region and transition region/solution were disregarded. To report 
prediction accuracies the gap region was removed, i.e. all residues were taken into account, and the 

thicknesses of the regions were adjusted as shown. (B) Each ANN is trained on three subsets for training, 
one for monitoring the training process, and one as an independent test set. To avoid a bias in neither the 
independent test set, nor the monitoring set, both of these sets are permuted through all five subsets. This 
results in 20 ANNs that were trained. To report prediction accuracies, the outputs of the four ANNs in one 

set were summed, the prediction accuracies calculated, and then averages over all five sets were computed. 
This procedure boosts prediction accuracies in the three state outputs by 1-2% compared to the individual 
networks. It was tested whether post-processing the output with a second ANN further reduces the noise, 

but no significant improvements were obtained (data not shown).  
 

114x51mm (300 x 300 DPI)  
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Figure 2  
Setup for a single ANN.  The residue at the center of the window is described by 1282 inputs. For this 

residue, a normalized nine-state prediction vector is the output. In this example, the predicted state for this 

residue is a helix in the membrane core (MC).  
 

190x142mm (300 x 300 DPI)  
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Figure 3  
Averages of percent predicted residues over all independent datasets. The rows represent the “true” state, 
the columns represent the predicted state. Desired are large percentages in the matrix diagonals and low 

percentages in the off-diagonal elements. The overall nine-state accuracy is 70.3%, for SS prediction 
73.2%, and for TM span identification 94.8%. The nine-state accuracies are summed to yield three-state SS 

predictions and three-state TM span predictions shown at the bottom.  
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Figure 4  
(A) Three-state secondary structure prediction comparing to methods trained on soluble proteins. (B) 
Performance of other two-state TM span prediction methods compared to BCL::Jufo9D that outperforms 

both of them. Since all other methods are limited to predicting either TM helices or TM strands, a separate 
comparison is required.  
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Figure 5  
The sequences of these examples are used to predict the SS and TM state for each residue. These 

predictions are mapped onto the known structure. On the right panels the membrane core and transition 
regions on either side of the membrane are indicated by gray planes. H = prediction for helix, E = strand, C 

= coil, MC = membrane core, TR = transition region, SO = solution.  
161x103mm (300 x 300 DPI)  
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Figure 6  
Percent of predicted residues vs. residue position of actual SS elements or TM spans. The residue position 

denotes the position from either side (N-terminal or C-terminal) of the SS element/TM span where position -

1 is outside the SS element or TM span and position one is the first residue within. The dotted line denotes a 
perfect prediction with the black dot at the inversion point. The percent predictions for each position are 

averages over SS elements/TM spans between (2*residue position – 1) residues up to 19 residues 
corresponding to position 10. As an example, the TM state accuracy at position 4 is the average percentage 
at that position over TM spans of length 7 to 19. For the TM span percentages the 8-19 denotes the length 
of TM spans considered: 8 to 19 residues. Similarly, 14-19 only considers TM spans between 14 and 19 

residues. This distinction was necessary since OCTOPUS only predicts TM helices with the length of 15, 21, 
or 31 residues.  
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Figure 7  
Prediction of reentrant helices into the membrane. The reentrant helices are highlighted with the rest of the 

protein shown transparent.  
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