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Abstract—Several machine learning techniques were evaluated 
for the prediction of logP. The algorithms used include 
artificial neural networks (ANN), support vector machines 
(SVM) with the extension for regression, and kappa nearest 
neighbor (k-NN). Molecules were described using optimized 
feature sets derived from a series of scalar, two- and three-
dimensional descriptors including 2-D and 3-D autocorrelation, 
and radial distribution function. Feature optimization was 
performed as a sequential forward feature selection. The data 
set contained over 25,000 molecules with experimentally 
determined logP values collected from the Reaxys and MDDR 
databases, as well as data mining through SciFinder. LogP, the 
logarithm of the equilibrium octanol-water partition coefficient 
for a given substance is a metric of the hydrophobicity. This 
property is an important metric for drug absorption, 
distribution, metabolism, and excretion (ADME). In this work, 
models were built by systematically optimizing feature sets and 
algorithmic parameters that predict logP with a root mean 
square deviation (rmsd) of 0.86 for compounds in an 
independent test set. This result presents a substantial 
improvement over XlogP, an incremental system that achieves 
a rmsd of 1.41 over the same dataset. The final models were 5-
fold cross-validated. These fully in silico models can be useful 
in guiding early stages of drug discovery, such as virtual 
library screening and analogue prioritization prior to synthesis 
and biological testing. These models are freely available for 
academic use. 

I. INTRODUCTION 
The process of modern drug design involves eliminating 

compounds with undesirable properties from the available 
chemical space while optimizing efficacy. The ability to 
predict properties which influence absorption, distribution, 
metabolism, and excretion of compounds prior to synthesis, 
such as the octanol-water partition coefficient (logP), could 
drastically reduce both the cost and time involved in drug 
discovery. Computational models can quickly assess the 
properties of large sets of compounds in silico. LogP, a 
measure of hydrophobicity or hydrophilicity of a molecule 
indicates whether a compound reaches a target protein as it 
influences the ability to cross the blood/brain barrier [1, 2]. It 
plays further a key role in the binding of a ligand to a target 
in aqueous solution [3].  

Formally, logP is the logarithm of the equilibrium ratio of 
concentrations of a compound in the organic and aqueous 
phases of an octanol-water system [4]. LogP is a widely 
used, well-defined property with experimental values 
available for large numbers of compounds, which makes it 
ideal for prediction by machine learning methods. 

A well-established method for prediction of logP is 
XlogP [5], which assigns each atom in the molecule an 
empirically-determined contribution depending on its type 
and then sums these contributions for the logP estimation of 
the entire molecule. This incremental method resembles a 
multiple linear regression model. We test the hypothesis that 
logP has a nonlinear dependence on composition, charge 
distribution, and shape of the molecule. Therefore, we expect 
non-linear models to improve prediction accuracy.  

Machine learning techniques have been successful in 
approximating nonlinear separable data in Quantitative 
Structure Property Relationship studies [6-9]. Here, we 
present several predictive models for logP using machine 
learning techniques including artificial neural networks 
(ANN) [10], support vector machines with the extension for 
regression estimation (SVR) [11], and kappa nearest 
neighbors (k-NN) [12].  

II. MACHINE LEARNING TECHNIQUES 

A. Artificial Neural Networks 
The utility of ANNs for classification is well-known in 

chemistry and biology [13-16]. ANNs model the human 
brain and, thus, consist of layers of neurons linked by 
weighted connections wji. The input data xi are summed 
according to their weights, activation function applied, and 
output used as the input to the j-th neuron of the next layer. 
For a three-layer feed forward ANN, such a training iteration 
would proceed as: �� � ����	�
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where ���� is the activation function, d is the number of 
features, nH is the number of hidden neurons, and c is the 
number of outputs. For supervised training, the difference 
between the calculated output zk, and the target value tk, 
determines the errors for back-propagation: 
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The ANN training iterations produce weigh
minimize the rmsd between the predicted and t
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which in this case is predicted and experiment
respectively.  

In this study, the ANNs have up to 1142 in
neurons, and one output (logP). The activati
the neurons is the sigmoid function: 
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B. Support Vector Machines 
The second machine learning approach a

study is SVM learning with extension f
estimation [17, 18]. Linear functions defi
dimensional feature space [19], risk minimiza
to Vapnik’s : - intensive loss function, and 
minimization [20] which minimizes the 
consisting of the empirical error and the regula
the core principles integrated in SVM regressi

The training data is defined by ��� ; < =>� with ? � �@A @ B where B is the total numb
input data pairs consisting of molecular descr
experimental logP value. The following func
linear plane in a high-dimensional spac
estimation:  
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Fig 1: Schematic view of an ANN: Up to 1,142 des
into the input layer. The weighted sum of the
modified by the activation function and serves as i
layer. The output describes the predicted log
molecule. 
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where D����describes a nonlinear
a distance measure in an input s
describes a normal vector perpe
hyperplane whereas F is a bias p
are optimized by estimating the m
loss function as a measure of the 
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The error is zero if the differen
value � and the predicted value �
threshold�:. Thus, Vapnik’s in
defines an�: - tube (Fig 2). 
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where the slack variables R��an

measurements above and below
Both slack variables are positive 
can be controlled by penalty p
numerical solution the optimiza
into the given dual problem by: 
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where W� and W�C�define Lagrange multipli
with R��and���R�C, \]^�shows the number of s_` defining the SVM and X���@ ��� denot
function. In this study the Radial Basis Functio
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was used to train the Support Vector M
influence of the approximation error and the P�P�norm is balanced by the penalty con
optimized along with kernel parameter � by
search approach on a monitoring dataset.  

C. Kappa Nearest Neighbors 
The third machine learning approach u

research is the k-NN [12, 21-24]. k-NNs are 
unsupervised learning algorithm. This me
distance function to calculate pair-wise dista
query points and reference points, where qu
those to be classified (Fig 3). The predicted va
point is then that of the weighted average of its
reference points. In this research, the distance
the Euclidean distance between feature vectors
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The reference activities were weighted as e
value of kappa was 5. 

 

Fig 3: Schematic view of k-NN  cluster centers w
determined nearest neighbor environments 

III. TRAINING DATA 
The octanol-water partition coefficient,
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substance. Specifically, it is the ratio of conc
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The remaining molecules in 
numerically encoded using a 
invariant descriptors which serve 
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IV. IMPLEMENTAT

All machine learning alg
calculations used for this study w
house C++ class library, the BioC
third-party 3D conformation gen
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descriptor calculation.  

A. Dataset Generation 
The data set used in this study

mining and filtering which resu
22,582 molecules. During the trai
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the training data set.  

B. Quality Measure 
The machine learning me
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weighted variations of each of the non-scalar d
Table I).  

TABLE I 
 THE ORIGINAL MOLECULAR DESCRIPTORS BY CA

 

Sequential forward feature selection [29]
feature optimization for each machine learn
individually. Additionally, each feature set wa
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V. RESULTS 
ANNs were trained using 7500 iteration
propagation evaluating the rmsd every 100 st
feature optimization process. For the trainin
model with the optimized feature set, 100,000 
performed evaluating the rmsd every 500 ste
matrices were randomly initialized with value
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runs on graphics processing units (GPUs) u
implemented within the BCL. The training
minutes per final network on a C2050 NVidia 
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independent data set was achieved. 
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TABLE III 

CONSENSUS PREDICTORS 
Method RMSD 

ANN/SVM 1.04 
ANN/k-NN 1.06 

SVM/k-NN 0.99 
ANN/SVM/k-NN 0.86 

 
 
 

VI. CONCLUSIONS 

Here, we present the utility of a serie
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