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Abstract 

Predicting HIV-1 protease/inhibitor binding affinity as the difference between the free 

energy of the inhibitor bound and unbound state remains difficult as the unbound state exists as 

an ensemble of conformations with various degrees of flap opening. We improve computational 

prediction of protease/inhibitor affinity by invoking the hypothesis that the free energy of the 

unbound state while difficult to predict is less sensitive to mutation. Thereby the HIV-1 

protease/inhibitor binding affinity can be approximated with the free energy of the bound state 

alone. Bound state free energy can be predicted from comparative models of HIV-1 protease 

mutant/inhibitor complexes. Absolute binding energies are predicted with R=0.71 and SE=5.91 

kJ/mol. Changes in binding free energy upon mutation can be predicted with R=0.85 and 

SE=4.49 kJ/mol. Resistance mutations that lower inhibitor binding affinity can thereby be 

recognized early in HIV-1 protease inhibitor development. 

 

Introduction 

The binding affinity of a drug to its protein target is defined by the free energy difference 

between the bound and unbound state. Mutation of the protein or chemical modification of the 

ligand can alter this energy difference directly – i.e. by adding or subtracting interactions 

between the two partners – or indirectly – i.e. by stabilizing or destabilizing protein or small 

molecule in either bound or unbound conformation (1). For the unbound state often ensembles of 

protein and small molecule need to be considered (2) while the bound state is often considerably 

more rigid. HIV-1 protease (PR) interaction with its inhibitors is a model case for this scenario 

while examples for the opposite scenario – rigid protein increases flexibility upon binding – are 

also known (3, 4). 
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Current computational methods are capable of predicting direct effects reasonably well 

through an analysis of all interactions between protein and ligand. However, the same methods 

often fail to predict indirect effects. For instance it remains difficult to predict how mutations 

outside the binding pocket are propagated throughout the protein and to the binding site (5). 

These indirect effects are likely to have greater destabilizing influence on a rigid-bound state 

then on a flexible unbound state. 

We hypothesize that in the scenario of a rigid bound and flexible unbound state, 

prediction accuracy of indirect effects on binding affinity can be improved through a simple 

approximation. Figure 1 summarizes the effects of mutations on binding free energy in two 

scenarios: The top row represents the scenario wherein the unbound state exists as one stable low 

energy conformation. The bottom row represents the rugged energy landscape (jagged red line) 

of a flexible unbound state with multiple energetic minima. In a thought experiment we compare 

a binding site mutation that is assumed to interfere only with direct interactions between ligand 

and protein with a non-binding site mutation that is assumed to only affect stability of the 

protein, but does not change the protein-ligand interaction. In reality combinations of these two 

scenarios exist. 

In the first scenario – a rigid unbound state engages the ligand and remains rigid, a 

mutation within the binding site that disrupts protein-small molecule interactions will lower the 

binding affinity (Figure 1B). A mutation outside the binding pocket would have an equal effect 

on the free energy of bound and unbound conformation as they are identical. As a results the 

ligand affinity is unaltered (Figure 1C). In the case of a flexible unbound state, mutations inside 

the binding pocket that interrupt protein-ligand interactions would again be expected to lower 

binding affinity (Figure 1E). However, mutations outside the binding pocket are expected to 
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have a greater destabilizing effect on the single rigid bound conformation than on the unbound 

state which consists out of an ensemble of structures. While mutations which affect low-energy 

structures that contribute to the unbound state will certainly affect the overall free energy of the 

unbound state. However, we hypothesize that this effect is small as mutations will affect only a 

fraction of the low-energy conformations the unbound state can assume. If the ensemble is large 

enough, influence on free energy will be small. This hypothesis suggests that the free energy of 

the unbound state can be approximated with a constant in this scenario. The result of this 

difference is a net change in binding energy due to mutation outside the binding pocket (Figure 

1F). It is obvious that this approximation is only valid for proteins that are very flexible in the 

unbound state and convert to a rigid bound conformation. HIV-1 PR is an example. 

HIV-1 PR is a homodimer with a flexible binding site (Figure 2). Over 200 high 

resolution crystal structures of HIV-1 PR mutants in complex with HIV-1 PR inhibitors (PIs) are 

deposited in the protein databank (PDB, resolution better than 2.0 Å) (6). These mutants exhibit 

limited structural diversity verifying the well-defined rigid bound conformation of the protein 

(7). However, the two flap regions exhibit up to 7Å of movement in the unbound state (Figure 2) 

(8, 9). The unbound state is therefore best described as a large ensemble of structures (10). We 

hypothesize that it is for this reason that PR/PI docking studies have had difficulty predicting 

binding free energy (ΔΔGs). The free energy of the unbound state (ΔGu) is not accurately 

reflected by a single structure or a tight ensemble.  

Cheng et al. assessed 16 scoring functions utilized in protein/ligand docking (11) for 

prediction of PR/PI ΔΔGs. Correlation coefficients ranged from R=0.17 to R=0.34. 

RosettaLigand predicted ΔΔGs with a correlation of R=0.41 (12). AutoDock predictions 
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correlated with R=0.38 on a set of 25 HIV-1 PR/PI structures from the PDB, with binding data 

available (13).  

At the same time HIV PI therapies are greatly hampered by drug resistance mutations. 

Only recently, conformational ensembles were used to assist in designing PIs with broad enough 

specificity to avoid escape mutations (14). The authors of this study evaluated chemical 

modifications to known PIs using electrostatic charge optimization. They chose not to include 

induced-fit effects or ligand flexibility. 

In this study we use RosettaLigand to predict the effect of PR mutations inside and 

outside the binding pocket. Predicted ΔΔGs are compared with experimentally determined 

ΔΔGs. These include 34 HIV-1 PR mutants and eleven PIs. We demonstrate that by assuming 

the unbound state constant with respect to mutation we can achieve a correlation coefficient of 

R=0.71 over a wide array of PR/PI ΔΔG data. Improved prediction of PR/PI binding affinity may 

help clinicians select the optimal PI for treatment and help design PIs with broad specificity that 

avoid resistance mutations. 

Materials and Methods 

176 experimental PR/PI binding energies have been collected: PR/PI binding energies 

(ΔΔGs) were obtained from the Binding Database (www.bindingdb.org) (15). These 176 binding 

energies include experimental conditions and HIV-1 PR mutant sequence information, but lack 

structural information. They include a total of eleven distinct PIs and 34 distinct PR sequences. 

106 of these datapoints resulted from isothermal titration calorimetry (ITC) measurements. The 

remaining 70 datapoints are enzyme inhibition constants (Kis). 
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These Kis were converted to binding energies using the equation ΔG = RT ln Ki, where R 

is the gas constant, 8.314 J K-1mol-1, and T is temperature in Kelvin. Ki values before and after 

conversion are summarized in Table S1. Since temperatures were rarely reported, we assumed 

25°C (298K) for the conversion. 

171 high resolution template PR structures have been collected: 171 crystal structures of 

HIV-1 PR bound to various ligands were obtained from the PDB. These structures each have 

resolution better than 2.0 Å. PDB codes, resolution, bound ligands, and citations for all 171 of 

these structures are listed in Table S2. A multiple sequence alignment of these 171 structures is 

given as Figure S1. 

Threading of sequence onto structure for comparative modeling. 34 distinct sequences 

were associated with the 176 experimental PR/PI binding energy data points. The 3-letter residue 

codes found in each of the 171 backbones were replaced with 3-letter residue codes for each of 

the 34 sequences, thus generating 5,814 models. Missing side-chain coordinates were 

constructed using Rosetta: 

High resolution refinement of comparative models. Rosetta’s high-resolution refinement 

protocol searches for low-energy structures in the conformational vicinity of the starting model 

(16, 17). Backbone torsion angles are perturbed. Next side-chain rotamers are optimized (18). 

Finally backbone and side-chain torsion angles are adjusted using a gradient-based energy 

minimization. This process is repeated multiple times, using a Monte Carlo accept/reject 

criterion (19). 

Low resolution initial placement of ligand. After a structural alignment was used to 

superimpose all comparative models, ligands were placed in the binding pockets of these models 

according to their positions in homologous crystal structures. Next 1,000 placements of the 
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ligand were sampled to find a starting pose that has acceptable attractive and repulsive scores. A 

soft repulsive energy term was used during initial ligand placement (12). 

Docking of PIs into comparative models. Six cycles of side-chain rotamer sampling were 

coupled with small (0.1 Å, 0.05 radians) ligand movements. Each cycle included minimization of 

ligand torsion angles with harmonic constraints (where 0.05 radians of movement is equal to one 

standard deviation). Each ligand torsion angle has a constraint score which is calculated as: f(x)= 

(x-x0)/(standard deviation). Amino acid side chains were repacked using a backbone-dependent 

rotamer library (20). During a final minimization, backbone torsion angles were optimized with 

harmonic constraints on the Cα atom positions (0.2 Å standard deviation). Each C-alpha atom has 

a constraint score which is calculated as: f(x)= (x-x0)/(standard deviation). 

The RosettaLigand standard scoring function with hard repulsive forces was used during 

the final minimization step. Score terms include the 6-12 Lennard-Jones potential (21), the 

Lazaridis-Karplus solvation model (22), a side-chain rotamer score, based on the Dunbrack 

rotamer set (20), a pair potential based on the probability of seeing two amino acids close 

together in space (23), and an explicit orientation hydrogen bonding model (24).  

All computation was performed on the Vanderbilt University ACCRE cluster 

(www.accre.vanderbilt.edu). Rosetta revision 32372 was used for all calculations. Command line 

arguments and input options are given in the Supporting Information. 

Predicting ΔΔGs using the standard approach: The standard approach calculates ΔΔGs 

as the difference between the free energy of a docked model (ΔGb) and the free energy of the 

unbound model with equivalent sequence (ΔGu) after energy minimization. This setup 

corresponds to Figure 1A-C wherein the unbound state and bound state free energies are equally 

susceptible to disruption by mutation (Eq. I). For each of the 34 mutant PR sequences the lowest 
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energy unbound comparative model was chosen to represent ΔGu. The lowest energy docked 

model for a given PR/PI pairing was chosen to represent ΔGb. The difference between these 

values was taken as a prediction of ΔΔG. 

Predicting ΔΔGs using the constant-unbound approach: The constant-unbound approach 

corresponds to Figure 1D-F and calculates ΔΔG by assuming ΔGu to be unknown but invariant 

with mutation (Eq. II). The lowest energy docked model for a given PR/PI pairing was chosen to 

represent ΔGb. 

 ΔΔG = ΔGb – ΔGu  [I] 

  ≈ ΔGb - const  [II]   

Predicting ΔΔΔG focuses on the influence of mutation on binding affinity. To determine 

how well RosettaLigand can predict changes in binding free energy (ΔΔΔG, see Figure 3) upon 

protein mutation i→j, pairs of predicted or experimental ΔΔGs sharing the same PI but different 

PR sequence were subtracted to obtain ΔΔΔGs (Eqs. III, IV). ΔΔΔGs predicted by Rosetta were 

compared with experimental ΔΔΔGs to obtain ΔΔΔG correlation. This strategy removes 

influences from the changes of the ligand thereby focusing on predicting the influence of 

mutations.   

ΔΔΔG = ΔΔGi - ΔΔGj 

  = (ΔGi,b – ΔGi,u) – (ΔGj,b – ΔGj,u)  [III] 

  ≈ ΔGi,b – ΔGj,b  [IV] 

 

Optimization of RosettaLigand score term weights. The docking calculations performed 

so far were based on the original RosettaLigand scoring function ( 2006)(12) where the scoring 

term weights had been optimized across a set of diverse protein/ligand complexes. In the past it 
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has been demonstrated that optimized scoring functions are needed to accurately predict free 

energies with Rosetta(25). Therefore an optimized weight set for PR/PI complexes was 

developed. Score term weights were optimized separately for standard binding affinity 

predictions and constant-unbound predictions. Score term weights were also optimized 

separately for ΔΔG predictions and ΔΔΔG predictions. Hence, a total of four optimized weight 

sets were produced (Table 1).  First, docking results were filtered by taking the top 5% of models 

by total energy and the top model by interface energy. A leave-one-out cross-validation analysis 

was used to determine the weights that produce the strongest correlation with experimental data. 

A multiple linear regression was used to determine weights that optimize the correlation between 

experimental and predicted binding affinity. The weight set was then applied to predict binding 

affinity of the data-point left out. In a round robin scheme, each data point was left out. The 

correlation coefficients and standard deviations relate to the predictions made for these 

independent data points. The final optimal weight sets reported are average and standard over all 

cross-validation experiments (Table 1). Weight optimization was implemented in Mathematica 

(26).  

Partitioning data by location of PR mutations. We partitioned the 34 sequences shown in 

Figure 4 into four distinct groups, based on the presence and location of “exceptional” mutations. 

Exceptional mutations are defined as amino acids that are uncommon or rare in a multiple 

sequence alignment – i.e. if 17 out of 34 sequences have an A in a position and the other 17 have 

a V, neither is an exceptional mutation. A sequence that has an S in the same position would be 

counted as an exceptional mutation A/V→S. Exceptional mutations were selected using 

ClustalW alignment software (gray boxed residues in Figure 4). The first group includes 

sequences with no exceptional mutations (sequences 4, 5, 22, and 26).  The second group has 



A
cc

ep
te

d
 A

rt
ic

le
 

© 2012 John Wiley & Sons A/S 

only exception mutations within or near the binding site (red residues in Figure 2) and includes 

sequences 1, 8, 16, 19, 21, 24, 29, 30, and 33.  The third group has only exceptional mutations 

outside the binding pocket and includes sequences 2, 3, 9, 11, 12, 23, 27, and 28.  The fourth 

includes sequences that have exceptional mutations within and outside the binding site 

(sequences 6, 7, 10, 13, 14, 15, 17, 18, 20, 25, 31, 32, and 34). 

We also partitioned sequences based on whether exceptional mutations fell within or 

outside of the flexible flap region.  We define this region as comprising residues 37-61 (27).  By 

this definition, 24% of PR lies in the flap region. Sequences with only exceptional mutation in 

the flap region include sequences 19 and 24. Sequences with only exceptional non-flap mutations 

include 1-3, 8, 9, 11-18, 20, 21, 23, 25, 27-33. Sequences with exceptional mutations in and out 

of the flap region include 6, 7, 10, 20 and 34. 

Results/Discussion 

Assessment of uncertainty in experimental binding affinity data: As seen in table S1 for a 

few PR/PI pairs binding affinities have been determined multiple times. In these cases we use 

average values which reduces the total number of experimental ITC values from 106 to 99 while 

the total number of Ki datapoints is reduced from 70 to 62. We further use replicate data to 

estimate the accuracy of experimental values. The standard error for ITC replicates is 4.69 

kJ/mol. The standard error for converted Ki replicates is 7.21 kJ/mol. We will use these numbers 

as estimates for the experimental uncertainty. As noted in the previous section, we assume a 

temperature of 25°C in order to convert Kis to ΔΔGs. This assumption introduces additional 

uncertainty for ΔΔGs calculated from Kis. nevertheless, the standard deviation between ΔΔG 

values converted from Ki data and matching ITC values is 1.07 kJ/mol, confirming the validity 

of the conversion.  



A
cc

ep
te

d
 A

rt
ic

le
 

© 2012 John Wiley & Sons A/S 

Comparative models have been built for 176 PR/PI complexes with known binding 

energies: The 34 distinct mutant sequences found in our experimental data contained between 3 

and 14 mutations per monomer to match the wild-type HIV-1 PR sequence (28). These 34 

mutant sequences were aligned and mutations at residues known to confer drug resistance are 

highlighted in red boxes (Figure 4). Each of the 34 sequences was threaded onto the backbones 

of all 171 template structures yielding 5,814 comparative models. These 5,814 ligand free 

structures were relaxed 10 times each using the Rosetta energy function (see methods). These 

58,140 relaxed structures served as starting structures for RosettaLigand docking simulations. 

RosettaLigand docking protocol allows local flexibility: For each 176 experimentally 

determined PR/PI binding affinities, the 171 times 10 comparative models with matching 

sequence were docked with the respective ligand. A total of 300,960 unique input structures were 

used for ligand docking. Local induced-fit effects were considered through full PR and PI 

flexibility in the binding site: The RosettaLigand docking predictions allow ligand flexibility by 

minimizing ligand torsion angles. Backbone torsion angles near the PR/PI interface were also 

minimized. 

For each input, the docking protocol was repeated 20 times. For each set of predictions 

for a given PR/PI datapoint, docking results were filtered by taking the top 5% of models by total 

energy and the top model by interface energy.. Figure S2 compares top scoring Rosetta models 

with experimental PR/PI complex structures from the PDB that share the same PI to confirm 

accuracy of the modeling procedure. 

Usage of experimental data for weight optimization. RosettaLigand uses a scoring 

function that has been optimized to give optimal docking results for a wide variety of ligands 

(12). For accurate prediction of free energies the weights of the scoring function need to be 
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adjusted (25).  For the purposes of optimizing the RosettaLigand scoring function weights and 

then testing the predictive power, we split our experimental datapoints into two groups. The 99 

datapoints acquired by ITC were used to optimize weights because of their higher accuracy. 

Score term weights were optimized using leave-one-out cross-validation using 98 datapoints to 

fit the weights and predicting the 99th (see Table 1). The 62 Ki values converted to ΔΔGs were 

used as a second independent test of the scoring function. 

Analysis of optimized scores. The van der Waals attractive and solvation energies 

contribute most to an accurate prediction of free energy. Van der Waals attractive scores assess 

the shape complementarity of ligand and protein. The solvation score penalizes the burial of 

polar atoms not engaged in hydrogen bonds. Score terms that capture protein/ligand hydrogen 

bonding effects were also given a substantial weight.  Hydrogen bonds can contribute 

substantially to binding affinity. Interestingly we find a significant negative weight for the amino 

acid pair potential. We attribute this negative weight to the fact that amino acid electrostatic 

interactions are disrupted in the PR binding site upon PI binding. Removal of the amino acid pair 

potential from the scoring function does however not result in significantly reduced prediction 

accuracy (data not shown). 

Predicting ΔΔGs using the standard approach: The standard approach calculates ΔΔGs 

as the difference between the free energy of a docked model (ΔGb) and the free energy of the 

unbound model with equivalent sequence (ΔGu) (see methods). Score terms were reweighted to 

optimize predicted ΔΔG correlation with experimental data (weights are shown in Table 1, 

columns labeled “Standard Approach”). After reweighting, the predicted and experimental 

ΔΔGs correlate with R=0.40 (Figure 5A), while ΔΔΔGs correlate with R=0.47 (Figure 5C).  
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Predicting ΔΔGs using the constant-unbound approach: The constant-unbound approach 

predicts ΔΔG as a function of ΔGb alone. Assuming constant free energy for unbound PR the 

ΔΔG and ΔΔΔG correlations improve to R=0.71 and R=0.85 (Figure 5B, D) after score term 

reweighting (Table 1, columns labeled “Constant Unbound”). The standard error of prediction is 

with 5.91 kJ/mol and 4.49 kJ/mol, respectively, in range of the experimental uncertainty (4.69 

kJ/mol, Table 2).  ΔΔΔG correlations reported above are calculated by subtracting ΔΔGs sharing 

the same PI but different PR sequence.  ΔΔΔG correlations calculated by subtracting ΔΔGs 

sharing the same PR sequence but different PIs yield a correlation of R=0.61±0.04 with a 

standard error of 7.28 kJ/mol.   

Optimized score term weights predict binding affinity in independent data set. Optimized 

weight sets shown in Table 1 were generated from ITC data only.  In order to show that high 

correlation statistics were not an artifact of leave-one-out weight optimization, optimized weights 

were applied to ΔΔG predictions for experimental Ki data. RosettaLigand predictions correlate 

well with the 62 ΔΔGs in this independent dataset (R=0.70, see Table 2). The standard error in 

our predictions is 7.22 kJ/mol which correlates with the previously determined experimental 

uncertainty for this dataset (7.21 kJ/mol). 

Analysis of data partitioned by location of PR mutations. We partitioned the experimental 

data according to whether mutations were found in the binding site of HIV-1 PR or elsewhere. 

Averaging replicates reduces the total number of experimental ΔΔG values from 176 to 149. 

These data points were assigned to one of the four groups. Group one contained no exceptional 

mutations and included 15 datapoints. Group 2 included 17 datapoints with only mutations in the 

binding site. Group 3 includes 44 datapoints with only mutations outside the binding site. Group 

4 includes 73 datapoints with mutations inside and outside the binding site. Corresponding 
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Rosetta predictions were reweighted using the previously optimized weights (weights from Table 

1, “constant-unbound”) and predicted ΔΔG within each group were compared with experimental 

values. 

Standard errors between Rosetta predicted ΔΔG and experimental data are shown in 

Table 2. Note that the small and variable sample size makes correlation coefficients unsuitable 

for comparison. Generally, ΔΔΔG predictions outperform ΔΔG predictions. Further, predictions 

are most accurate for sequences with no mutations or only non-binding site mutations. Accuracy 

decreases as binding site mutations occur. While the latter effect exemplifies the larger influence 

of binding site mutations for affinity, the former data point confirms our hypothesis that 

assuming PR ΔGu to be invariant with respect to mutation allows for accurate prediction of 

effects of non-binding site mutations on PR/PI affinity. 

We also partitioned data based on whether mutations were found in the flexible flap 

region (residues 37-61)(29).  While our flap region definition comprised 24% of the protein, only 

2 of the experimental data points contained only flap region mutations, 35 data points had 

mutations in flap and non-flap regions, and 97 data points contained only non-flap region 

mutations. It appears that predictions are more accurate for mutants that contain both, flap and 

non-flap mutations (Table S3). This finding supports our hypothesis that assuming PR ΔGu to be 

invariant with respect to mutation allows for accurate prediction of effects of non-binding site 

mutations on PR/PI affinity. The lack of only-flap region mutants complicates interpretation of 

this analysis. 

Conclusion  

Both, ΔΔG and ΔΔΔG predictions improve for PR/PI complexes using the constant-

unbound approach (to R=0.71 and R=0.85 respectively, after score term reweighting). This is 
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expected since unbound HIV-1 PR exhibits a high degree of flexibility (10) and stabilizes upon 

ligand binding. Therefore the free energy of the unbound state is less sensitive to individual 

mutations. This result is significant because it demonstrates a simple way to improve binding 

free energy predictions for proteins with a flexible unbound state. By assuming differences in the 

unbound state of closely related structures are negligible, binding free energy prediction is 

possible considering the bound state of the protein only. This finding becomes even more 

important if one considers that a crystal structure of the unbound protein is often not available in 

such a scenario. 

Clearly if it was possible to accurately predict the free energy of the unbound state, one 

could further improve binding affinity predictions. However, currently limited structural 

information is available to describe the conformational ensemble that represents unbound state of 

PR mutants.  

As expected ΔΔΔG predictions outperform ΔΔG predictions. These relative binding 

energies focus on effects of mutations on the same ligand thereby removing the need to 

accurately predict differences in ΔΔG among PIs. Because Rosetta scoring terms have been 

parameterized for optimizing amino acid side chain placement, Rosetta excels at ΔΔΔG 

predictions. 

Note that the standard approach that uses a single bound and unbound state resembles 

closely a lock-and-key paradigm with local induced fit in the biding site. The constant unbound 

approach resembles a conformational selection paradigm coupled with local induced fit in the 

biding site. 
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Future Directions 

During docking we allowed backbone flexibility within the binding site. A future study 

may need to incorporate global backbone flexibility during docking, to allow mutations outside 

the binding site to effect the conformation of the binding site. The Rosetta database only includes 

de-protonated aspartic acid. In a study by Wittayanarakul et al. the protonation state of the 

catalytic aspartate residues at position 25 was important for more accurate binding free energy 

calculates (30). 

Further, for several PIs, a water molecule mediates interaction with flap residues Ile-50 

and Ile-50’, stabilizing PR in the closed conformation (31, 32). This water molecule is not 

modeled in the present study. However, given that both interactions are present in all PR/PI 

complexes cancellation of errors allows an accurate prediction of PR/PI affinity already with the 

setup presented here. A future direction would be to add protonated aspartate to the Rosetta 

residue type library and simultaneously optimize the positing of the PI and the bridging water 

molecule. 
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Supporting Information 

A supplemental document is available online. It contains experimental ΔΔG and Ki 

values used in this study; a description of each of the 171 template structures used for 

comparative modeling in this study correlations for partitioned by presence and location of 

exceptional mutations; a ClustalW multiple sequence alignment for the 171 template structures 

used in this study; images of Rosetta predictions superimposed on PDB structures; and a 

description of the options we used with Rosetta software. 
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Tables 

Table 1. Score term weights which optimize correlation between Rosetta predictions 

of ΔΔG and 106 values determined using ITC.  Standard deviations are shown. 

  ΔΔG ΔΔΔG 

 Score Term 
 

Rosetta 

Default 

Weights 

 Standard 

approach 

Constant 

Unbound 

Standard 

approach 

Constant 

Unbound 

Bias  N/A  -36.0±0.38 -1.19±12.86 -3.67±0.01 -0.26±0.01 

attractive  0.8 0.82±0.02 0.76±0.01 0.20±0.00 0.72±0.00 

repulsive  0.4 -0.01±0.02 0.08±0.01 0.11±0.00 0.003±0.00 

solvation  0.6 0.78±0.03 1.39±0.03 0.10±0.00 1.32±0.00 

dunbrack 
 0.4 0.33±0.01 -0.25±0.01 0.28±0.00 -0.24±0.00 

pair  0.8 0.92±0.06 -2.76±0.06 0.52±0.01 -2.47±0.01 

hbond_lr_bb  2.0 0.98±0.04 -0.28±0.05 0.07±0.00 0.18±0.01 

hbond_bb_sc  2.0 0.10±0.03 0.32±0.03 -0.13±0.00 0.36±0.00 

hbond_sc  2.0 -0.40±0.04 0.19±0.04 1.11±0.01 0.27±0.00 

“Attractive” and “repulsive” are derived from the Lennard-Jones potential(21), “solvation” 

comes from a Lazaridis-Karplus model(22), “dunbrack” is a side-chain rotamer score based on 

the Dunbrack rotamer set(20), “pair” is a potential based on the probability of seeing two 

amino acids close together in space(23), and “hbond” terms are based on an explicit 

orientation hydrogen bonding model(24). sc: side-chain, bb: backbone, lr: long-range. 
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Table 2. Pearson’s correlation (RP) Spearman’s rank correlation (RS)  and standard errors (kJ/mol, kcal/mol) between RosettaLigand predictions and 
experimental data.   

  ΔΔG ΔΔΔG 

  n RP RS kJ/mol kcal/mol n RP RS kJ/mol kcal/mol

Standard approach 99 0.38±0.09 0.51±0.09 7.82, 1.87 591 0.51±0.03 0.51±0.03 7.29, 1.74

IT
C

 

da
ta

* 

Constant-unbound  99 0. 71±0.05 0.69±0.05 5.91, 1.41 591 0.85±0.01 0.86±0.01 4.49, 1.07

Rosetta default weights 62 0.66±0.07 0.49±0.10 557.4, 133.22 327 0.61±0.04 0.47±0.04 23.7, 5.66K
i 

da
ta

† 

Optimized weights 62  0.70±0.07 0.40±0.11 7.22, 1.73 327 0.70±0.03 0.57±0.04 7.28 , 1.74

* Correlation with ITC measurements after score term weight optimization (see table 1).  † Correlation with ΔΔGs converted from Ki data.  The 

constant-unbound approach was used. 
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Figure Legends 

Figure 1. Effects of mutations within or outside the binding site on binding affinity are 

compared for two scenarios: a rigid unbound state remains rigid upon ligand binding (A-C) and a 

flexible unbound state rigidifies upon ligand binding (D-F). A wildtype scenario (A,D) is 

compared with a binding site mutation affecting only the interaction with the ligand (B,E) and a 

non-binding site mutation affecting only the stability of the protein (C,F). Red lines represent 

energy landscapes for unbound protein. Blue lines represent energy landscapes for the protein in 

complex with the small molecule. For discussion see text.  

Figure 2. Left: HIV-1 PR homodimer with acetylpepstatin bound. The two chains are 

colored “wheat” and “pale-green”. Binding site residues are colored red. Colored by atom is 

acetylpepstatin, an HIV-1 PI. Right: HIV-1 PR loops exhibit large movements upon ligand 

binding. One chain of HIV-1 PR is shown in several conformations. Green: 1TW7 (wide-open), 

Cyan: 3BC4 (open), Purple: 2NMZ (closed). A distance of 6.3 Å exists between open and closed 

loop conformations. (Distance is calculated between Cα atoms of residue Ile 50). 

Figure 3. Explanation of ΔΔΔG. PR structures are represented by blue rectangles with 

circular binding sites. PI structures are represented as red circles. PR mutants each have unique 

binding sites, pictured here as either perfectly circular, or notched. Symbols: ΔG=free energy, 

ΔΔG=binding energy, ΔΔΔG=relative binding energy. 

Figure 4. Multiple sequence alignment using ClustalX 2.1. 34 sequences were threaded 

onto each of 171 backbone templates. Aligned are the sequences from the 34 experimental 

binding energy datapoints. An astrix ("*") means that the residues or nucleotides in that column 

are identical in all sequences in the alignment. A colon (":") means that conserved substitutions 

have been observed. A period (".") means that semi-conserved substitutions are observed. 
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Exceptional residues are colored gray. Positions enclosed in red boxes indicate residue positions 

with the potential to confer drug resistance (as suggested by Rhee et al. 2005) (33). 

Figure 5. Predicted/experimental correlation plots. (A-C) Experimental binding energy 

(ΔΔG) is plotted on the X-axis, predicted ΔΔG on the Y-axis. (D-F) ΔΔGs sharing the same 

ligand but different PR sequence were subtracted to produce ΔΔΔG values. Experimental ΔΔΔG 

is shown on the X-axis, predicted ΔΔΔG on the Y-axis. Note that since pairs of ligand matched 

ΔΔGs are used to derive ΔΔΔG values, there are many more of these values than of ΔΔGs. 
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