
C H A P T E R N I N E T E E N

ROSETTA3: An Object-Oriented Software
Suite for the Simulation and Design
of Macromolecules

Andrew Leaver-Fay,* Michael Tyka,† Steven M. Lewis,* Oliver
F. Lange,† James Thompson,† Ron Jacak,* Kristian Kaufman,‡

P. Douglas Renfrew,§ Colin A. Smith,}Will Sheffler,† Ian W. Davis,k

Seth Cooper,** Adrien Treuille,†† Daniel J. Mandell,}

Florian Richter,† Yih-En Andrew Ban,‡‡ Sarel J. Fleishman,† Jacob
E. Corn,† David E. Kim,† Sergey Lyskov,§§ Monica Berrondo,}}

Stuart Mentzer,kk Zoran Popović,k James J. Havranek,***
John Karanicolas,†††,‡‡‡ Rhiju Das,§§§ Jens Meiler,‡

Tanja Kortemme,} Jeffrey J. Gray,§§ Brian Kuhlman,*
David Baker,† and Philip Bradley}}}

Contents
1. Introduction 546

2. Requirements 548

2.1. Preserving existing functionality 548

2.2. Generality requirements 548

Methods in Enzymology, Volume 487 # 2011 Elsevier Inc.
ISSN 0076-6879, DOI: 10.1016/S0076-6879(11)87019-9 All rights reserved.

* Department of Biochemistry, University of North Carolina, Chapel Hill, North Carolina, USA
{ Department of Biochemistry, University of Washington, Seattle, Washington, USA
{ Department of Biochemistry, Vanderbuilt University, Nashville, Tennessee, USA
} Center for Genomics and Systems Biology, New York University, New York, USA
} University of California, San Francisco, California, USA
k GrassRoots Biotechnology, Durham, North Carolina, USA

** Department of Computer Science, University of Washington, Seattle, Washington, USA
{{ Computer Science Department, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
{{ Arzeda Corporation, Seattle, Washington, USA
}} Chemical & Biomolecular Engineering and the Program in Molecular Biophysics, Johns Hopkins

University, Baltimore, Maryland, USA
}} Rosetta Design Group, Fairfax, Virginia, USA
kk Objexx Engineering, Boston, Massachusetts, USA

*** Washington University, St. Louis, Missouri, USA
{{{ Center for Bioinformatics, University of Kansas, Lawrence, Kansas, USA
{{{ Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
}}} Stanford University, Stanford, California, USA
}}} Fred Hutchinson Cancer Research Center, Seattle, Washington, USA

545

2.3. Code quality requirements 549

2.4. Speed requirements 550

3. Design Decisions 550

3.1. Object-oriented architecture 550

3.2. Residue centrality 551

3.3. Pose 553

3.4. Scoring 554

4. Architecture 554

4.1. core library 555

4.2. core::chemical 555

4.3. core::kinematics 556

4.4. core::conformation 557

4.5. core::pose 558

4.6. core::scoring 559

4.7. core::optimization 565

4.8. core::pack 566

4.9. protocols Library 567

4.10. protocols::moves 568

4.11. JobDistributor 569

4.12. protocols::loops 570

4.13. Protocols from text files 570

5. Conclusion 571

Acknowledgments 572
References 572

Abstract
We have recently completed a full rearchitecturing of the ROSETTA molecular
modeling program, generalizing and expanding its existing functionality. The
new architecture enables the rapid prototyping of novel protocols by providing
easy-to-use interfaces to powerful tools for molecular modeling. The source
code of this rearchitecturing has been released as ROSETTA3 and is freely avail-
able for academic use. At the time of its release, it contained 470,000 lines of
code. Counting currently unpublished protocols at the time of this writing, the
source includes 1,285,000 lines. Its rapid growth is a testament to its ease of
use. This chapter describes the requirements for our new architecture, justifies
the design decisions, sketches out central classes, and highlights a few of the
common tasks that the new software can perform.

1. Introduction

The ROSETTA molecular modeling suite has proved useful in solving a
wide variety of problems in structural biology (Das and Baker, 2008;
Kaufmann et al., 2010; Table 19.1). ROSETTA was initially written in

546 Andrew Leaver-Fay et al.

FORTRAN77 as two separate programs for protein structure prediction
(Simons et al., 1997) and for protein design (Kuhlman and Baker, 2000),
merged, mechanically ported to Cþþ, and refactored for several years
thereafter. The code base has been in upheaval through the majority of its
existence. Three years ago, we began a complete rewrite to recenter the
program using modern software design principles. The final product, like its
predecessor, remains in a state of flux; however, several core modules have
solidified to provide a reliable foundation on which to build new protocols
for macromolecular modeling. This document attempts to describe these
central modules in the way one might describe industrial software: in terms
of requirements, design decisions, and architecture. It provides the necessary
background for constructing new modeling simulations using these library
modules. We close the chapter with a concrete example of one such
simulation.

The new architecture has enabled a rapid expansion in ROSETTA’s func-
tionality. In addition to providing a solid foundation on which many new
protocols have been built, the new architecture has enabled functionality

Table 19.1 Some representative applications available within the ROSETTA molecular
modeling suite

Application name Brief description

AbinitioRelax Predict the structure of a protein from its sequence
(Bonneau et al., 2001, 2002; Bradley et al., 2005; Das
et al., 2007; Raman et al., 2009; Simons et al., 1997)

enzdes Design a protein active site to catalyze a chemical
reaction (Jiang et al., 2008; Rothlisberger et al.,
2008; Zanghellini et al., 2006)

FixedBBProteinDesign Redesign the amino acids on a fixed protein
backbone (Dantas et al., 2003; Kortemme et al.,
2004; Kuhlman and Baker, 2000)

protein_docking Predict the docked conformation of two proteins
with a known structure (Gray et al., 2003; Wang
et al., 2005)

ligand_docking Predict the orientation that a small molecule binds to
a protein (Davis and Baker, 2009; Kaufmann et al.,
2008; Meiler and Baker, 2006)

loop_modeling Predict the conformation of a set of protein loops
(Mandell et al., 2009; Rohl et al., 2004)

rna_denovo Predict the folded structure of an RNA molecule
given its sequence (Das and Baker, 2007)

rna_design Design a new sequence for an RNA molecule (Das
et al., 2010)

ROSETTA3 547

that would have been virtually impossible in ROSETTA2, including Python
bindings for all ROSETTA classes (Chaudhury et al., 2010) and an interactive
game, FOLDIT, which challenges users to predict a protein’s structure
(Cooper et al., 2010).

2. Requirements

The driving requirements for our reimplementation of ROSETTA can
be categorized into four major groups. Our new code should preserve the
existing functionality. It should generalize that functionality to enable
expansion. It should adhere to certain code-quality standards to enable new
execution pathways. Finally, it should be fast.

2.1. Preserving existing functionality

Our new implementation was needed to recreate the existing ROSETTA

functionality. In particular, we required the new implementation to faith-
fully reproduce the terms in ROSETTA’s score function (Rohl et al., 2004).
We required that it reproduce the central algorithms: gradient-based mini-
mization, rotamer packing/protein design, Monte Carlo conformational
search, and ROSETTA’s efficient reuse of scores when rescoring a structure
that has changed very little. It needed to update a structure’s Cartesian
coordinates following changes to its internal degrees of freedom (DOFs;
e.g., to a protein’s backbone dihedral angles). Finally, it had to allow for
user-defined restraints (a.k.a. “constraints” in ROSETTA jargon) between
arbitrary groups of atoms.

2.2. Generality requirements

Beyond ensuring that ROSETTA3 was capable of performing the same func-
tions as ROSETTA2, we required that it be more general on several levels so
that it could be applied to new challenges in computational structural
biology. (1) It should be able to represent new chemical moieties. (2) It
should be amenable to the addition of new energy terms. (3) It should
encourage the development of new algorithms. The implementation for
these three aspects of the code should be as loosely coupled as possible to
minimize the amount of work necessary to expand in one direction; adding
a new term to the score function should require no updates to the chemical
representation of structures, or the algorithms used to evaluate that term on
structures (Fig. 19.1).

We required that the system be allowed to change its chemical compo-
sition at any point during a simulation; the new software could make no

548 Andrew Leaver-Fay et al.

assumptions that the sequence composition or length be fixed. We further
required generality within protocols such that they be nestable within one
another. Moreover, we wanted to decouple job distribution from protocols
themselves so that protocols could be run in any one of several job-
management environments (e.g., desktop computer, commodity cluster,
distributed computing environment, and supercomputer).

2.3. Code quality requirements

In addition to requiring the new code to perform new computational tasks
and broach new problems in macromolecular modeling, we also required
that we be able to perform these tasks in novel ways. We wanted to ensure
that ROSETTA could be executed in a multithreaded environment where
multiple threads could execute simultaneously working with separate struc-
tures and score functions without corrupting one another’s data. As a
consequence, ROSETTA could not rely on nonconstant shared data (e.g., a
global array containing the coordinates of the current structure, or a global
score function).

Furthermore, we were interested in enforcing code-quality require-
ments for the purpose of ensuring the greatest reusability of our code.
Consider a piece of code, P, written to perform some task, T, in some
context, C; P’s reusability can be measured as the number of other contexts
besides C in which P can perform T. While it is impossible to list all the
alternate contexts in which a piece of code should be able to function,
reusable code contains certain identifiable features, and so we imposed
requirements on our code that it should contain these features. In particular:

Chemical
composition

Energy
terms

Algorithms

Figure 19.1 Generality Wheel. Expanding ROSETTA’s functionality in one area
(Energy Terms, Chemical Composition, or Algorithms) should not require an expan-
sion to the other areas. The areas should be protected from each other through the use
of generic interfaces.

ROSETTA3 549

Reusable code is clearly written with descriptive variable names and function
names, and comments describing the behavior of the classes and functions,
so that users would understand what will happen when invoking a particular
function. Reusable code is factored into its component pieces, resulting in
short functions and small classes with well-defined responsibilities, so that
users can pick out just the pieces of functionality they are interested in
reusing. Reusable code is easy to use and hard to misuse because code that
frustrates developers does not get reused.

2.4. Speed requirements

To ensure that our code was absolutely as fast as it could be, we required
certain specific features of our algorithms and code. Score function evaluation:
scoring an N residue structure, assuming there are no long-range energy
terms, should proceed in O(N) time. Scoring a long-range energy term
defined over M pairs of atoms should proceed in O(MlgM) time; that is, if
M 2 O(N), then long-range energy evaluation should be only logarithmically
more expensive than short-range energy evaluation. Kinematics: the number
of coordinate update operations should be minimal and transparent—the user
should never be allowed to access out-of-date coordinate data. Together,
these requirements suggest using a just-in-time (lazy) coordinate update
algorithm. Furthermore, updating the coordinates for k atoms following a
set of changes to m internal DOFs should take O(k þ m) time. General:
energy and coordinate calculations should be performed at double precision
since our gradient-based minimization techniques converge after fewer score-
function evaluations at higher precision. Calls to new and delete should be
avoided in performance-sensitive code. Finally, function calls in inner-most
loops should be inlined to the greatest extent possible.

3. Design Decisions

In response to the requirements for our new software, we made a
series of decisions that shaped its design. This section lays out the rationale
for some of the most important decisions, connecting these decisions to the
requirements they were meant to address.

3.1. Object-oriented architecture

Our earliest design decision was that we would follow object-oriented
design principles in the creation of our new software. There are two
prominent features of object-oriented programs that we sought to take
advantage of: the encapsulation of data within classes and the pairing of data

550 Andrew Leaver-Fay et al.

and algorithms through polymorphic lookup (virtual functions). Data encap-
sulation is arguably the most important advance in software design since the
advent of high-level programming languages. Classes encapsulate data
through a compiler-provided mechanism of privacy: code that is outside
of a class is unable to read from or write to private data inside of a class.
Instead, classes gate access to private data through public function calls. The
use of gating functions allows a class to enforce data-integrity rules that
might otherwise be broken if external code were able to change the class’s
data without its knowledge. The fact that classes assume responsibility for
their data frees the remaining code in the program from the responsibility of
maintaining that data. Global variables, in contrast, inflict their integrity-
maintenance requirements on the entire program. Every new line of code
has to be aware of and respect the data integrity requirements stemming
from the program’s global variables. The more global variables a program
contains, the more complicated extending that program becomes. Global
variables restrict the alternate contexts in which a working piece of code
could be harnessed; they make code hard to use and easy to misuse. Indeed,
ROSETTA2’s reliance on global variables motivated our rearchitecturing
more than any other factor. Finally, it should be mentioned that multi-
threaded applications are significantly easier to write when data is held in
classes instead of global variables.

In addition to pursuing an object-oriented architecture, we also decided
to impose “const-correctness” requirements of the classes we created.
Cþþ compilers enforce an idea that, if an instance of a class is const,
then its nonconst functions may not be called, and that the data inside the
instance may not be modified. The primary benefit of const-correct code
is speed. Class A holding an instance of class B can provide read-only access
to B by delivering a “B const &” instead of delivering a copy of B (which
would be slow). As a secondary benefit, const-correctness makes code
hard to misuse, as the const status of an object conveys which function
calls are appropriate and which are not.

3.2. Residue centrality

Two requirements—the preservation of ROSETTA’s protein design function-
ality, and the desire to easily incorporate new chemical moieties—quickly
led to an early design decision that shaped much of our new implementa-
tion: ROSETTA3 would be “residue centric.” This decision manifested in two
ways: all atoms in a molecular system would be represented within residues
(Fig. 19.2) and residues would be the unit for scoring. To justify this design
decision, the remainder of this section introduces the fundamental concepts
behind ROSETTA’s protein-design module, the packer.

In the packer, the task of designing a new sequence is accomplished
by building new amino acids onto a fixed-protein-backbone scaffold.

ROSETTA3 551

Each design task is modeled as a combinatorial optimization problem where
the optimal solution is the sequence and structure of side chains built upon
the scaffold that minimizes the score function. At each residue, i, the
algorithm considers a set of rotamers (Ponder and Richards, 1987), Si,
which represent one or more amino acid types. The algorithm then searches
for the vector assignment of rotamers to the backbone, s, where the
assignment to residue i, si 2 Si. The rotamer-vector search space is the
Cartesian product of the individual rotamer spaces: S ¼

Q
iSi. This problem

is NP-complete (Pierce and Winfree, 2002). ROSETTA’s design algorithm
searches for a low-energy (if suboptimal) rotamer assignment using a Monte
Carlo with simulated annealing approach (Kuhlman and Baker, 2000).

Energies
• Total energy: –136.45
• Energy components:

• fa_atr –86.32
• hbond_sc –14.34

• EnergyGraph

EnergyGraph
Residue-residue energies

Conformation
• AtomTree
• Container of residue objects:
 • rsd1 ... rsd8 ResidueType

• Name (GUA)
• Neighbor_atom (C1*)
• Ideal-coordinate geometry
• Container of atomTypes
 • Atom_type1 ... atom_type33

ConstraintSet
• User-defined restraints on
 atomic distances, angles,
 dihedrals...

DataCache
User-defined data, copied
along with the pose (e.g.,
DNA base pairings)

Residue
• ResidueType pointer
• Container of atoms
 • Atom1 ... atom33

EnergyMap (3–7)
fa_atr –0.54
hbond_sc 0.00

AtompairConstraint
Atom1: (2, 06)
Atom2: (5, 2HH2)
Func: Harmonicfunc (1.9Å, 0.25Å)

Atom
(x, y, z)

AtomType
• Element
• Lennard-Jones radius and well-depth, ...

AtomTree
Kinematics

3

4

7
1 6

8

2

2

Pose
• Conformation
• Energies
• ConstraintSet
• DataCache

Figure 19.2 Pose architecture. The components of the Pose class are illustrated for
the case of a simple eight-residue system consisting of a two base-pair DNA duplex
(residues 1–4) and a protein segment (residues 5–8). Conformational and chemical
information are stored within the Conformation class as Residue objects (coordi-
nates) with pointers to ResidueTypes (chemistry); the AtomTree class records the
kinematic connectivity (the mapping between internal and Cartesian coordinates).
Energies from the most recent evaluation of the scoring function are stored in the
Energies class, which holds residue–residue interactions in the EnergyGraph.
Finally, user-defined coordinate restraints are stored in the ConstraintSet, and
additional Pose-associated data can be stored in the DataCache, where it will be copied
along with the Pose during simulations. (See Color Insert.)

552 Andrew Leaver-Fay et al.

Starting from a particular rotamer vector s, it computes the change in the
score, DE, induced by substituting the rotamer at residue i, a ¼ si with a new
rotamer b 2 Si. The computed DE is then fed to the Metropolis Criterion,
leading either to the acceptance or rejection of the rotamer substitution. For a
typical design simulation, several million rotamer substitutions are considered.
At the conclusion of simulated annealing, the design algorithm replaces
residues from the input structure with the new rotamers it had selected.

The task of computing DE for a given rotamer substitution suggests the
utility of a residue-centric design. Design software that relies on a pairwise-
decomposable energy function (as almost all design software does; Chowdry
et al., 2007; Dahiyat and Mayo, 1996; Desmet et al., 1992; Hellinga et al.,
1991) typically pretabulates rotamer-pair-interaction energies; that is, the
interaction energies for rotamers on residue i and the rotamers on residue
j are computed before rotamer search begins and stored in a table Eij of size
jSij # jSjj. When computing DE for replacing rotamer a on residue i with
rotamer b, the interaction energy for both a and b may be looked up from
the set of tables holding residue is interactions with is neighbors. If residues
were the unit of scoring, then residue-pair energies could easily be
pretabulated.

Moreover, we required the new code to be sufficiently general to
perform fixed-backbone-like design on nucleic acids and small molecules
in addition to proteins. The analogy from designing protein residues to
designing nucleic acid residues is so straight forward that it barely qualifies as
an analogy; instead of building amino-acid rotamers at the design positions,
the algorithm would build nucleic-acid rotamers. Each downstream step in
the design process (energy pretabulation, simulated annealing, and residue
replacement) could be identical. Design of RNA using ROSETTA3 has
already been tested (Das et al., 2010). The analogy from designing protein
residues to designing small molecules is similar; the algorithm would need to
build small-molecule rotamers, whatever they might look like. For the
design algorithm to handle amino acids, nucleic acids, and small molecules
uniformly, it is best to represent each class of molecule in the same fashion;
ergo, we would represent all chemical entities with residues.

3.3. Pose

Following the residue-centrality decision, we sought to define the complete
state of a molecular system within a single container class, termed a Pose.
The Pose would be responsible for holding a set of residues, and the result
of a score-function evaluation on those residues (class Pose, Section 4.5,
would hold a Conformation object Section 4.4) and an Energies
object (Section 4.6.3; see Fig. 19.2). By storing the scores with the structure,
it would be possible to reuse certain scores from the last score-function
evaluation when rescoring a structure. In addition to holding a structure and

ROSETTA3 553

its energies, class Pose would also be responsible for holding generic data
for presently unforeseen purposes; as a generic container, this would allow
protocol developers to pair information relevant for a particular structure
with that structure. Then, when copying a Pose, all the information that is
relevant for that Pose, would be copied with it. To recreate ROSETTA2’s
Monte Carlo mechanism, we would thus rely on Pose copy operations—
the history of how a particular structure came into being could be recorded
in a Pose during the course of its trajectory, and would be automatically
copied along with the structural and energetic information.

3.4. Scoring

With the residue-centrality design decision (Section 3.2), residues would be
the unit of scoring in ROSETTA. We extended this idea slightly by imposing a
decomposition of the score-function terms into those that are defined on
residues, those that are defined on residue pairs, and those that are defined
on entire structures, and by representing this decomposition through a class
hierarchy (Section 4.6.2). To include a new term in ROSETTA requires
finding the appropriate base class from which to derive and implementing
the interface to that class. As a consequence, once a new term was
incorporated into this class hierarchy, it could be used in scoring, packing,
and minimizing and in any future algorithm that relies only on the class
interfaces. This class hierarchy separates energy terms from algorithms that
use those terms, making it easy to add new terms and new algorithms.
Currently, ROSETTA developers are experimenting with 174 terms, proving
that adding new terms is quite easy.

4. Architecture

The remainder of this chapter describes the layout of ROSETTA’s classes
and further sketches the rationale for the way we have organized data and
algorithms.

At its highest level, ROSETTA is composed of three sets of libraries: (a) a
core library that defines structures and supports structure I/O, scoring,
packing, and minimization, (b) a protocols library that consists of common
structural modifications one might wish to make to a structure, and a means
to control the distribution of jobs, and (c) several utility libraries that collect
common data structures (a 1-indexed container, an owning pointer class, an
optimized graph class) and numeric subroutines (vector and matrix classes,
random number generators). Individual executables link against these
libraries allowing a protocol writer to rapidly prototype by creating a new

554 Andrew Leaver-Fay et al.

executable rather than modifying the single monolithic executable, a design
flaw in ROSETTA2.

Code is organized so that libraries and namespaces (Cþþ namespaces
provide a mechanism for grouping related class and function names) mirror
the directory structure, thus making it easy to find code. The top-level
directory src/ (source) contains directories utility/, numeric/,
core/, protocols/, and devel/, each corresponding to their own
library. It also contains an apps/ directory, in which executables with
main() functions live; apps is not linked as a library. Each library
corresponds to a top-level namespace. Any subdirectory of a library direc-
tory corresponds to a nested namespace. Classes are generally declared and
defined in files with the same name and a .hh and .cc extension. For
example, class ScoreFunction is declared in src/core/scoring/
ScoreFunction.hh and defined in src/core/scoring/Score-
Function.cc. It lives in namespace core::scoring. Dividing up
code into namespaces allows class writers to communicate their purpose
by association, and avoids problems of name-collision that are common in
large software projects.

4.1. core library

Namespace core contains data structures and algorithms for describing
macromolecules chemically (Section 4.2) and structurally (Section 4.3),
for scoring macromolecular conformations (Section 4.6), and for optimizing
these conformations with two common techniques: minimizing
(Section 4.7) and packing (Section 4.8).

4.2. core::chemical

The main class housed in the chemical namespace is ResidueType.
A ResidueType class describes the chemical connectivity of a single,
abstract residue type. Every instance of alanine in a single structure will
point to the alanine ResidueType; this ensures a minimal memory foot-
print by avoiding redundant representations. Class ResidueType lists the
set of atoms, their names, their elements, their atom type, their set of
intraresidue chemical bonds, and notes which atoms are able to form
interresidue chemical bonds. Each atom in a ResidueType must have a
unique name. Two residue types are different if they have different chemi-
cal bonds; this means the two tautomers of histidine (where either ND1 or
NE2 is protonated) are represented by two different ResidueTypes. To
change the tautomerization state of a structure is to change its chemical
identity. Similarly, the N- and C-terminal variants on each of the 20-amino
acids must be represented by separate ResidueTypes from the “mid”

ROSETTA3 555

variants since they have different atom counts and different interresidue
connection capacities. To avoid defining by hand each of the 60 additional
variants for the 20-amino acids (the N-terminal variant, the C-terminal
variant, and the free-amino-acid variant), we have implemented a system
for patching residue types similar to the one used by CHARMM (Brooks
et al., 2009).

ResidueType is also responsible for defining two features that are used
to determine “neighborness” of residue pairs: it nominates one of its atoms
as its “neighbor atom,” the coordinate of which is used in neighbor
detection; and it defines a “neighbor radius” measured as the longest
distance possible from the neighbor atom to all other heavy-atoms in the
residue under all possible assignments of dihedral angles. Neighbor detec-
tion is discussed further in Sections 4.6.2 and 4.6.3.

To hold the set of ResidueTypes, the chemical namespace also
houses class ResidueTypeSet; each ResidueType must have a unique
name among the other ResidueTypes belonging to the same Residue-
TypeSet. ROSETTA protocols often rely on multiple residue type sets, with
the most common being the “centroid,” or low-resolution, residue type
set, and the “fullatom” residue type set. The protein design subroutines
(Section 4.8) consider alternate ResidueTypes for an existing residue
by requesting the list of all available ResidueTypes from the
ResidueTypeSet of the existing residue. Because the fullatom and
centroid residue type sets are both represented with a single class, the
design subroutines are capable of performing both full-atom and centroid
design.

4.3. core::kinematics

ROSETTA uses an internal-coordinate representation of a molecular system
when performing updates to the conformation. Thus, the primary DOFs
during Monte Carlo perturbations and gradient-based minimization are
dihedral angles about rotatable bonds and rigid-body transformations
between subunits, rather than the xyz coordinates of individual atoms
common in molecular dynamics simulations (bond lengths and angles can
also be included but are typically held fixed). The internal coordinate
representation makes possible a dramatic reduction in the number of
DOFs, permitting efficient exploration of conformational space. At the
same time, it introduces a complication into the process of specifying a
molecular system, namely that one must explicitly define the path by
which internal coordinate changes propagate through the system. In the
case of flexible-backbone protein docking, for example, the kinematics can
be specified by the choice of an anchor residue in each partner. Changes to
the six rigid-body DOFs modify the relative orientation of these two

556 Andrew Leaver-Fay et al.

anchor residues; changes to the dihedral angles of the monomers preserve
the relative orientation of the anchors, while the coordinates of the
monomers are updated by folding the chains outward from the anchor
points.

In general, the kinematic connectivity of any molecular system can be
specified by defining a tree (connected, acyclic graph) whose nodes corre-
spond to the atoms in the system and whose edges represent kinematic
connections. We generate Cartesian coordinates for the system by starting at
a defined root node and traversing outward (downstream) to the leaves. The
internal coordinates of the system are mapped onto the individual atoms,
with most atoms storing a bond length, bond angle, and dihedral angle
relative to a reference frame defined by three upstream atoms. Where rigid-
body connections between subunits are needed, a second flavor of atom is
introduced which stores a full rigid-body rotation and translation between
reference frames defined on the two partners. This kinematic tree of atoms
is referred to as an AtomTree (Abagyan et al., 1994). To simplify the
process of specifying the AtomTree, a user can define a residue-level tree
of kinematic connectivity, termed the FoldTree, in which nodes corre-
spond to individual residues rather than atoms. The AtomTree can be built
automatically from the FoldTree.

For efficient scoring, the AtomTree tracks which DOFs have changed
since the last score function evaluation; if two residues have not moved with
respect to each other, then some of their interaction energies from the last
score function evaluation may be reused (Section 4.6.2). To communicate
which residues have moved, the AtomTree creates a “coloring” of the
residues in the structure (wherein each residue is assigned an integer)
through a recursive traversal of the tree; if two residues have not moved
with respect to each other, they are assigned the same color in this traversal.
If a residue has undergone a change to its internal DOFs, then it is assigned
the color zero, signaling to the scoring machinery that none of its old
energies may be reused in the next score evaluation. The data structure
for holding the coloring is called the DomainMap.

4.4. core::conformation

The conformation layer describes the physical instantiation of amacromolecule;
its main class, class Residue, contains the coordinate information (both
Cartesian and internal) for a single residue. It contains none of the chemical
information needed to describe the residue, but rather, keeps a pointer to the
ResidueType (Section 4.2) that it is an instance of. Class Residue also holds
all the information about the interresidue chemical bonds that it forms to
other residues. Such information would not be appropriately held in the
chemical layer.

ROSETTA3 557

A full structure is represented by a Conformation object, which is
composed of a set of Residues and an AtomTree. As mentioned in
Section 2.4, the user should never be able to access out-of-date coordi-
nate information. The Conformation handles this responsibility by
controlling access to the Residues it contains; it provides a set of
mutator methods for setting Cartesian and internal coordinates so that
it can shuttle these changes between the Residue objects and the
AtomTree nodes efficiently, and it allows efficient read access (const
access) to its Residues. By disallowing nonconst access to its
Residue objects, it ensures data integrity; only the Conformation
has the permission to modify its Residues. The central classes of the
chemical, conformation, and kinematic namespaces and their
relationships are illustrated in Fig. 19.2.

4.5. core::pose

Class Pose, as described in Section 3.3, represents the complete state for
a molecular system; it stores a Conformation object, an Energies
object (Section 4.6.3), a ConstraintSet (Section 4.6.5), and a generic
DataCache container (Fig. 19.2). When a user copies a Pose, they copy
all relevant information for that structure. The MonteCarlo object
(Section 4.10) relies on the Pose’s copy operations to keep track of the
best scoring structure encountered in a trajectory.

We have two levels of observers for Pose objects: active and passive
observers. The passive observers deliver just-in-time information about
a Pose; these are the PoseMetrics classes. A PoseMetric will report
a certain property of a Pose that is pertinent for decision-making about
the structure, but which may be slow to compute, for example, its
solvent accessible surface area. The PoseMetric observes the Pose
so that, if the Pose has not changed since the last time the property
was calculated, then the PoseMetric can report the previously calcu-
lated value.

We have a second set of active observers that respond immediately to
particular events, for example, residue insertion or deletion events. Such
observers are commonly used to maintain residue mapping information
when a Pose is undergoing a series of residue insertions or deletions. For
example, a Constraint (Section 4.6.5) between residue 5 and residue 50
needs to be remapped when residue 39 is deleted so that it applies to residue
5 and residue 49. These active observers allow protocol writers to perform
residue insertions and deletions without having to provide an additional
residue-remapping interface; and it allows users to rely on these protocols
even when they would like to maintain application-specific residue-
mapping information.

558 Andrew Leaver-Fay et al.

4.6. core::scoring

Namespace core::scoring contains the many classes that define and
evaluate ROSETTA’s score function. The key classes in this namespace are
ScoreFunction, EnergyMethod, and Energies.

4.6.1. ScoreFunction as a container
The score for a structure is the weighted sum of the component energies.
A ScoreFunction object holds a set of weights and a set of classes
(EnergyMethods) that are able to evaluate the energies and derivatives
for the components with nonzero weight. A score function may be eval-
uated on a Pose and will return its score:

core::scoring::ScoreFunction sfxn;
core::pose::Pose p;
... // initialization
double the_score ¼ sfxn(p);

The ScoreFunction acts as a container, making it easy to pass the
active components into subroutines that require a score function to
guide their behavior (e.g., packing or minimizing) but that are
indifferent to which components are active. The ScoreFunction holds
its EnergyMethods in seven lists (one for each of the direct base classes in
Fig. 19.3), and when scoring a Pose, iterates across each list to request each
EnergyMethod evaluate the energies for certain residues and/or residue
pairs in the Pose. Unlike ROSETTA2, there is not a singular (global) score
function that is active. Separate threads will instantiate separate Score-
Function instances; subroutines and classes that rely on computing the
score will be given ScoreFunction objects to use.

The terms available in ROSETTA’s score function are listed in the
ScoreType enumeration. Each element in this enumeration corresponds
to one term. EnergyMethods are allowed to compute more than one
term at a time; they place the scores they calculate into an object of type
EnergyMap, which contains an array with one double for each element in
the ScoreType enumeration. The ScoreFunction and its Energy-
Methods communicate through EnergyMaps. The total score is simply the
dot product between the unweighted-energies vector and the weights vector.

To activate a term in a ScoreFunction, a user needs merely to set the
weight for that component to a nonzero value. For example, the call to
sfxn.set_weight(fa_atr,0.8) would trigger the activation of the
attractive portion of the Lennard-Jones energy. Behind the scenes, the
ScoreFunction fetches an instance of the EnergyMethod that
is responsible for evaluating the fa_atr ScoreType and stores that
EnergyMethod. The class responsible for doling out EnergyMethods
to ScoreFunctions is the ScoringManager; the ScoringManager
maintains a map from ScoreTypes to EnergyMethodCreators, each of

ROSETTA3 559

which is responsible for instantiating a particular EnergyMethod.
EnergyMethodCreators register with the ScoringManager at load
time—not compile time—thereby allowing definition of EnergyMethods
outside of core (e.g., in protocols or devel).

4.6.2. Energy method class hierarchy
There are 12 abstract EnergyMethod classes, seven of which are intended
for deriving concrete energy methods (Fig. 19.3). The ScoreFunction
treats each of the seven classes differently when it comes to score evaluation
and bookkeeping. At the top of the hierarchy is the EnergyMethod class.
Three classes derive from it directly: OneBodyEnergy, TwoBody-
Energy, and WholeStructureEnergy. These classes represent energy
functions that are defined on single residues, on residue pairs, or on entire
structures. Derived OneBodyEnergy classes implement a method:

void
residue_energy(

conformation::Residue const & res,
pose::Pose const & p,
ScoreFunction const & sfxn,
EnergyMap & emap

) const;

and derived TwoBodyEnergy classes implement a method

CI1 CD1 CIS2 CDS2

S2 L2

2B

EnergyMethod

WS1B

CIL2 CDL2

Figure 19.3 EnergyMethod class hierarchy. The first level divides the one-body
(1B), two-body (2B), and whole-structure (WS) energies. The second level divides
the two-body energies into short-ranged (S2) and long-ranged (L2). The final level
divides context-dependent (CD) from context-independent (CI) energy methods. The
seven classes in gray are the direct base classes for concrete energy methods; for
example, the HydrogenBondEnergy derives from the CDS2 class, as it is context-
dependent, short-ranged, and two-body.

560 Andrew Leaver-Fay et al.

void
residue_pair_energy
conformation::Residue const & res1,

conformation::Residue const & res2,
pose::Pose const & p,
ScoreFunction const & sfxn,
EnergyMap & emap

) const;

The presence of a Pose in the interfaces allows context-dependent Ener-
gyMethods to use the Pose for context (see below). The presence of the
ScoreFunction in the interface allows for EnergyMethods to alter their
behavior in the presence of other EnergyMethods; for example, the Len-
nard-Jones term changes the way it counts the interaction energies for atom
pairs separated by either three or four bonds when the CHARMM torsion
term (mm_twist) is active in the score function.WholeStructureEnergy
classes perform all of their work in the final stage of scoring (Section 4.6.4) in
the call to their finalize_total_energy method. For example, the
radius-of-gyration score is implemented as a WholeStructureEnergy.

Two classes derive from the TwoBodyEnergy class: ShortRange-
TwoBodyEnergy and LongRangeTwoBodyEnergy. The “short
range” property of ShortRangeTwoBodyEnergy classes lies in the fact
that they define some distance cutoff, d, beyond which any heavy-atom pair
interaction is guaranteed to be zero. The ScoreFunction uses the
maximum cutoff of its short-ranged two-body energy instances and the
neighbor-radii (Section 4.2) to define a sparse graph representing residue–
neighbor relationships, an EnergyGraph, described in the next section.
ShortRangeTwoBodyEnergy classes are not responsible for determining
which pairs of residues to evaluate during scoring; rather, the Score-
Function directs the short-ranged energy methods to evaluate particular
residue-pair-interaction energies using the EnergyGraph.

Long-range energy terms do not define a cutoff distance and so they
cannot rely on the ScoreFunction to determine their neighbor relation-
ships for them. Instead, they must provide their own data structure for
directing the residue pairs over which they should be evaluated and for storing
those energies once computed: a LongRangeEnergyContainer. This
data structure may be as sparse or dense as the EnergyMethod requires.
Truly long-ranged energy functions, such as the Generalized Born solvation
model (Onufriev et al., 2004), provide upper triangles of N # N tables to
store all residue pair interactions, but sparse nonlocal energy functions provide
graphs (graphs are introduced in the next section). User-defined constraints
(Section 4.6.5) are treated as long-ranged since a constraint score should be
evaluated regardless of how far apart two residues become in a structure. Once
a user has input their desired constraints, the ConstraintsEnergy (see
below) creates a sparse graph representing their relationships. Thus, the cost to

ROSETTA3 561

evaluate M constraints costs O(MlgM) time. Similarly, the DisulfideE-
nergy is defined as long range so that it can control which pairs of residues it
is evaluated on; for one, most interacting residue pairs are not disulfide
bonded, but more importantly, the disulfide bond-stretch term should be
applied regardless of the distance separating two disulfide-bonded residues.

The final split in the EnergyMethod hierarchy is between context-
dependency and context-independency. The short- and long-range two-
body energy methods both split, as does the one-body energy method,
defining six of the seven abstract classes meant for direct inheritance from by
concrete classes. Context-dependent terms are those where the context for
a residue (or for a residue pair) influences the score; for example, many
terms in ROSETTA depend on the number of neighbors within 10 Å. The
centroid “environment” term depends on the number of neighbors, as do
the fullatom hydrogen-bond terms. The Lennard-Jones term, in contrast,
does not depend on the context, and is thus implemented as a context-
independent term. Context-dependency is a crucial attribute in determin-
ing whether stored residue-pair energies may be reused; the Lennard-Jones
interaction energy between two residues is unchanged provided that
their relative orientation has not changed since the last energy evaluation,
whereas the environment of a hydrogen bond (and hence its strength)
may change even if the relative orientation of the interacting atoms
does not.

4.6.3. Class Energies and class EnergyGraph
The Pose stores the results of its most recent score function evaluation in
an Energies object. Class Energies stores the total weighted energy, the
unweighted component energies, the per-residue and per-residue-pair
unweighted component energies, and the LongRangeEnergyContainers.
It holds its per-residue-pair unweighted energies from ShortRangeTwo-
BodyEnergy classes in a “sparse graph” data structure, class EnergyGraph.
The key to the EnergyGraph data structure is that it stores energies for pairs of
residues without the O(N2) cost associated with N # N tables. In this section,
we show that the memory use for the EnergyGraph is O(N); this means that
when copying a Pose, the expense of copying its EnergyGraph is O(N). It
also means that the expense of traversing the graph during scoring is O(N)
(Section 4.6.4).

The concept of a graph comes from computer science: a graph is a set of
vertices and edges; G ¼ {V, E}. A vertex, v 2 V, represents an object; an
edge, e ¼ {u,v} 2 E, represents a relationship between two objects, u and
v. In sparse graphs, the number of edges, jEj, is bound by a linear function of
the number of vertices; jEj 2 O(V). In our graph implementation, edge
addition and deletion costs O(1) time; this feature is necessary for the O(N)
complexity bound for scoring a Pose. Edge addition and deletion in our
graph data structures is further speeded up by the use of “pool” data

562 Andrew Leaver-Fay et al.

structures (Cleary, 2001) which reduce the number of calls to new and
delete.

Each vertex in the EnergyGraph represents a residue in the Pose.
Each edge in the EnergyGraph represents a short-range interaction
between two residues (Fig. 19.2). Contained on each edge is an array
used to store the unweighted energies for the active short-range two-
body-energy components. If there are five active two-body components,
then exactly five elements are allocated for each array on each edge.

The EnergyGraph contains O(N) edges: the EnergyGraph contains
an edge between residues i and j if the distance between the neighbor atoms
of i and j is less than the sum of the neighbor radius of i and j (ri and rj),
(Section 4.2), and the ScoreFunction’s maximum short-range distance
cutoff, d, (Section 4.6.2). Under the assumption that our simulations never
exceed some residue-density maximum, r, (e.g., by collapsing all residues
on top of each other) then each residue has fewer than (4/3)rp(2 max iri þ
d)3 2 O(1) neighbors, and thus the EnergyGraph contains O(N) edges.

4.6.4. Score function evaluation
To expedite score function evaluation, the ScoreFunction reuses previ-
ously computed interaction energies where possible. Here, we present the
logic for rescoring a Pose. The Pose, to communicate its structural
changes since the previous score function evaluation, hands a DomainMap
(Section 4.3) to the ScoreFunction at the beginning of scoring.

(Re)Scoring a Pose proceeds in eight stages:

1. The ScoreFunction iterates across all edges in the EnergyGraph
(whose edges reflected the interactions present at the last score-function
evaluation) and deletes out-of-date edges—edges whose nodes have a
different color or are color 0 (O(N)),

2. it detects residue neighbors (with an STL map in O(NlgN) time
(Stepanov and Lee, 1995) or quite rapidly with a 3D grid in O(N3) time),

3. it iterates across all residue neighbors, and for any pair of residues with
nonmatching colors, adds new edges to the EnergyGraph (O(N)),

4. it calls a function setup_for_scoring on each of its Energy-
Methods (O(N)*),

5. it evaluates the one-body energies, reusing context-independent ener-
gies for residues with a nonzero color (O(N)),

6. it iterates across all edges in the EnergyGraph and evaluates the short-
range two-body energies for each neighboring residue pair, reusing the
context-independent energies for residue pairs with the same nonzero
color (O(N)),

7. it iterates across all long-range two-body energies and iterates across the
corresponding long-range two-body-energy containers to evaluate the

ROSETTA3 563

requisite two-body energies, again reusing context-independent ener-
gies for those residue pairs assigned the same nonzero color (O(N2)),

8. finally, it calls finalize_total_energy on each of its Energy-
Methods (O(N)1). WholeStructureEnergy classes perform all of
their work during the finalize stage.

Discounting the neighbor-detection expense and the presence of long-
range energy terms, score function evaluation is an O(N) operation. During
minimization (Section 4.7), we assume that the neighbor relationships will
remain fixed, and avoid the neighbor-detection and graph update steps
(steps 1, 2, and 3) during score function evaluation.

4.6.5. core::scoring::constraints
Constraints are used in ROSETTA protocols either to bias conformational
sampling toward regions where the user thinks their solution lies, or to
force the conformation into a high-energy state in order to study
that state (e.g., to design an active site around the transition state
geometry for a reaction). Constraints are used to bias sampling with
homology information, or experimentally derived data. Their prominent
role in so many protocols earns them a place directly in a Pose; each
Pose contains a ConstraintSet object. The ConstraintSet
holds the collection of Constraints and manages their assignment
into 1-body, 2-body, and multibody terms; it creates a graph, the
ConstraintGraph, as the LongRangeEnergyContainer for the
ConstraintsEnergy class.

The constraint system makes extensive use of polymorphism to provide
tremendous expressibility. Class Constraint is the abstract base class
for the various constraint forms in use in ROSETTA: for example, an
AtomPairConstraint will compute a score and its derivative based
on the distance of two particular atoms; AngleConstraints and
DihedralConstraints operate on atom triple and atom quadruples.
The actual score that is computed for most Constraints comes from a
generic Func class; the interface for class Func is simply two functions, func
(x) and dfunc(x), that report the value and the derivative for some value x (x
can be a distance, an angle, or a dihedral). Example concrete Func classes
include the HarmonicFunc, the CircularHarmonicFunc, the
PeriodicFunc, and the SquareWellFunc.

Evaluating the score for a Constraint requires that it be provided
access to coordinates, but each Constraint requires a different number of
coordinates. To provide a uniform interface for all constraints, we pass
coordinates into a Constraint via an XYZFunc whose job is to return
a coordinate given an atom identifier. There are three concrete XYZFunc

1 These steps are O(N) assuming that the EnergyMethods perform only O(N) work in these steps.

564 Andrew Leaver-Fay et al.

classes; the ResidueXYZFunc, the ResiduePairXYZFunc, and the
ConformationXYZFunc, which are used to evaluate 1-body, 2-body,
and multibody constraints. The same AngleConstraint class can be used
for either intraresidue or interresidue constraints, and can be used with a
wide variety of functional forms.

4.7. core::optimization

The classes in core::optimization provide the functionality for
gradient-based minimization of arbitrary DOFs. The most commonly
used class is AtomTreeMinimizer. This class is specialized for the
DOFs of interest to molecular modelers, although it depends upon
more general minimization classes described below. The run method
of the AtomTreeMinimizer takes as input a Pose, a MoveMap, a
ScoreFunction, and a MinimizerOptions object. The MoveMap
provides a detailed selection of the AtomTree-defined DOFs to vary.
The MinimizerOptions provides a description of the desired minimi-
zation algorithm and control parameters such as required tolerances in
objective function and maximum iterations before termination
(Fig. 19.4A, Section 4).

The low-level class for implementing gradient-based minimization
is Minimizer. This class is configured with Multifunc and Minimi-
zerOptions objects at construction. The Multifunc class is an abstract
class that calculates the objective function and the derivative of the
objective function for a given set of DOFs. The AtomTreeMultifunc
is the most commonly used subclass of Multifunc. In fact, one of the
major tasks of the AtomTreeMinimizer is to construct a suitable Atom-
TreeMultifunc from the input MoveMap and ScoreFunction,
and to enforce the correspondence between the DOFs expected
by the AtomTreeMultifunc object and the DOFs manipulated by
the Minimizer object. The AtomTreeMultifunc is responsible for
converting the Cartesian derivative vectors into derivatives for the tor-
sional DOFs (Abe et al., 1984).

Theminimization algorithmoptions are split into the direction-determining
and line-minimization options. Currently, the only direction-determining
option is a variablemetricmethodusing aBroyden–Fletcher–Goldfarb–Shanno
(BFGS) update (Nocedal and Wright, 2006). The available line minimization
algorithms are an inexact method using the Armijo backtracking acceptance
criterion (Nocedal and Wright, 2006), a similar but “nonmonotone” method
that allows the minimization trajectory to temporarily move uphill in energy,
and amore exactmethod due to Brent (1973). The termination criterion for the
minimization is specified by a tolerance,whichmaybe absolute or relative to the
current value for the objective function.

ROSETTA3 565

4.8. core::pack

Namespace core::pack houses the classes associated with two
commonly used subroutines in ROSETTA protocols, pack_rotamers and
rotamer_trials, which optimize rotamer placement. The packer builds
a set of rotamers at each of several residues, computes their interaction
energies, and, in the case of pack_rotamers, performs simulated

Figure 19.4 Simple ROSETTA3 protocol for performing a binding specificity calculation
on a protein-single-stranded-DNA complex. The simulation code (A) is broken into
five segments: (1) initialization of the molecular system from a PDB file and the scoring
function from a text file containing the energy terms and weights; (2) setup of the
kinematic connectivity via a FoldTree (illustrated in B) with a long-range rigid-body
connection between residue 4 in the DNA and residue 15 in the protein; (3) redesign of
the DNA sequence and simultaneous optimization of the protein sidechain conforma-
tions using a PackerTask object to direct the operation of Rosetta’s packing subrou-
tine pack_rotamers; (4) gradient-based minimization of the resulting Pose with
flexibility of all chi angles (including glycosidic dihedrals in the DNA), the rigid-body
linkage between the protein and the DNA, and the DNA backbone dihedrals (the
MoveMap object communicates the allowed flexibility to the minimizer); and (5) output
of the final optimized structures (superimposed in C) and sequence and score informa-
tion (text output shown in D, sequences summarized by a sequence logo representation
in E, which can be compared with the DNA sequence in the starting PDB file:
GTTAGGG). This simulation code could be compiled into a free-standing Cþþ
executable by linking against the ROSETTA libraries. (See Color Insert.)

566 Andrew Leaver-Fay et al.

annealing to find low-energy rotamer placements. In rotamer_trials,
the best rotamer is chosen at each residue, where each residue is optimized
one at a time in a random order. Both subroutines take as input a Pose, a
ScoreFunction, and a PackerTask.

In previous versions of ROSETTA, the most complicated portion of the
packer was in how it decomposed the score function into rotamer-one-body
energies and rotamer-pair energies. The packer had to be aware of all the
score function components, their nature, and their interface. This knowl-
edge was duplicated in several places as packer functionality expanded,
making the incorporation of new terms difficult and error-prone. With the
EnergyMethod hierarchy, the ScoreFunction is predecomposed; once
an EnergyMethod can be incorporated as a one- or two-body energy into
score-function evaluation, it can be included in packing.

Namespace core::pack::task houses a class whose sole purpose
is to let users control the packer’s behavior: PackerTask. The
PackerTask communicates rotamer-building instructions, simulated
annealing parameters, and other data between the various classes and sub-
routines of the packer. The PackerTask contains a host of options, many
of which are configurable on the per-residue level (see Fig. 19.4A; Section 3
for a packing example).

Namespace rotamer_set holds class RotamerSet, which builds the
set of rotamers for a particular position in the structure (e.g., residue 10). It
represents each rotamer with a single Residue object. Class RotamerSet
also stores trie data structures for EnergyMethods that are able to take
advantage of the trie-vs-trie algorithm (Leaver-Fay et al., 2005b).

Namespace interaction_graph houses several “interaction graph”
classes (Leaver-Fay et al., 2005a) that store tables of rotamer-pair energies (or
compute them on-the-fly; Leaver-Fay et al., 2008) on edges between
neighboring residues. The InteractionGraph abstraction also serves as
an interface to the simulated annealing algorithms. Due to their ease of use,
protocols that create and store their own InteractionGraph for use in
multiple annealing trajectories have flourished.

Namespace annealer houses the last components of the packer, the
annealers, which search for low-energy rotamer assignments by considering
rotamer substitutions and deciding whether each substitution should be
accepted or rejected. Currently, three annealers are available; the first two
differ mainly in their temperature schedule, the third, for DNA design, makes
simultaneous base substitutions to preserve Watson-Crick base pairing.

4.9. protocols Library

The protocols library contains code representing protocols for specific
purposes (e.g., protein/protein docking), whereas the core library contains
code with more general purposes that the protocols rely on. This chapter

ROSETTA3 567

does not detail all the protocols contained within this library (and which are
published separately), but rather, highlights a few classes and algorithms that
are common to various protocols and could be useful for developers
interested in writing their own protocols.

4.10. protocols::moves

Namespace protocols::moves houses the class responsible for recapi-
tulating ROSETTA’s classic Monte Carlo technique, class MonteCarlo. In
particular, this class keeps track of two Poses: the best scoring Pose it has
ever encountered, and the most-recently-accepted Pose. After the class is
initialized (with a starting Pose and a ScoreFunction), a protocol writer
can invoke its boltzmann(core::pose::Pose&p) method passing in
a structurally perturbed Pose, p for evaluation. The MonteCarlo object
scores p, and will then accept or reject p either by copying p into the most-
recently-accepted Pose, or by copying the most-recently-accepted Pose
back into p, thereby undoing whatever structural perturbation had just been
applied. The MonteCarlo object also keeps track of how frequently
structural perturbations are rejected, and can optionally increase its temper-
ature if it has been too long since the last acceptance.

Namespace protocols::moves also contains an important base class
that makes ROSETTA3 protocols nestable. On one level, protocols are nes-
table simply because protocols are represented by classes; one could create
an instance of a protocol, or one could have two instances of a protocol and
arrange the second instance to be invoked from within the first. Our
protocols are generically nestable because our protocols all derive from a
common base class: Mover. Mover defines an interface method

virtual

apply(core::pose::Pose & p) ¼ 0;
which takes a nonconst Pose reference where the Mover is meant to

change the input Pose. A Mover can model an entire protocol (e.g.,
docking) which can be seen as taking an input Pose and producing an
output Pose. ROSETTA’s job distribution system, described in the next
section, relies on this premise. The TrialMover exemplifies the way in
which this generic nestability is so powerful. A TrialMover (itself derived
from Mover) is constructed from an instance of another Mover and a
MonteCarlo object. In its apply method, it invokes the Mover’s
apply method and follows up by invoking the MonteCarlo’s boltz-
mann method. A portion of a protocol might be written succinctly as a
series of TrialMover applications.

A final class housed in namespace protocols::moves worth men-
tioning is the abstract base class, Filter. Filter defines a single function
virtual bool apply (Poseconst &p) const¼ 0; which will return
“true” if Posepmeets some quality standard, and “false” otherwise. Classes

568 Andrew Leaver-Fay et al.

Mover and Filter both play an important role in ROSETTA3’s scripting
language, described in Section 4.13 below.

4.11. JobDistributor

Due to the vast size of conformation space, and the ruggedness of the energy
landscape, most protocols require the simulation of thousands of trajectories
to produce reliable predictions. The job distributor layer is responsible for
abstracting the details of structure I/O and the allocation of computational
resources away from the task of writing protocols. If a protocol is written to
interface with the job distributor classes, then it can be run on any kind of
cluster supported by our job distribution framework.

The main task for a job distributor is to execute a pair of nested for loops:
one outer loop over all input structures and one inner loop over all trajectories
required for each input structure. Inside the inner loop, the job distributor
generates a Pose from input, runs the intended protocol (by invoking a
Mover’s apply method) on that Pose, and then writes the results to disk.
These central loops are implemented in the base JobDistributor class.
A series of derived classes inherit from this base and provide the logic for how
to farm out the jobs across the available resources. As of this writing, the
choices include one job distributor for distributed computing within the
BOINC framework (Anderson, 2004), one for use with one or more pro-
cesses that communicate via the file system, and four MPI variants. The MPI
variants run as nearly independent processes (that are “embarrassingly paral-
lel”), where interprocess communication is limited to signaling which jobs
have been completed and managing disk access.

Besides managing the assignment of jobs to processors, the JobDis-
tributor has two extra responsibilities: determining which jobs exist and
writing output at their conclusion. These tasks are handled by the JobIn-
putter and JobOutputter classes. Derived members of these classes
specialize for particular types of input and output. The JobInputter
informs the JobDistributor which jobs are present from command-
line inputs and also turns the information for those jobs into Pose objects.
The major JobInputters handle standard PDBs and silent files (com-
pressed output files in which a structure is described by its internal DOFs,
only). There are also JobInputters specialized for ab initio folding (which
has no starting structure) and other purposes. The JobOutputter is
responsible for outputting the final Pose from a trajectory, usually to
disk. Again, the standard output methods are PDBs and silent files, with
more exotic choices available. The JobOutputter class is also responsible
for determining what trajectories have already been finished; if ROSETTA is
interrupted and later restarted, it can resume the last job it was processing by
examining the set of outputs that have already been generated.

ROSETTA3 569

4.12. protocols::loops

Loop modeling is heavily utilized during protein homology modeling and
refinement as well as during flexible-backbone protein design. Loops are
defined by a Loop class that stores the start and end residues for the loop, as
well as a “cutpoint” residue position at which a chainbreak is introduced
into the AtomTree (Wang et al., 2007). This chainbreak allows kinematic
perturbations to propagate inward from the loop endpoints toward the
cutpoint residue so that regions outside the loop are unmodified by dihedral
angle changes within the loop.

Loop modeling in ROSETTA3 can be used for de novo prediction of protein
loop conformations (loop reconstruction), or for refinement of given loop
structures. Loop refinement protocols derive from the class LoopMover and
may alter the conformation of any loops in the Pose. Protocols that recon-
struct only a single loop derive from the class IndependentLoopMover.
A typical loop building task starts with a centroid representation of the loop,
followed by an all-atom refinement.

Two main algorithms for loop building are implemented in ROSETTA.
The first algorithm uses rounds of fragment insertion to modify the loop
conformations where a “chainbreak” term is included in the score
function to keep the two cutpoint residues close together, followed by
cyclic-coordinate descent (Canutescu and Dunbrack, 2003) to close the
chain. This algorithm is fast and is used in homology modeling to
construct the gap regions of a sequence alignment. The second type
uses an algorithm called kinematic closure (KIC; Coutsias et al., 2004;
Mandell et al., 2009). KIC uses inverse kinematics to solve analytically
for assignments to six torsional DOFs that close the loop exactly, while
sampling all other phi/psi angles in the loop region from Ramachandran
space. The KIC method provides enhanced high-resolution sampling
and can be used for de novo prediction of loop conformations, high-
resolution refinement of protein structures following low-resolution
rebuilding, and remodeling of defined regions of proteins such as during
protein design procedures.

4.13. Protocols from text files

Most ROSETTA protocols can be abstracted into a series of steps where
each step either changes the structure being operated on (the Pose) or
decides that the trajectory should be restarted. The classes Mover and
Filter introduced above (Section 4.10) provide the building blocks for
such an abstraction. We have leveraged these two classes to generate a
framework for writing protocols in a user-friendly, XML scripting lan-
guage that can be read by a ROSETTA application called ROSETTASCRIPTS.
ROSETTASCRIPTS programs are written as text files and are converted into

570 Andrew Leaver-Fay et al.

a sequence of Movers and Filters at runtime. Each Mover and Fil-
ter accessible within ROSETTASCRIPTS implements an initialization func-
tion, parse_my_tag, which allows the script writer to control various
features of each class; however, great care has been taken to make the
default behavior for each Mover or Filter as robust and intuitive as
possible.

There are several advantages of this scripting functionality. First, it allows
users to rapidly create and tune protocols without having to recompile
Cþþ source code. This is especially useful for ROSETTA@home (Chivian
et al., 2003) where distributing a new executable is expensive both in labor
and in server load. Second, the ability to pass parameters to ROSETTASCRIPTS

Movers through the XML input file helps eliminate command-line flags,
which, as global variables, frustrate code reuse. Third, ROSETTASCRIPTS

protocols are self-contained and written to work within the standard job-
distribution framework (Section 4.11), making ROSETTASCRIPTS protocols as
easy to deploy on a given cluster as any other ROSETTA application. Finally,
ROSETTASCRIPTS is just as fast as any hard-coded protocol it might replace,
since the underlying Movers and Filters it relies upon are fully compiled
Cþþ classes.

5. Conclusion

Our new architecture has greatly advanced the functional capacity of
ROSETTA. It has allowed users to rapidly develop new protocols, to model
a wider set of chemical structures, and to easily experiment with new
scoring terms. As a concrete example, Fig. 19.4 illustrates a simple
ROSETTA3 simulation for predicting protein-single-stranded-DNA binding
specificity using DNA redesign, followed by gradient-based minimization.
The new architecture has allowed the creation of a multithreaded, inter-
active game where players are given access to ROSETTA’s minimization,
packing, and loop modeling routines to compete for the best protein
structure predictions (Cooper et al., 2010). It has enabled the creation of
PYROSETTA (Chaudhury et al., 2010) that allows command-line interactiv-
ity with ROSETTA classes and functions from within the Python inter-
preter, which in turn, promotes even faster protocol prototyping. With an
object-oriented approach toward protocol development, we are able to
construct arbitrarily complicated protocols from component Mover clas-
ses using a simple XML scripting language. It is our fervent hope that this
rearchitecturing will be a lasting foundation for the code base so that the
tumult of another complete rewrite may be avoided for the next decade if
not longer.

ROSETTA3 571

ACKNOWLEDGMENTS

This work was funded by NIH and HHMI. OFL was funded by the Human Frontier
Science Program.

REFERENCES

Abagyan, R., Totrov, M. M., and Kuznetsov, D. N. (1994). ICM—A new method for
protein modeling and design: Applications to docking and structure prediction from the
distorted native conformation. J. Comput. Chem. 15, 488–506.

Abe, H., Braun, W., Noguti, T., and Go, N. (1984). Rapid calculation of first and second
derivatives of conformational energy with respect to dihedral angles for proteins. General
recurrent equations. Comput. Chem. 8, 239–247.

Anderson, D. P. (2004). BOINC: A system for public-resource computing and storage. In
5th IEEE/ACM International Conference on Grid Computing pp. 4–10. IEEE Com-
puter Society, Pittsburg, PA.

Bonneau, R., Tsai, J., Ruczinski, I., Chivian, D., Rohl, C., Strauss, C. E., and Baker, D.
(2001). Rosetta in CASP4: Progress in ab initio protein structure prediction. Proteins 5,
119–126.

Bonneau, R., Strauss, C. E., Rohl, C. A., Chivian, D., Bradley, P., Malmstrom, L.,
Robertson, T., and Baker, D. (2002). De novo prediction of three-dimensional struc-
tures for major protein families. J. Mol. Biol. 322, 65–78.

Bradley, P., Malmstrom, L., Qian, B., Schonbrun, J., Chivian, D., Kim, D. E., Meiler, J.,
Misura, K. M., and Baker, D. (2005). Free modeling with Rosetta in CASP6. Proteins 61
(Suppl 7), 128–134.

Brent, R. P. (1973). Algorithms for minimization without derivatives. Prentice Hall, Engle-
wood Cliffs, NJ.

Brooks, B. R., III, Brooks, C. L., Mackerell, A. D., Nilsson, L., Petrella, R. J., Roux, B.,
Won, Y., Archontis, G., Bartels, C., Boresch, S., Caflisch, A., Caves, L., et al. (2009).
CHARMM: The biomolecular simulation program. J. Comput. Chem. 30, 1545–1615.

Canutescu, A. A., and Dunbrack, R. L., Jr. (2003). Cyclic coordinate descent: A robotics
algorithm for protein loop closure. Protein Sci. 12, 963–972.

Chaudhury, S., Lyskov, S., and Gray, J. J. (2010). PyRosetta: A script-based interface for
implementing molecular modeling algorithms using Rosetta. Bioinformatics 26, 689–691.

Chivian, D., Kim, D. E., Malmstrom, L., Bradley, P., Robertson, T., Murphy, P.,
Strauss, C. E., Bonneau, R., Rohl, C. A., and Baker, D. (2003). Automated prediction
of CASP-5 structures using the Robetta server. Proteins 53(Suppl. 6), 524–533.

Chowdry, A. B., Reynolds, K. A., Hanes, M. S., Voorhies, M., Pokala, N., and
Handel, T. M. (2007). An object-oriented library for computational protein design.
J. Comput. Chem. 28, 2378–2388.

Cleary, S. (2001). The Boost Pool Library, www.boost.org/libs/pool.
Cooper, S., Khatib, F., Treuille, A., Barbero, J., Lee, J., Beenen, M., Leaver-Fay, A.,

Baker, D., and Popović, Z. (2010). Predicting protein structures with a multiplayer
online game. Nature 466, 756–760.

Coutsias, E. A., Seok, C., Jacobson, M. P., and Dill, K. A. (2004). A kinematic view of loop
closure. J. Comput. Chem. 25, 510–528.

Dahiyat, B. I., and Mayo, S. L. (1996). Protein design automation. Protein Sci. 5, 895–903.
Dantas, G., Kuhlman, B., Callender, D., Wong, M., and Baker, D. (2003). A large scale test

of computational protein design: Folding and stability of nine completely redesigned
globular proteins. J. Mol. Biol. 332, 449–460.

572 Andrew Leaver-Fay et al.

Das, R., and Baker, D. (2007). Automated de novo prediction of native-like RNA tertiary
structures. Proc. Natl. Acad. Sci. USA 104, 14664–14669.

Das, R., and Baker, D. (2008). Macromolecular modeling with Rosetta. Annu. Rev.
Biochem. 77, 363–382.

Das, R., Qian, B., Raman, S., Vernon, R., Thompson, J., Bradley, P., Khare, S.,
Tyka, M. D., Bhat, D., Kim, D. E., Sheffler, W. H., Malmstrom, L., et al. (2007).
Structure prediction for CASP7 targets using extensive all-atom refinement with Roset-
ta@home. Proteins 106, 18978–18983.

Das, R., Karanicolas, J., and Baker, D. (2010). Atomic accuracy in predicting and designing
noncanonical RNA structure. Nat. Methods 7, 291–294.

Davis, I. W., and Baker, D. (2009). RosettaLigand docking with full ligand and receptor
flexibility. J. Mol. Biol. 385, 381–392.

Desmet, J., De Maeyer, M., Hazes, B., and Lasters, I. (1992). The dead-end elimination
theorem and its use in protein side-chain positioning. Nature 356, 539–541.

Gray, J. J., Moughon, S., Wang, C., Schueler-Furman, O., Kuhlman, B., Rohl, C. A., and
Baker, D. (2003). Protein–Protein docking with simultaneous optimization of rigid-
body displacement and side-chain conformations. J. Mol. Biol. 331, 281–299.

Hellinga, H. W., Caradonna, J. P., and Richards, F. M. (1991). Construction of new ligand
binding sites in proteins of known structure. II. Grafting of a buried transition metal
binding site into Escherichia coli thioredoxin. J. Mol. Biol. 222, 787–803.

Jiang, L., Althoff, E. A., Clemente, F. R., Doyle, L., Rothlisberger, D., Zanghellini, A.,
Gallaher, J. L., Betker, J. L., Tanaka, F., Barbas, C. F., Hilvert, D., Houk, K. N., et al.
(2008). De novo computational design of retro-aldol enzymes. Science 319, 1387–1391.

Kaufmann, K., Glab, K., Mueller, R., and Meiler, J. (2008). Small molecule rotamers enable
simultaneous optimization of small molecule and protein degrees of freedom in ROSET-
TALIGAND docking. In “German Conference on Bioinformatics,” (A. Beyer and
M. Schroeder, eds.), pp. 148–157. Gesellschaft für Informatik, Bonn, Germany.

Kaufmann, K. W., Lemmon, G. H., DeLuca, S. L., Sheehan, J. H., and Meiler, J. (2010).
Practically useful: What the Rosetta protein modeling suite can do for you. Biochemistry
49, 2987–2998.

Kortemme, T., Joachimiak, L. A., Bullock, A. N., Schuler, A. D., Stoddard, B. L., and
Baker, D. (2004). Computational redesign of protein–protein interaction specificity.Nat.
Struct. Mol. Biol. 11, 371–379.

Kuhlman, B., and Baker, D. (2000). Native protein sequences are close to optimal for their
structures. Proc. Natl. Acad. Sci. USA 97, 10383–10388.

Leaver-Fay, A., Kuhlman, B., and Snoeyink, J. S. (2005a). An adaptive dynamic program-
ming algorithm for the side chain placement problem. In “Pacific Symposium on
Biocomputing”, 2005, pp. 17–28. World Scientific, The Big Island, HI.

Leaver-Fay, A., Kuhlman, B., and Snoeyink, J. S. (2005b). Rotamer-Pair Energy Calculations
using a Trie Data Structure (Workshop on Algorithms in Bioinformatics (WABI). pp.
500–511.).

Leaver-Fay, A., Snoeyink, J. S., and Kuhlman, B. (2008). On-the-fly rotamer pair energy
evaluation in protein design. The 4th International Symposium on Bioinformatics
Reasearch and Applications (ISBRA 2008), pp. 343–354.

Mandell, D. J., Coutsias, E. A., and Kortemme, T. (2009). Sub-angstrom accuracy in protein
loop reconstruction by robotics-inspired conformational sampling.Nat.Methods 6, 551–552.

Meiler, J., and Baker, D. (2006). ROSETTALIGAND: Protein-small molecule docking
with full side chain flexibility. Proteins 65, 538–548.

Nocedal, J., and Wright, S. J. (2006). Numerical Optimization, 2nd edn. Springer.
Onufriev, A., Bashford, D., and Case, D. A. (2004). Exploring protein native states and

large-scale conformational changes with a modified generalized born model. Proteins 55,
383–394.

ROSETTA3 573

Pierce, N. A., and Winfree, E. (2002). Protein design is NP-hard. Protein Eng. 15, 779–782.
Ponder, J. W., and Richards, F. M. (1987). Tertiary templates for proteins. Use of packing

criteria in the enumeration of allowed sequences for different structural classes. J. Mol.
Biol. 193, 775–791.

Raman, S., Vernon, R., Thompson, J., Tyka, M., Sadreyev, R., Pei, J., Kim, D.,
Kellogg, E., Dimaio, F., Lange, O., Kinch, L., Sheffler, W., et al. (2009). Structure
prediction for CASP8 with all-atom refinement using Rosetta. Proteins 77, 89–99.

Rohl, C. A., Strauss, C. E., Chivian, D., and Baker, D. (2004). Modeling structurally
variable regions in homologous proteins with Rosetta. Proteins 55, 656–677.

Rothlisberger, D., Khersonsky, O., Wollacott, A. M., Jiang, L., DeChancie, J., Betker, J.,
Gallaher, J. L., Althoff, E. A., Zanghellini, A., Dym, O., Albeck, S., Houk, K. N., et al.
(2008). Kemp elimination catalysts by computational enzyme design. Nature 453,
190–195.

Simons, K. T., Kooperberg, C., Huang, E., and Baker, D. (1997). Assembly of protein
tertiary structures from fragments with similar local sequences using simulated annealing
and Bayesian scoring functions. J. Mol. Biol. 268, 209–225.

Stepanov, A., and Lee, M. (1995). The Standard Template Library (WG21/N0482, ISO
Programming Language Cþþ Project).

Wang, C., Schueler-Furman, O., and Baker, D. (2005). Improved side chain modeling for
protein–protein docking. Protein Sci. 14, 1328–1339.

Wang, C., Bradley, P., and Baker, D. (2007). Protein–protein docking with backbone
flexibility. J. Mol. Biol. 373, 503–519.

Zanghellini, A., Jiang, L., Wollacott, A. M., Cheng, G., Meiler, J., Althoff, E. A.,
Rothlisberger, D., and Baker, D. (2006). New algorithms and an in silico benchmark
for computational enzyme design. Protein Sci. 15, 2785–2794.

574 Andrew Leaver-Fay et al.

	Chapter 19:###Rosetta3
	Abstract
	1###Introduction
	2###Requirements
	2.1###Preserving existing functionality
	2.2###Generality requirements
	2.3###Code quality requirements
	2.4###Speed requirements

	3###Design Decisions
	3.1###Object-oriented architecture
	3.2###Residue centrality
	3.3###Pose
	3.4###Scoring

	4###Architecture
	4.1###core library
	4.2###core::chemical
	4.3###core::kinematics
	4.4###core::conformation
	4.5###core::pose
	4.6###core::scoring
	4.6.1###ScoreFunction as a container
	4.6.2###Energy method class hierarchy
	4.6.3###Class Energies and class EnergyGraph
	4.6.4###Score function evaluation
	4.6.5###core::scoring::constraints

	4.7###core::optimization
	4.8###core::pack
	4.9###protocols Library
	4.10###protocols::moves
	4.11###JobDistributor
	4.12###protocols::loops
	4.13###Protocols from text files

	5###Conclusion
	Acknowledgments
	References

