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Overview
This is the protocol capture page for Jufo9D as described in Koehler-Leman et al., Proteins, Structure, Function, and Bioinformatics, 2013.

http://onlinelibrary.wiley.com/doi/10.1002/prot.24258/abstract;jsessionid=230D18CEAE744F065ADC2F8101A28922.d04t03

Background
Link to be included: Koehler-Leman et al., Proteins, Structure, Function, and Bioinformatics, 2013 once available.

Protocol

Environment

Use these commands to setup your environment to replicate this protocol capture.

If you are replicating this protocol capture, first copy the folder elsewhere and update paths accordingly

/bin/tcsh
cd /blue/meilerlab/protocols/Jufo9D/2012-06-01-Nominal Title/
source protocol_capture_cshrc

Dataset creation - MP Chains

A list of all membrane protein chains, for which a structure has been determined, was downloaded from the Pdbtm  website (Nov. 2011).41-42

Similar sequences were excluded by culling this list with the PISCES server . The parameters included a percent sequence identity  30%,43-44

resolution 0 – 3 Å, R-factor 0.25, sequence length 40 – 10,000 residues, non X-ray entries as well as CA-only chains were included.
BCL::PDBConvert (Woetzel, N. submitted) was used to convert non-natural amino acids into their natural counterparts and to transform the
protein into the membrane coordinate frame using the membrane definitions provided by the Pdbtm website. The membrane normal aligns with
the z-coordinate in the PDB file with the membrane center being at z = 0. We assume a constant thickness of 20 Å for the membrane core and 10
Å for the transition region on either side of the membrane (Figure 1A). Residues in the 2.5 Å gap regions between membrane core and transition
region or transition region and solution were disregarded to obtain more distinct regions for the ANN to identify. DSSP  (version of 2011) was45

used for all PDB structures to obtain a consistent SS identification. Helices with less than five residues and strands with less than three residues
were disregarded to focus the prediction on long SS elements. This procedure resulted in a list of 226 chains in 177 membrane proteins.

Step Commands Comments Outputs 

http://onlinelibrary.wiley.com/doi/10.1002/prot.24258/abstract;jsessionid=230D18CEAE744F065ADC2F8101A28922.d04t03


download list of
TM chains 

  download list of all TM chains from PDBTM
website ([http://pdbtm.enzim.hu/?m=download)] 

sorted output should be
pdbtm_all_chains_2011-12-07_sorted.ls

cull chains for
sequence
identity 

Your thresholds for
culling selected PDB
list: 
  Sequence percentage
identity: <= 30% 
  Resolution: 0.0 ~ 3.0 
  R-factor: 0.25 
  Sequence length: 40
~ 10000 
  Non X-ray entries:
Included 
  CA-only entries:
Included 
  Cull PDB by chain

cull chains using PISCES using these parameters cullpdb_pc30_res3.0_R0.25_inclNOTXRAY_

inclCA_d120229_chains304.6610

remove
unwanted
chains 

remove EM structures and N/A or proteins with
unknown resolution 

current_MP_chains.txt

Dataset creation - soluble chains

A pre-compiled list of PDB chains was downloaded from the PISCES protein sequence culling server (date 12/02/2011) . The list contained43-44

sequences with a percentage sequence identity  30%, resolution 0 – 2 Å, R-factor 0.25, sequence length 40 – 10,000 residues, non X-ray entries
as well as CA-only chains were excluded. Membrane proteins were excluded from this list. BCL::PDBConvert (Woetzel, N. submitted) was used
to convert non-natural amino acids into their natural counterparts and DSSP  was used to identify SS elements. Helices shorter than five45

residues and strands shorter than three residues were disregarded. The result was a list of 6,223 chains in 6,048 soluble proteins.

Step Commands Comments Output 

download
list of chains

  download file for all proteins from PISCES website (
) http://dunbrack.fccc.edu/Guoli/pisces_download.php

cullpdb_pc30_res2.0_R0.25_d111202_chains6540

remove
unwanted
chains 

  remove all MP chains - cull against
pdbtm_all_chains_2011-12-07_sorted.ls 
remove EM structures and N/A or proteins with unknown
resolution 
remove chains shorter than 40 residues 

current_sol_chains_longer39.ls

Preparation of input files

Step Commands Comments Output 

run
PDBConvert

001_PDBConvert_convertAAs.txt runs it for all MP chains to get fasta and to
convert to natural AA type (DSSP requires
that) 
correct U, Z, B in fasta into X

 

run DSSP 002_run_dssp_over_db.pl output goes into
database_MPs/

download
xml files 

003_download_xml.txt download xml files for MPs output goes into
database_MPs/

create
biomolecule

004_PDBConvert_biomolecule.txt 
check_pdb_for_membrane_position_database.pl

or 
check_pdb_for_membrane_position.pl 

run PDBConvert to create biomolecule 
check for correct membrane orientation,
either for individual pdb or for database of
pdbs

 

run SSPred 007_runss.txt runs SSPrediction for PsiPred and ProfPhD creates .ascii, .ascii6, .rdb, and
.psipred_ss2 files in the
database

All steps above should be carried out for both the MP database and the soluble protein database.

http://dunbrack.fccc.edu/Guoli/pisces_download.php


Step Commands Comments Output 

pairwise
sequence
alignment

005_sequence_alignment_calc_seqid.pl make pairwise sequence alignments
(because PISCES does not remove ALL
similar sequences) 
output is analyzed in
alignments_MPvsMP.txt<$thread>, all
chains with sequence similarity higher than
90% are clustered to get only a single
representative of these

alignments/

analyze
clusters 

010_analyze_clusters.pl analyze clusters using cutoff of 90% 
clusters can be visualized using
011_visualize_clusters.pl 

removed chains after clustering: 
removed chains are in
clustering/remove_chains_after_clustering.ls

clustering/clusters_MP_seqids_90.out 
and
current_MP_chains_after_clustering.txt

create
oligomeric
state
dictionary 

012_create_oligomeric_state_dictionary.pl oligomeric_state_dictionary.txt

Create datasets for cross-validation

The databases were split into five subsets for cross-validation. For the membrane proteins -helical bundles as well as -barrels were distributed as
equally as possible. The soluble proteins were distributed randomly.

To train a single ANN, three of the five subsets were used for training (see Figure 1B) and one subset was used for monitoring the training
process to avoid overtraining. The fifth subset was used as an independent test set for computing the prediction accuracies. 20 networks were
trained such that the independent as well as the monitoring permuted through the five datasets (Figure 1B).

Step Commands Comments Output 

assign alpha/beta to
chains 

013_add_folds_into_chains_file.pl create file that contains alpha/beta distinction in the membrane
for the proteins 

datasets_all.ls

distribute into 5
subsets 

  distribute into 5 subsets: 
distribute A-folds and B-folds from datasets_all.ls into 5
subsets using create_dataset.pl 
distribute chains from current_sol_in_datasets_chains.ls
randomly into subsets 
these files are the input files for creating the ANN input files!!!

dataset1.ls ...
dataset5.ls

Generate ANN input files

Figure 2 shows the input parameters used (see Supplementary Table S1): (a) five amino acid properties including steric parameter, volume,
polarizability, iso-electric point, solvent-accessible surface area ; (b) six free energies for SS type (helix, strand, coil), residue environment10

(membrane bilayer, interface, solution)  and the nine combinations of both; (c) the position-specific scoring matrices (PSSM) from PsiBlast 25 8

after six iterations (see ). For each residue all of these parameters were collected over a sequence window of 31 residues. The optimal size of46

the input window was determined by testing all odd window sizes between 15 and 39 residues.

In addition, "global" parameters were considered for each protein: (a) the number of residues in the protein chain; (b) the oligomeric state
(monomer vs. oligomer); (c) the average of all amino acid specific parameters over the entire protein chain including their properties, free
energies, and the PSSM values. This resulted in (31 residues x (20 numbers from PSSM + 20 amino acid properties)) + (2 parameters: oligomeric
state, length) + (40 averages) = 1282 input parameters that represent the residue at the center of the window.

Step Commands Comments Output 

generate
descriptors 

014_generate_descriptors1.txt generate descriptors
as input to ANNs 

descriptors_PDB_9D_10000_w31.dat

convert to
binary file 

bclWill.exe GenerateDataset -source
'File(filename=descriptors_PDB_9D_10000_w31.dat,num 
ber chunks=1,chunks=[0])' -output
descriptors_PDB_9D_10000_w31.bin

convert it into a binary
file for easier reading 

descriptors_PDB_9D_10000_w31.bin



Train ANNs

The datasets (the term "dataset" corresponds to the input and output parameters for each residue in a protein sequence) were randomized and
balanced for each protein subset independently. For balancing, an over-sampling procedure was used to represent each of the nine states equally
often and avoid a bias in the predictions towards the more abundant states. This approach also increases the entropy in the input data and
maximizes the information gain the ANN can achieve.

The ANNs were three-layer feed-forward networks with a sigmoidal activation function and trained through back-propagation of errors. The hidden
layer contained 32 neurons – a number that was optimized by testing 4, 8, 16, 32, 64, and 128 neurons. The three subsets used for training
contained a total of 270,000 instances, 90,000 instances were in the monitoring dataset, and 90,000 instances in the independent dataset. The
training protocol consisted of three consecutive steps using a simple propagation algorithm: (1) 50 steps with weight update after each step with
momentum  = 0.0 and the learning rate  = 10 ; (2) 10 steps with batch update with momentum  = 0.5 and the learning rate  = 5•10 ; (3) 100-3 -6

steps with weight update after each step with momentum  = 1.0 and the learning rate  = 5•10 . As a post-processing step the outputs of the four-6

ANNs were averaged that used the same independent subset.

Step Commands Comments Output 

create
directories

  train 20
ANNs: 
5 subsets:
first number
0..4 for
independent
set, second
number
(unequal
first
number)
0..4 for
monitoring
set 
created
different
directories
with these
numbers:
01, 02, ...,
43 

train_10_combi/

training
run 1 

bcl-apps-static_03192012.exe TrainModel 'NeuralNetwork(transfer function = Sigmoid, weight
update = Simple(eta=0.001,alpha=0), objective function = RMSD, steps per update=1, hidden
architecture(32))' -training 'Subset(
filename=descriptors_PDB_9D_10000_w31_2012-03-16.bin,number chunks=5,chunks="[0,5)[0]
[1]")' -monitoring 'Subset( filename=descriptors_PDB_9D_10000_w31_2012-03-16.bin,number
chunks=5,chunks="[1]")' -independent 'Subset(
filename=descriptors_PDB_9D_10000_w31_2012-03-16.bin,number chunks=5,chunks="[0]")'
-print_training_predictions descriptors_PDB_9D_10000_w31_2012-03-16.train0
-print_monitoring_predictions descriptors_PDB_9D_10000_w31_2012-03-16.mon0
-print_independent_predictions descriptors_PDB_9D_10000_w31_2012-03-16.ind0
-feature_labels features_code_1282.object -result_labels results_code_9D.object -scheduler
Serial -final_objective_function RMSD -storage_model 'File(directory=.)' -max_iterations 50

for each
ANN trained
for 3
consecutive
runs (here
example for
01, see
01/run0.log
...
01/run2.log)

1st training
run 

000000.model

training
run 2 

bcl-apps-static_03192012.exe TrainModel 'NeuralNetwork(initial network file = 000000.model,
transfer function = Sigmoid, weight update = Simple(eta=0.000005,alpha=0.5), objective function
= RMSD, steps per update=0, hidden architecture(32))' -training
'Subset(filename=descriptors_PDB_9D_10000_w31_2012-03-16.bin,number
chunks=5,chunks="[0,5) [1]")' -monitoring 'Subset([0]
filename=descriptors_PDB_9D_10000_w31_2012-03-16.bin,number chunks=5,chunks="[1]")'
-independent 'Subset( filename=descriptors_PDB_9D_10000_w31_2012-03-16.bin,number
chunks=5,chunks="[0]")' -print_training_predictions
descriptors_PDB_9D_10000_w31_2012-03-16.train1 -print_monitoring_predictions
descriptors_PDB_9D_10000_ 
w31_2012-03-16.mon1 -print_independent_predictions
descriptors_PDB_9D_10000_w31_2012-03-16.ind1 -feature_labels features_code_1282.object
-result_labels results_code_9D.object -scheduler Serial -final_objective_function RMSD
-storage_model 'File(directory=.)' -max_iterations 10

2nd training
run 

000001.model



training
run 3 

bcl-apps-static_03192012.exe TrainModel 'NeuralNetwork(initial network file = 000001.model,
transfer function = Sigmoid, weight update = Simple(eta=0.000005,alpha=1), objective function =
RMSD, steps per update=0, hidden architecture(32))' -training 'Subset(
filename=descriptors_PDB_9D_10000_w31_2012-03-16.bin,number chunks=5,chunks="[0,5)[0]
[1]")' -monitoring 'Subset( filename=descriptors_PDB_9D_10000_w31_2012-03-16.bin,number
chunks=5,chunks="[1]")' -independent 'Subset(
filename=descriptors_PDB_9D_10000_w31_2012-03-16.bin,number chunks=5,chunks="[0]")'
-print_training_predictions descriptors_PDB_9D_10000_w31_2012-03-16.train2
-print_monitoring_predictions descriptors_PDB_9D_10000_w31_2012-03-16.mon2
-print_independent_predictions descriptors_PDB_9D_10000_w31_2012-03-16.ind2
-feature_labels features_code_1282.object -result_labels results_code_9D.object -scheduler
Serial -final_objective_function RMSD -storage_model 'File(directory=.)' -max_iterations 100

3rd training
run 

000002.model

Analyze output

To report the prediction accuracies as well as the confidence measure, an average of four network outputs was computed only considering ANNs
belonging to a single set that share the same independent dataset (Figure 1B). This setup (a) ensures that the reported accuracies originate from
ANNs that were not trained on the test set, and (b) prediction accuracies can be reported for each protein in the dataset as always four ANNs
exist that were trained with this particular protein in the independent dataset. The final output from the web-server is the average over all 20 ANNs
and computes a confidence measure that constitutes the difference between the highest and second highest output probability for each residue.

To calculate the per-residue prediction accuracies, the outputs of the four ANNs in a single set were averaged. The outputs per set were
compared to the actual state on a per-residue basis: if the predicted state was a TM helix and the actual state was a TR helix, the counts in this
particular 9x9 matrix element (see Figure 3) was increased by one. After obtaining all counts for the 9x9 matrix over a single set, the counts were
divided by the number of residues in this region (sum over each row) to arrive at the percentage of predicted residues in each matrix element. The
percentages of predicted residues were then averaged over the five sets of ANNs. This cross-validation and averaging procedure circumvents
that a “bad choice” of proteins in an independent dataset biases the prediction accuracies.

The counts for the three-state SS prediction, three-state TM span prediction, or two-state TM helix/TM strand prediction were calculated as
described in Supplementary Figure S1. The counts were divided by the total number of counts per row to arrive at the percentages of predicted
residues and these percentages were later averaged over the five sets of ANNs.

Step Commands Comments Output

create test
input files 

  create and test input files with/without gaps and minSSEsize 

commandlines are in
readme_create_dataset_gaps2.5_minSSEsize0.txt
and
readme_create_dataset_gaps2.5_minSSEsize3.5.txt
they create testModel* files in ANN directories

 

analyze
using ANN
model files 

019_analyze_overprediction_9D_newformat.pl 
or 
027_analyze_overprediction_9D_all-in-line.pl

analyze predicted output that was generated using the ANN
model files 

if actual output and predicted output is in two different
lines: use 019...
if actual output and predicted output is in one line: use
027...
this is for a single output file from a single ANN

 

combine
outputs from
4 ANNs 

020_avg_ANN_outputs_to_1_prediction.pl 
or 
029_avg_ANN_outputs_to_1_prediction_all-in-line.pl

combine and analyze outputs from 4 different ANNs which all
have the same independent dataset 

if actual output and predicted output is in two different
lines: use 020...
if actual output and predicted output is in one line: use
029...
this is written into train_10k_combi32/analysis*txt files
which are analyzed in Excel, these tables are in the
manuscript

 

Create single chain PDBs to compare to other methods

Only single chains can be used as input to other methods, therefore creation of single chain PDBs is required.



Step Commands Comments Output

create
single
chains 

023_PDBConvert_create_chains.txt create single chains for PDB files to compare to other methods 

individual chains can be tested and analyzed using
026_test_chains_with_jufo_sumpred_analyze.pl where the output of 4
ANNs is taken as the final output

 

Run OCTOPUS and TMbetaNet as comparison

Submits a list of fasta files to the servers, downloads, and reformats the output.

Step Commands Comments Output 

run Octopus 016_octopus_run_from_fasta.pl run OCTOPUS for list of input files 
runs via 015_octopus_submit.pl for Octopus 

written to
database 

run TMBetaNet 018_tmbetanet_run_from_fasta.pl run TMBETANET for list of input files 
runs via 017_tmbetanet_submit.pl for TMbetanet 

written to
database 

reformat
TMBetaNet 

reformat_tmbetanet.pl reformat the TMbetanet output to remove single empty lines at
beginning of the file 

 

Comparison between methods

Step Commands Comments Output 

run statistics for
BCL::Jufo9D 

run_statistics2.txt compare Jufo to other methods 
obtains statistics from individual
.jufo9d output files 

statistics_other_methods/

calculate
per-residue
accuracies 

024_calculate_per-res-acc_avg_stdev_for_methods.pl analyzes output for 2-state output  

calculate avg
and stdev 

028_calculate_avg_stdev_for_methods.pl analyzes output for 3- and 9-state
outputs

 

get 2-state
accuracies for
BCL::Jufo9D 

034_avg_ANN_outputs_to_2-state_all-in-line.pl get 2-state accuracies for Jufo
prediction 
use 034... which requires that the ANN
actual output and predicted output is in
one line

 

calculate
information gain 

038_calculate_infogain.pl calculate information gain 
this takes outputs*_avgANNs.txt as
input files which is from complete
protein sequences, unbalanced, no
gaps, no minSSEsizes

results_infogain.txt 

Create topology prediction

Topology prediction is not the actual topology which indicates the inside/outside orientation of a MP. It rather indicates TM-helix and TM-strand
spans along the protein sequence.

To directly compare the nine-state output of BCL::Jufo9D to the two-state output of, for instance Octopus, we summed the non-TM helix
probabilities to arrive at a two-state prediction (Supplementary Figure S1). To remove the resulting bias towards non-TM states from adding
background probabilities of 11.1%, the result needs to be corrected by adding or subtracting ½•(8•11.1%-11.1%)=38.9% from the two states,
respectively. This procedure ensures that the total of all prediction probabilities remains 100%. The identical correction was applied to the TM
strand prediction.

Furthermore, a post-processing step has been applied for noise reduction. Lengths of SS elements were calculated where kinks of one or two
residues were regarded as TM helix residues but were retained in the final prediction. Since the topology prediction output considers only long SS
elements that can span the membrane, helices shorter than 11 residues (including kinks) and strands shorter than 5 residues were removed.
Including this post-processing step resulted in an increase in prediction accuracy of ~3% over all residues in the dataset.



Step Commands Comments Input/Output 

topology
prediction 

039_topology_from_averaged_ANN_files.pl create and benchmark topology
prediction 
topology is predicted using the
7*0.111 baseline correction for
TMstrand and TMhelix prediction 

input files are
train_10k_combi32/outputs*_avgANNs.txt
and train_10k_combi32//testModel
_unbal_nonrand_nogaps.2.dat 
output files are
topology/topology_testModel_ds??.dat
which are analyzed using 027_... with
results in
topology/topology_accuracies_ds?.dat

topology
prediction
from jufo9D
files 
+FOR

+ SERVER

  039_topology_from_jufo_output.pl
is for server and calculates
topology from jufo9D output

 

Compare eukaryotic and prokaryotic prediction accuracies

One reviewer raised the question how BCL::Jufo9D would perform on eukaryotic and prokaryotic proteins. The 5 datasets (dataset?.ls) were split
into eukaryotic/prokaryotic proteins and the predictions were analyzed.

Step Commands Comments Output 

get species
from NCBI 

  split datasets in eukaryotic and prokaryotic 
use NCBI to get a species list containing taxonomy ID
and class (bacterial, eukaryotic, ...) 

species-list_ordered.ls

split datasets
into
pro/eukaryote

042_identify_prokaryote-eukaryote_for_datasets.pl use datasets to create
descriptors?_test_eukaryote_unbal_nonrand_nogaps.dat
and
descriptors1_test_eukaryote_unbal_nonrand_nogaps.bin
as above 

dataset1_eukaryote.ls and dataset?_prokaryote.ls

analyze
accuracies 

027_analyze_overprediction_9D_all-in-line.pl test accuracies outputs are: 
train_10k_combi32/analysis?_eukaryote_unbal_nonrand_nogaps.txt
and
train_10k_combi32/analysis?_prokaryote_unbal_nonrand_nogaps.txt

Compute kink prediction accuracies for BCL::Jufo9D and other methods

We defined a kink as one or two coil residues in TM helices longer than 11 residues. We considered the kink as accurately identified if it was
predicted within five residues in either direction (N- or C-terminal of the actual kink).

Step Commands Comments 

get real and
jufo-predicted
kinks 

043_kinks.pl get real kinks and BCL::Jufo9D predicted ones: 
uses input files descriptors/descriptors?_unbal_nonrand_nogaps.dat and
/home/koehlej/projects/jufo/039_training_9D/train_10k_combi32/outputs?_avgANNs.txt

get kinks
from PsiPred 

044_concatenate_PsiPred_for_kinks.pl

045_compute_kinks_for_PsiPred.pl 

get PsiPred predicted kinks: 
concatenate all Psipred files into one that can be directly compared since residues
numbering is identical; use 044... 
use 045... to compute kinks for PsiPred 

get kinks
from Octopus

046_concatenate_PsiPred_for_kinks.pl

047_compute_kinks_for_Octopus.pl 

get Octopus predicted kinks: 
concatenate all Octopus files into one that can be directly compared since residues
numbering is identical; use 046... 
use 047... to compute kinks for Octopus: 



get kinks
from TMkink 

058_TMkink_run_from_fasta.pl 

058_TMkink_run_from_fasta_part2.pl 
059_reformat_TMkink.pl 
060_compute_kinks_for_TMkink.pl 

get predicted kinks from TMkink (Bowies method: ) http://tmkinkpredictor.mbi.ucla.edu/

use kinks/TMkink_chains.ls to run 058.. which runs 057_TMkink_submit.pl 

this submits the fasta files to the TMkink server
you get emails that contain the codes where the result pages can be found 
use TMkink-method/TMkink_result_pages.txt and 058... to download files into
TMkink-method/ 
these files are reformatted using 059... and analyzed using 060... with the use
of get_kink_locations_proteins.pl and kinks/TMkink_locations1.txt 
results are compiled into results_kinks.txt

http://tmkinkpredictor.mbi.ucla.edu/

